// Numbas version: finer_feedback_settings {"name": "Logarithms ", "feedback": {"allowrevealanswer": true, "showtotalmark": true, "advicethreshold": 0, "intro": "", "feedbackmessages": [], "showanswerstate": true, "showactualmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "duration": 0, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "metadata": {"description": "
Introduction to logs, Rules of logs, Log equations
\nrebel
\nrebelmaths
", "licence": "None specified"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "What does log mean?", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["a", "x", "y"], "tags": ["log", "rebel", "REBEL", "rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"stepsPenalty": 0, "prompt": "$\\log_\\var{a} \\var{x}$ means...
\nTo what power do I raise [[0]] in order to get [[1]]?
\nAnd the answer is [[2]].
\nHence, $\\log_\\var{a} \\var{x}=$[[3]].
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"allowFractions": false, "variableReplacements": [], "maxValue": "x", "minValue": "x", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{y}", "minValue": "{y}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{y}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "steps": [{"prompt": "Write in the form
\n$a^?=y$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "$\\log_a y$ is really asking the question
\n\"To what power do I raise $a$ in order to get $y$?\"
\n$a^?=y$
\nExample:
\n$\\log_5 25$ is really asking the question
\n\"To what power do I raise $5$ in order to get $25$?\"
\n$5^?=25$ and we know the answer is 2, that is $\\log_5 25=2$ or if you prefer $5^2=25$
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2,3,4,5,10)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "x": {"definition": "a^y ", "templateType": "anything", "group": "Ungrouped variables", "name": "x", "description": ""}, "y": {"definition": "random(2..4 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "y", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Converting Logs to Indices", "extensions": [], "custom_part_types": [], "resources": [["question-resources/rules_73.jpg", "/srv/numbas/media/question-resources/rules_73.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["n1", "ans11", "n2", "ans12", "n21", "n31", "ans13", "n32", "n41", "ans21", "n4", "ans22", "n5", "n6", "n7", "n8", "ans23"], "tags": ["logs", "rebel", "rebelmaths"], "advice": "N.B. Log Rules
\n\nPart 1
\ni) $x = \\var{n1[0]}^\\var{n1[1]} = \\var{ans11}$
\nii) $ \\var{n21} = \\var{n2[0]}^x$
\n$x = \\var{ans12}$
\niii) $x = \\var{n32}^ \\frac{1}{\\var{n31}} = \\var{ans13}$
\nPart 2
\ni) $\\frac{1}{\\var{n41}} = \\var{n4[0]}^x $
\n$x = \\var{ans21}$
\nii) $\\var{n6} = x^\\var{n5}$
\n$x = \\var{ans22}$
\niii) $\\var{n7} = x^ \\frac{1}{\\var{n8}}$
\n$ x = \\var{n7}^\\var{n8} = \\var{ans23}$
", "rulesets": {}, "parts": [{"stepsPenalty": 0, "prompt": "i) $\\log_\\var{n1[0]} x = \\var{n1[1]}$
\nx = [[0]]
\nii) $\\log_\\var{n2[0]} \\var{n21} = x$
\nx = [[1]]
\niii) $\\log_\\var{n32} x = \\frac{1}{\\var{n31}}$
\nx = [[2]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{ans11}", "minValue": "{ans11}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{ans12}", "minValue": "{ans12}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{ans13}", "minValue": "{ans13}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "steps": [{"prompt": "Remember the rule
\n$a^x=y \\iff \\log_a y=x$
\nSo, for example $5^2=25$ has the same information or is another way of writing the information $\\log_5 25=2$.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "i) $\\log_\\var{n4[0]} \\frac{1}{\\var{n41}} = x$
\nx = [[0]]
\nii) $\\log_x \\var{n6} = \\var{n5}$
\nx = [[1]]
\niii) $\\log_x \\var{n7} = \\frac{1}{\\var{n8}}$
\nx = [[2]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{ans21}", "minValue": "{ans21}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{ans22}", "minValue": "{ans22}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{ans23}", "minValue": "{ans23}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "steps": [{"prompt": "Remember the rule
\n$a^x=y \\iff \\log_a y=x$
\nSo, for example $5^2=25$ has the same information or is another way of writing the information $\\log_5 25=2$.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"n21": {"definition": "n2[0]^ans12", "templateType": "anything", "group": "Ungrouped variables", "name": "n21", "description": ""}, "ans12": {"definition": "random(2..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans12", "description": ""}, "n2": {"definition": "shuffle(3..7)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "n2", "description": ""}, "n41": {"definition": "n4[0]^-ans21", "templateType": "anything", "group": "Ungrouped variables", "name": "n41", "description": ""}, "n4": {"definition": "shuffle(2..5)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "n4", "description": ""}, "ans22": {"definition": "random(3..