// Numbas version: finer_feedback_settings {"name": "Nuala's copy of Logarithms: The definition", "feedback": {"showtotalmark": true, "advicethreshold": 0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "duration": 0, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Logs: definition and concrete numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["logarithms", "Logarithms", "logs", "Logs"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
The following should be completed without the use of a calculator.
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"two": {"name": "two", "group": "Ungrouped variables", "definition": "random(map([b,2],b,list(2..12)))", "description": "", "templateType": "anything", "can_override": false}, "zero": {"name": "zero", "group": "Ungrouped variables", "definition": "random(map([b,0],b,list(2..12)))", "description": "", "templateType": "anything", "can_override": false}, "one": {"name": "one", "group": "Ungrouped variables", "definition": "random(map([b,1],b,list(2..12)))", "description": "", "templateType": "anything", "can_override": false}, "small": {"name": "small", "group": "Ungrouped variables", "definition": "random([2,3],[2,4],[3,3],[3,4],[4,3],[5,3])", "description": "", "templateType": "anything", "can_override": false}, "tens": {"name": "tens", "group": "Ungrouped variables", "definition": "random([10,3],[10,4],[10,5],[10,6])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["zero", "one", "two", "small", "tens"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The definition of a logarithm says if $b$ and $a$ are positive and $b$ is not equal to 1, then $\\log_b(a)=c$ is equivalent to:
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The definition of a logarithm says if $b$ and $a$ are positive and $b$ is not equal to 1, then $\\log_b(a)=c$ is equivalent to $b^c=a$.
\n\nThis means to determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$b^c=a$
", "$b^a=c$
", "$a^b=c$
", "$a^c=b$
", "$c^a=b$
", "$c^b=a$
"], "matrix": ["1", 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The definition of a logarithm says that if $x$ and $z$ are positive and $x$ is not equal to 1, then $x^y=z$ is equivalent to:
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The definition of a logarithm says if $b$ and $a$ are positive and $b$ is not equal to 1, then $\\log_b(a)=c$ is equivalent to $b^c=a$.
\n\nThis means to determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\log_x (z)=y$
", "$\\log_x (y)=z$
", "$\\log_y (x)=z$
", "$\\log_y (z)=x$
", "$\\log_z (y)=x$
", "$\\log_z (x)=y$
"], "matrix": ["1", 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{zero[0]}}(\\var{zero[0]^zero[1]})$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{zero[0]}}(\\var{zero[0]^zero[1]})$, realise $\\var{zero[0]}^0=\\var{zero[0]^zero[1]}$ and so $\\log_{\\var{zero[0]}}(\\var{zero[0]^zero[1]})=0$.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{one[0]}}(\\var{one[0]^one[1]})$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{one[0]}}(\\var{one[0]^one[1]})$, realise $\\var{one[0]}^1=\\var{one[0]}$ and so $\\log_{\\var{one[0]}}(\\var{one[0]^one[1]})=1$.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{two[0]}}(\\var{two[0]^two[1]})$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{two[0]}}(\\var{two[0]^two[1]})$, realise $\\var{two[0]}^2=\\var{two[0]^2}$ and so $\\log_{\\var{two[0]}}(\\var{two[0]^two[1]})=2$.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{small[0]}}(\\var{small[0]^small[1]})$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{small[0]}}(\\var{small[0]^small[1]})$, realise $\\var{small[0]}^\\var{small[1]}=\\var{small[0]^small[1]}$ and so $\\log_{\\var{small[0]}}(\\var{small[0]^small[1]})=\\var{small[1]}$.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{tens[0]}}(\\var{tens[0]^tens[1]})$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{tens[0]}}(\\var{tens[0]^tens[1]})$, realise $\\var{tens[0]