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans22", "description": ""}, "n8": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "n8", "description": ""}, "ans13": {"definition": "n2[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "ans13", "description": ""}, "ans11": {"definition": "n1[0]^n1[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "ans11", "description": ""}, "ans21": {"definition": "n4[1]*-1", "templateType": "anything", "group": "Ungrouped variables", "name": "ans21", "description": ""}, "n1": {"definition": "shuffle(2..5)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "n1", "description": ""}, "n31": {"definition": "random(2..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "n31", "description": ""}, "n32": {"definition": "ans13^n31", "templateType": "anything", "group": "Ungrouped variables", "name": "n32", "description": ""}, "ans23": {"definition": "n7^n8", "templateType": "anything", "group": "Ungrouped variables", "name": "ans23", "description": ""}, "n5": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "n5", "description": ""}, "n6": {"definition": "ans22^n5", "templateType": "anything", "group": "Ungrouped variables", "name": "n6", "description": ""}, "n7": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "n7", "description": ""}}, "metadata": {"notes": "rebelmaths rebel Rebel REBEL
", "description": "Practice converting from logarithm notation to index notation and hence solving simple equations.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Adding and Subtracting Logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "b1", "b2", "c1", "c2", "c3", "d1", "d2", "d3", "e1", "e2", "e3", "f1", "f2", "f3", "f4", "f5", "g1", "g2", "g3", "g4", "h1", "h2", "h3", "i1", "i2", "i3", "i4"], "tags": ["Logarithm", "Logs", "rebel", "rebelmaths", "Rules of Logs"], "preamble": {"css": "", "js": ""}, "advice": "Use of the laws of logarithms is crucial here:
\n$\\log{a} + \\log{b} = \\log{ab}$
\n$\\log{a} - \\log{b} = \\log{\\frac{a}{b}}$
\n$\\log{a^n} = n\\log{a}$
\n", "rulesets": {}, "parts": [{"prompt": "$\\log{\\var{a1}} + \\log{\\var{a2}} = \\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "a1*a2", "minValue": "a1*a2", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$\\log{\\var{b1}} + \\log{\\var{b2}} = \\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "b1*b2", "minValue": "b1*b2", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$\\log{\\var{c3}} - \\log{\\var{c2}} = \\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "c1", "minValue": "c1", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$\\log{\\var{e1}} + \\log{\\var{e2}} + \\log{\\var{e3}} = \\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "e1*e2*e3", "minValue": "e1*e2*e3", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$\\log{\\var{f1}} + \\log{\\var{f3}} - \\log{\\var{f5}} = \\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "f1*f3/f5", "minValue": "f1*f3/f5", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$\\var{g1}\\log{\\var{g2}} + \\log{\\var{g3}} - \\log{\\var{g4}}=\\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "g2^(g1-1)", "minValue": "g2^(g1-1)", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$\\frac{1}{2}\\log{\\var{h3}} - \\frac{1}{2}\\log{\\var{h2}}=\\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "(h1)^0.5", "minValue": "(h1)^0.5", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$\\log{\\var{i3}}-\\frac{1}{2}\\log{\\var{i4}} = \\log$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "i1", "minValue": "i1", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Express each of the following as a single logarithm
\n", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"f1": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "f1", "description": ""}, "f2": {"definition": "random(3..5 except f1)", "templateType": "anything", "group": "Ungrouped variables", "name": "f2", "description": ""}, "f3": {"definition": "f1*f2", "templateType": "anything", "group": "Ungrouped variables", "name": "f3", "description": ""}, "f4": {"definition": "f2-1", "templateType": "anything", "group": "Ungrouped variables", "name": "f4", "description": ""}, "f5": {"definition": "f1^2", "templateType": "anything", "group": "Ungrouped variables", "name": "f5", "description": ""}, "h2": {"definition": "random([2,3,5,7,8,10])", "templateType": "anything", "group": "Ungrouped variables", "name": "h2", "description": ""}, "h3": {"definition": "h1*h2", "templateType": "anything", "group": "Ungrouped variables", "name": "h3", "description": ""}, "h1": {"definition": "random([4,9,16,25])", "templateType": "anything", "group": "Ungrouped variables", "name": "h1", "description": ""}, "b1": {"definition": "random(2..19 except a2 except a1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b1", "description": ""}, "b2": {"definition": "random(2..19 except a1 except a2 except b1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b2", "description": ""}, "d2": {"definition": "random(2..9 except d1)", "templateType": "anything", "group": "Ungrouped variables", "name": "d2", "description": ""}, "d3": {"definition": "d1*d2", "templateType": "anything", "group": "Ungrouped variables", "name": "d3", "description": ""}, "d1": {"definition": "random(2..19)", "templateType": "anything", "group": "Ungrouped variables", "name": "d1", "description": ""}, "g4": {"definition": "g2*g3", "templateType": "anything", "group": "Ungrouped variables", "name": "g4", "description": ""}, "g3": {"definition": "random(2..9 except g2 except g1)", "templateType": "anything", "group": "Ungrouped variables", "name": "g3", "description": ""}, "g2": {"definition": "random(2..9 except g1)", "templateType": "anything", "group": "Ungrouped variables", "name": "g2", "description": ""}, "g1": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "g1", "description": ""}, "i1": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "i1", "description": ""}, "i3": {"definition": "i1*i2", "templateType": "anything", "group": "Ungrouped variables", "name": "i3", "description": ""}, "i2": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "i2", "description": ""}, "i4": {"definition": "i2^2", "templateType": "anything", "group": "Ungrouped variables", "name": "i4", "description": ""}, "a1": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a2": {"definition": "random(2..9 except a1)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "c3": {"definition": "c1*c2", "templateType": "anything", "group": "Ungrouped variables", "name": "c3", "description": ""}, "c2": {"definition": "random(2..9 except c1)", "templateType": "anything", "group": "Ungrouped variables", "name": "c2", "description": ""}, "c1": {"definition": "random(2..19)", "templateType": "anything", "group": "Ungrouped variables", "name": "c1", "description": ""}, "e1": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "e1", "description": ""}, "e3": {"definition": "random(2..9 except e1 except e2)", "templateType": "anything", "group": "Ungrouped variables", "name": "e3", "description": ""}, "e2": {"definition": "random(2..9 except e1)", "templateType": "anything", "group": "Ungrouped variables", "name": "e2", "description": ""}}, "metadata": {"notes": "rebelmaths rebel Rebel REBEL
", "description": "Practice using the log rules to add and subtract logarithms
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d"], "tags": ["algebra", "algebraic manipulation", "combining logarithms", "logarithm laws", "logarithms", "rebel", "rebelmaths", "simplifying logarithms", "solving equations", "Solving equations", "steps", "Steps"], "preamble": {"css": "", "js": ""}, "advice": "We use the following two rules for logs :
\n1. $\\log_a(\\frac{x}{y})=\\log_a(x)-\\log_a(y)$
\n2. $a^x=y \\iff \\log_a y=x$
\nUsing rule 1 we get
\\[\\log_{\\var{a}}(x+\\var{b})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\log_{\\var{a}}\\left(\\simplify{(x+{b})/(x+{c})}\\right)\\]
So the equation to solve becomes:
\\[\\log_{\\var{a}}\\left(\\simplify{(x+{b})/(x+{c})}\\right)=\\var{d}\\]
and using rule 2 this gives:
\\[ \\begin{eqnarray} \\simplify{(x+{b})/(x+{c})}&=&{\\var{a}}^{\\var{d}}\\Rightarrow\\\\ x+\\var{b}&=&{\\var{a}}^{\\var{d}}(x+\\var{c})=\\simplify{{a^d}}(x+\\var{c})\\Rightarrow\\\\ \\simplify{{a^d-1}x}&=&\\simplify[std]{{b}-{c}*{a^d}={b-c*a^d}}\\Rightarrow\\\\ x&=&\\simplify{{b-c*a^d}/{a^d-1}} \\end{eqnarray} \\]
We should check that this solution gives positive values for $x+\\var{b}$ and $\\simplify{x+{c}}$ as otherwise the logs are not defined.
Substituting this value for $x$ into $\\log_{\\var{a}}(x+\\var{b})$ we get $\\log_{\\var{a}}(\\simplify{({b-c }{a^d})/{a^d-1}})$ so OK.
\nFor $\\log_{\\var{a}}(\\simplify{x+{c}})$ we get on substituting for $x$, $\\log_{\\var{a}}(\\simplify{({b-c })/{a^d-1}})$ so OK.
\nHence the value we found for $x$ is a solution to the original equation.
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n\\[\\log_{\\var{a}}(x+\\var{b})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\var{d}\\]
\n$x=\\;$ [[0]]
\nIf you want help in solving the equation, click on Show steps. If you do so then you will lose 1 mark.
\nInput all numbers as fractions or integers and not as decimals.
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input as a fraction or an integer, not as a decimal.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.0001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{b-c*a^d}/{a^d-1}", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "steps": [{"prompt": "Two rules for logs should be used:
\n1. $\\log_a(\\frac{x}{y})=\\log_a(x)-\\log_a(y)$
\n2. $a^x=y \\iff \\log_a y=x$
\nUse rule 1 followed by rule 2 to get an equation for $x$.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "\nSolve the following equation for $x$.
\nInput your answer as a fraction or an integer as appropriate and not as a decimal.
\n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "b-random(1..20)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(1..20)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(1,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"notes": "5/08/2012:
\nAdded tags.
\nAdded description.
\nChecked calculation.OK.
\nImproved display in content areas.
\nrebelmaths rebel Rebel REBEL
", "description": "Solve for $x$: $\\log_{a}(x+b)- \\log_{a}(x+c)=d$
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s", "sol2", "sol1"], "tags": ["algebra", "algebraic manipulation", "combining logarithms", "logarithm laws", "logarithms", "rebel", "rebelmaths", "simplifying logarithms", "solving", "solving equations", "Solving equations", "steps", "Steps"], "preamble": {"css": "", "js": ""}, "advice": "We use the following rules for logs:
\n1. $\\log_a(x^q)=q\\log_a(x)$
\n2. $\\log_a(\\frac{x}{y})=\\log_a(x)-\\log_a(y)$
\n3. $a^x=y \\iff \\log_a y=x$
\nUsing rule 1 we get
\\[2\\log_{\\var{a}}(\\simplify{x+{b}})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\log_{\\var{a}}((\\simplify{x+{b}})^2)- \\log_{\\var{a}}(\\simplify{(x+{c})})\\]
Using rule 2 gives
\\[\\log_{\\var{a}}(\\simplify{(x+{b})^2})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\log_{\\var{a}}\\left(\\simplify{(x+{b})^2/(x+{c})}\\right)\\]
So the equation to solve becomes:
\\[\\log_{\\var{a}}\\left(\\simplify{(x+{b})^2/(x+{c})}\\right)=\\var{d}\\]
and using rule 3 this gives:
\\[ \\begin{eqnarray} \\simplify{(x+{b})^2/(x+{c})}&=&{\\var{a}}^{\\var{d}}\\Rightarrow\\\\ \\simplify{(x+{b})^2}&=&{\\var{a}}^{\\var{d}}(\\simplify{x+{c}})=\\simplify{{a^d}(x+{c})}\\Rightarrow\\\\ \\simplify{x^2+{2*b-a^(d)}x+{b^2-a^(d)*c}}&=&0 \\end{eqnarray} \\]
Solving this quadratic we get two solutions:
$x=\\var{sol1}$ and $x=\\var{sol2}$
\nWe should check that these solutions gives positive values for $\\simplify{x+{b}}$ and $\\simplify{x+{c}}$ as otherwise the logs are not defined.
\nThe value $x=\\var{sol1}$ gives:
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{b}})$ we get $\\log_{\\var{a}}(\\simplify{{2*a^d}})$ so OK.
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{c}})$ we get $\\log_{\\var{a}}(\\simplify{{4*a^d}})$ so OK.
\nHence $x=\\var{sol1}$ is a solution to our original equation.
\nThe value $x=\\var{sol2}$ gives:
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{b}})$ we get $\\log_{\\var{a}}(\\simplify{{-a^d}})$ so NOT OK.
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{c}})$ we get $\\log_{\\var{a}}(\\simplify{{a^d}})$ so OK.
\nHence $x=\\var{sol2}$ is NOT a solution to our original equation as $\\log_{\\var{a}}(\\simplify{x+{b}})$ is not defined for this value of $x$.
\nSo there is only one solution $x=\\var{sol1}$.
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n\\[2\\log_{\\var{a}}(\\simplify{x+{b}})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\var{d}\\]
\n$x=\\;$ [[0]].
\nIf you want help in solving the equation, click on Show steps. If you do so then you will lose 1 mark.
\nInput all numbers as fractions or integers and not as decimals.
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Input as an integer, not as a decimal.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.0001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{sol1}", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "steps": [{"prompt": "Three rules for logs should be used:
\n1. $\\log_a(x^q)=q\\log_a(x)$
\n2. $\\log_a(\\frac{x}{y})=\\log_a(x)-\\log_a(y)$
\n3. $a^x=y \\iff \\log_a y=x$
\nSo use rule 1 followed by rules 2 and 3 to get an equation for $x$.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "\nSolve the following equation for $x$.
\nInput your answer as a fraction or an integer as appropriate and not as a decimal.
\n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "b+2*a^(d)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s*random(1..20)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(1,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "s": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s", "description": ""}, "sol2": {"definition": "-c+a^d", "templateType": "anything", "group": "Ungrouped variables", "name": "sol2", "description": ""}, "sol1": {"definition": "c-2*b", "templateType": "anything", "group": "Ungrouped variables", "name": "sol1", "description": ""}}, "metadata": {"notes": "5/08/2012:
\nAdded tags.
\nAdded description.
\nChecked calculation.OK.
\nImproved display in content areas.
\nrebelmaths rebel Rebel REBEL
", "description": "\n \t\tSolve for $x$: $\\displaystyle 2\\log_{a}(x+b)- \\log_{a}(x+c)=d$.
\n \t\tMake sure that your choice is a solution by substituting back into the equation.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["exponential", "exponentiation", "laws of logarithms", "laws of logs", "log laws", "logarithm laws", "logarithm rules", "logarithms", "logs", "solving equations", "solving logarithmic equations"], "advice": "\nFirst use one of the logarith laws which states (for logarithms to any base)
\n\\[\\log(a)-\\log(b)=\\log\\left(\\frac{a}{b}\\right)\\]
\nSo the equation can be written as:
\n\\[\\log_{10}\\left(\\simplify[std]{({a1}x+{b1})/({c1}x+{d1})}\\right)=\\var{e1}\\]
Now exponentiate both sides to get:
\\[\\simplify[std,!otherNumbers]{({a1}x+{b1})/({c1}x+{d1})}=10^{\\var{e1}} \\Rightarrow \\simplify[std,!otherNumbers]{{a1}x+{b1}=10^{e1}({c1}x+{d1})}\\]
Collect together terms in $x$ on the left and everything else on the right of the equation gives:
\\[\\simplify[std,!otherNumbers]{x({a1}-10^{e1}*{c1})=10^{e1}*{d1}-{b1}}\\]
Finally rearrange to get:
\\[\\simplify[std]{x=(10^{e1}*{d1}-{b1})/({a1}-10^{e1}*{c1})={10^e1*d1-b1}/{a1-10^e1*c1}}\\]
which to 3 decimal places evaluates to
\\[x=\\var{ans}.\\]
Input the solution for $x$ here:
\n$x=\\;\\;$ [[0]]
\nInput your answer to 3 decimal places.
\n ", "gaps": [{"minvalue": "ans-tol", "type": "numberentry", "maxvalue": "ans+tol", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "\nSolve the following equation for $x$.
\n\\[\\simplify[std]{log({a1}x+{b1})-log({c1}x+{d1})={e1}}\\]
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"e1": {"definition": "random(1..2)", "name": "e1"}, "a1": {"definition": "random(1..9)", "name": "a1"}, "b1": {"definition": "9+random(1..9)", "name": "b1"}, "tol": {"definition": 0.0, "name": "tol"}, "ans": {"definition": "precround(tans,3)", "name": "ans"}, "c1": {"definition": "d1*random(1..9)", "name": "c1"}, "tans": {"definition": "(d1*10^e1-b1)/(a1-c1*10^e1)", "name": "tans"}, "d1": {"definition": "random(1..9)", "name": "d1"}}, "metadata": {"notes": "\n \t\t2/07/2012:
\n \t\tAdded tags.
\n \t\tSolution to 3 decimal places - no tolerance via new tolerance variable tol=0.
\n \t\tImproved display of Advice.
\n \t\t19/07/2012:
\n \t\tAdded description.
\n \t\tChecked calculation.
\n \t\t\n \t\t
25/07/2012:
\n \t\tAdded tags.
\n \t\tRemoved a stray full stop.
\n \t\tQuestion appears to be working correctly.
\n \t\t\n \t\t", "description": "
Solve for $x$: $\\log(ax+b)-\\log(cx+d)=s$
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["equations solved by using logarithms", "laws of logarithms", "logarithm laws", "logarithm rules", "logarithmic expressions", "logarithms", "solving equations by taking logarithms", "solving logarithmic equations"], "advice": "Both parts of this question can be solved in a similar way, by taking logarithms of both sides of each equation.
\na)
\nTaking logs (to the base 10 in this case – but any base will do) of both sides of
\n\\[\\var{n}^{\\simplify{{a1}*x+{b1}}}=\\var{m}^{\\var{c1}x}\\]
\ngives on using the rule $\\log(a^b)=b\\log(a)$:
\n\\[\\begin{eqnarray*} \\simplify[std]{({a1}x+{b1})log({n})}&=&\\simplify[std]{{c1}*x*log({m})}\\\\ \\Rightarrow\\simplify[std]{x({a1}*log({n})-{c1}*log({m}))} &=&\\var{-b1}\\log(\\var{n})\\\\ \\Rightarrow x&=&\\simplify[std]{({-b1}*log({n}))/({a1}log({n})-{c1}*log({m}))}\\\\ &=& \\var{ans1}\\mbox{ to 3 decimal places} \\end{eqnarray*} \\]
\nb)
\nSimilarly, taking logs of both sides of:
\\[\\var{a2}^{\\var{b2}x^2}=\\var{c2}^{\\var{d2}x}\\]
gives:
\n\\[ \\simplify[std]{({b2}x^2)log({a2})}=\\simplify[std]{{d2}*x*log({c2})} \\Rightarrow \\simplify[std]{x({b2}*log({a2})x-{d2}*log({c2}))} =0\\]
\nand so the solutions are:
\n1. $x=0$
\nor
\n2. $\\displaystyle x=\\simplify[std,!fractionNumbers]{({d2}*log({c2}))/({b2}*log({a2})) = {ans2}}$ to 3 decimal places.
", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n\\[\\var{n}^{\\simplify{{a1}*x+{b1}}}=\\var{m}^{\\var{c1}x}\\]
\n$x=\\;\\;$[[0]].
\nEnter your answer to 3 decimal places.
\n ", "gaps": [{"minvalue": "{ans1}", "type": "numberentry", "maxvalue": "{ans1}", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n\\[\\var{a2}^{\\var{b2}x^2}=\\var{c2}^{\\var{d2}x}\\]
\n$x=\\;\\;$[[0]] $\\;\\;\\;$ (Enter the smallest value of $x$ here).
\n$x=\\;\\;$[[1]] $\\;\\;\\;$ (Enter the largest value of $x$ here).
\nEnter your answers to 3 decimal places.
\n ", "gaps": [{"minvalue": 0.0, "type": "numberentry", "maxvalue": 0.0, "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ans2", "type": "numberentry", "maxvalue": "ans2", "marks": 1.5, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "Find all values of $x$ that satisfy the following equations:
", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"tc2": {"definition": "random(2..9)", "name": "tc2"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "ans1": {"definition": "precround(tans1,3)", "name": "ans1"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "if(tm=n,17,tm)", "name": "m"}, "d2": {"definition": "random(2..9)", "name": "d2"}, "n": {"definition": "random(2,3,5,7,11,13)", "name": "n"}, "a1": {"definition": "s1*random(1..9)", "name": "a1"}, "tm": {"definition": "random(2,3,5,7,11,13)", "name": "tm"}, "b1": {"definition": "random(1..9)", "name": "b1"}, "b2": {"definition": "random(2..9)", "name": "b2"}, "c2": {"definition": "if(tc2=a2,tc2+1,tc2)", "name": "c2"}, "c1": {"definition": "s3*random(2..9)", "name": "c1"}, "tans1": {"definition": "-b1*log(n)/(a1*log(n)-c1*log(m))", "name": "tans1"}, "ans2": {"definition": "precround(tans2,3)", "name": "ans2"}, "a2": {"definition": "random(2..9)", "name": "a2"}, "tans2": {"definition": "d2*log(c2)/(b2*log(a2))", "name": "tans2"}}, "metadata": {"notes": "\n \t\t2/06/2012:
\n \t\tAdded tags.
\n \t\tImproved display.
\n \t\tForced solution in second part to be accurate to 3 decimal places with no tolerance.
\n \t\t19/07/2012:
\n \t\tAdded description.
\n \t\tChecked calculation.
\n \t\t25/07/2012:
\n \t\tAdded tags.
\n \t\tCorrected a typo.
\n \t\tIn the Advice section moved \\Rightarrow so that it is at the beginning of the line instead of the end of the previous line.
\n \t\tQuestion appears to be working correctly.
\n \t\t\n \t\t
\n \t\t", "description": "
Solve for $x$ each of the following equations: $n^{ax+b}=m^{cx}$ and $p^{rx^2}=q^{sx}$.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Simple equations involving indices", "extensions": [], "custom_part_types": [], "resources": [["question-resources/rules_73.jpg", "/srv/numbas/media/question-resources/rules_73.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["n1", "ans11", "n2", "ans12", "n21", "n31", "ans13", "n32", "n41", "ans21", "n4", "ans22", "n5", "n6", "n7", "n8", "ans23", "an1", "an11", "n10", "an12", "n11", "n12", "b", "c", "na1", "v1", "v2", "v3", "v4", "v5", "v60", "v61", "v7", "ans24"], "tags": ["rebel", "rebelmaths"], "advice": "\ni) $\\var{n4[0]} + 10^{\\var{n6}-x} = \\var{v1}$
\n$ 10^{\\var{n6}-x} = \\var{v1}-\\var{n4[0]} $
\nTaking $\\log$ of both sides,
\n$\\var{n6}-x = \\log(\\var{v1}-\\var{n4[0]})$
\n$\\var{n6} - \\log(\\var{v1}-\\var{n4[0]})=x$
\n$x = \\var{n6} - \\log(\\var{v1}-\\var{n4[0]}) = \\var{ans21}$
\n\nii) $\\var{n4[1]}(10^{\\var{v2}x-\\var{v3}} )= \\var{v4}$
\n$10^{\\var{v2}x-\\var{v3}} = \\frac{\\var{v4}}{\\var{n4[1]}}$
\nTake $\\log$ of both sides,
\n$\\var{v2}x -\\var{v3}= \\log \\left( \\frac{\\var{v4}}{\\var{n4[1]}}\\right)$
\n$\\var{v2}x = \\var{v3} +\\log \\left( \\frac{\\var{v4}}{\\var{n4[1]}}\\right)$
\n$x = \\frac{\\var{v3} +\\log \\left( \\frac{\\var{v4}}{\\var{n4[1]}}\\right)}{ \\var{v2}} = \\var{ans22}$
\n\n\niii) $\\var{v5[1]}e^{-\\var{v5[0]}x} = \\var{v5[2]}$
\n$e^{-\\var{v5[0]}x} = \\frac{\\var{v5[2]}}{\\var{v5[1]}}$
\nTake $\\ln$ of both sides,
\n$-\\var{v5[0]}x = \\ln(\\frac{\\var{v5[2]}}{\\var{v5[1]}})$
\n$x = \\frac{\\ln(\\frac{\\var{v5[2]}}{\\var{v5[1]}})}{ -\\var{v5[0]}} = \\var{ans23}$
\n\n\n\niv) $\\var{v60} = \\var{v61}(1-e^{\\frac{-\\var{v7[0]}x}{\\var{v7[1]}}})$
\n$\\frac{\\var{v60} }{ \\var{v61}}=1-e^{\\frac{-\\var{v7[0]}x}{\\var{v7[1]}}}$
\n$e^{\\frac{-\\var{v7[0]}x}{\\var{v7[1]}}}=1-\\frac{\\var{v60} }{ \\var{v61}}$
\n\nTake $\\ln$ of both sides,
\n$\\frac{-\\var{v7[0]}x}{\\var{v7[1]}}=\\ln(1-\\frac{\\var{v60} }{ \\var{v61}})$
\n$x = (\\frac{\\var{v7[1]}}{-\\var{v7[0]}}) \\ln(1-(\\frac{\\var{v60}}{\\var{v61}})) = \\var{ans24}$
", "rulesets": {}, "parts": [{"prompt": "i) $\\var{n4[0]} + 10^{\\var{n6}-x} = \\var{v1}$
\nx = [[0]]
\nii) $\\var{n4[1]}(10^{\\var{v2}x-\\var{v3}} )= \\var{v4}$
\nx = [[1]]
\niii) $\\var{v5[1]}e^{-\\var{v5[0]}x} = \\var{v5[2]}$
\nx = [[2]]
\niv) $\\var{v60} = \\var{v61}(1-e^{\\frac{-\\var{v7[0]}x}{\\var{v7[1]}}})$
\nx = [[3]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "{ans21}", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "{ans21}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "{ans22}", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "{ans22}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "{ans23}", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "{ans23}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "{ans24}", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "{ans24}", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Solve for $x$ in the following, correct to 2 decimal places:
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"n12": {"definition": "shuffle(2..8)[1..6]", "templateType": "anything", "group": "Ungrouped variables", "name": "n12", "description": ""}, "n10": {"definition": "shuffle(2..8)[1..4]", "templateType": "anything", "group": "Ungrouped variables", "name": "n10", "description": ""}, "n11": {"definition": "random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "n11", "description": ""}, "n31": {"definition": "random(2..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "n31", "description": ""}, "n32": {"definition": "ans13^n31", "templateType": "anything", "group": "Ungrouped variables", "name": "n32", "description": ""}, "ans24": {"definition": "(v7[1]/-v7[0])*ln(1-(v60/v61))", "templateType": "anything", "group": "Ungrouped variables", "name": "ans24", "description": ""}, "ans23": {"definition": "(ln(v5[2]/v5[1]))/-v5[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "ans23", "description": ""}, "ans22": {"definition": "(v3 +log(v4/n4[1]))/v2", "templateType": "anything", "group": "Ungrouped variables", "name": "ans22", "description": ""}, "ans21": {"definition": "n6 - log(v1-n4[0])", "templateType": "anything", "group": "Ungrouped variables", "name": "ans21", "description": ""}, "na1": {"definition": "shuffle(2..4)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "na1", "description": ""}, "an12": {"definition": "n10[1]-(an1*n11)", "templateType": "anything", "group": "Ungrouped variables", "name": "an12", "description": ""}, "an11": {"definition": "n10[0]-(an1*n10[2])", "templateType": "anything", "group": "Ungrouped variables", "name": "an11", "description": ""}, "n41": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "n41", "description": ""}, "v61": {"definition": "random(v60+1..125)", "templateType": "anything", "group": "Ungrouped variables", "name": "v61", "description": ""}, "v60": {"definition": "random(90..110)", "templateType": "anything", "group": "Ungrouped variables", "name": "v60", "description": ""}, "ans12": {"definition": "(-b+(sqrt(b^2-(4*c))))/2", "templateType": "anything", "group": "Ungrouped variables", "name": "ans12", "description": ""}, "ans13": {"definition": "(-b-(sqrt(b^2-(4*c))))/2", "templateType": "anything", "group": "Ungrouped variables", "name": "ans13", "description": ""}, "v2": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "v2", "description": ""}, "ans11": {"definition": "an12/an11", "templateType": "anything", "group": "Ungrouped variables", "name": "ans11", "description": ""}, "v4": {"definition": "random(22..35)", "templateType": "anything", "group": "Ungrouped variables", "name": "v4", "description": ""}, "an1": {"definition": "n1[0]^n1[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "an1", "description": ""}, "v7": {"definition": "shuffle(2..5)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "v7", "description": ""}, "n21": {"definition": "n2[0]^ans12", "templateType": "anything", "group": "Ungrouped variables", "name": "n21", "description": ""}, "c": {"definition": "n10[0]*n10[1]-(na1[0]^na1[1])", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "n10[0]+n10[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "v1": {"definition": "random(45..75)", "templateType": "anything", "group": "Ungrouped variables", "name": "v1", "description": ""}, "n8": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "n8", "description": ""}, "v3": {"definition": "random(2..5 except v2)", "templateType": "anything", "group": "Ungrouped variables", "name": "v3", "description": ""}, "n1": {"definition": "shuffle(2..5)[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "n1", "description": ""}, "n2": {"definition": "shuffle(3..7)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "n2", "description": ""}, "n7": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "n7", "description": ""}, "n4": {"definition": "shuffle(2..5)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "n4", "description": ""}, "n5": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "n5", "description": ""}, "n6": {"definition": "random(4..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "n6", "description": ""}, "v5": {"definition": "shuffle(2..8)[0..4]", "templateType": "anything", "group": "Ungrouped variables", "name": "v5", "description": ""}}, "metadata": {"notes": "rebelmaths rebel Rebel REBEL
", "description": "Using Logs to solve equations involving indices
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Solving equations that contain natural log", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["n1", "n2", "n3", "ans1", "n4", "n5", "n6", "n7", "ans2", "n8", "n9", "n10", "ans3"], "tags": ["rebel", "rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "i) $\\var{n1}\\ln(\\var{n2}x) = \\var{n3}$
\n$\\ln(\\var{n2}x) = \\frac{\\var{n3}}{\\var{n1}}$
\nNext,
\n$\\var{n2}x = e^{\\frac{\\var{n3}}{\\var{n1}}}$
\n$x= \\frac{e^{(\\frac{\\var{n3}}{\\var{n1}})} }{\\var{n2}} = \\var{ans1}$
\n\nii) $\\var{n4}\\ln(\\frac{\\var{n5}x}{\\var{n6}}) = \\var{n7}$
\n$\\ln(\\frac{\\var{n5}x}{\\var{n6}}) =\\frac{ \\var{n7}}{\\var{n4}}$
\nNext,
\n$\\frac{\\var{n5}x}{\\var{n6}}=e^{\\frac{ \\var{n7}}{\\var{n4}}}$
\n$x= e^{(\\frac{\\var{n7}}{\\var{n4}})} \\times \\frac{\\var{n6}}{\\var{n5}} = \\var{ans2}$
\n\n\niii) $\\var{n8} = \\ln(\\frac{\\var{n9}}{\\var{n10}x})$
\n$e^{\\var{n8}}=\\frac{\\var{n9}}{\\var{n10}x}$
\n$\\var{n10}xe^{\\var{n8}}=\\var{n9}$
\n$x= \\frac{\\var{n9}}{(\\var{n10} \\times e^\\var{n8})} = \\var{ans3}$
", "rulesets": {}, "parts": [{"prompt": "i) $\\var{n1}\\ln(\\var{n2}x) = \\var{n3}$
\n$x = $[[0]]
\nii) $\\var{n4}\\ln(\\frac{\\var{n5}x}{\\var{n6}}) = \\var{n7}$
\n$x = $[[1]]
\niii) $\\var{n8} = \\ln(\\frac{\\var{n9}}{\\var{n10}x})$
\nGive correct to 4 decimal places:
\n$x = $[[2]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "{ans1}", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "{ans1}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "{ans2}", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "{ans2}", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "{ans3}", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "{ans3}", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Solve for $x$ in the following, correct to 2 decimal places:
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"n10": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "n10", "description": ""}, "ans1": {"definition": "e^(n3/n1)/n2", "templateType": "anything", "group": "Ungrouped variables", "name": "ans1", "description": ""}, "ans2": {"definition": "e^(n7/n4)*(n6/n5)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans2", "description": ""}, "ans3": {"definition": "n9/(n10*(e^n8))", "templateType": "anything", "group": "Ungrouped variables", "name": "ans3", "description": ""}, "n8": {"definition": "random(5.5..8.5#0.1 except [7,8])", "templateType": "anything", "group": "Ungrouped variables", "name": "n8", "description": ""}, "n9": {"definition": "random(3.5..5.4#0.1 except [4,5])", "templateType": "anything", "group": "Ungrouped variables", "name": "n9", "description": ""}, "n1": {"definition": "random(7..11)", "templateType": "anything", "group": "Ungrouped variables", "name": "n1", "description": ""}, "n2": {"definition": "random(n1+1..21)", "templateType": "anything", "group": "Ungrouped variables", "name": "n2", "description": ""}, "n3": {"definition": "random(n2..40)", "templateType": "anything", "group": "Ungrouped variables", "name": "n3", "description": ""}, "n4": {"definition": "random(7.1..8.9#0.1 except 8)", "templateType": "anything", "group": "Ungrouped variables", "name": "n4", "description": ""}, "n5": {"definition": "random(2.5..5.5#0.1)", "templateType": "anything", "group": "Ungrouped variables", "name": "n5", "description": ""}, "n6": {"definition": "random(6..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "n6", "description": ""}, "n7": {"definition": "random(5.1..6.9#0.1 except 6)", "templateType": "anything", "group": "Ungrouped variables", "name": "n7", "description": ""}}, "metadata": {"notes": "rebelmaths rebel Rebel REBEL
", "description": "Using e to solve equations involving the natural log
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Deirdre Casey", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/681/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/rules_73.jpg", "/srv/numbas/media/question-resources/rules_73.jpg"], ["question-resources/rules_73.jpg", "/srv/numbas/media/question-resources/rules_73.jpg"]]}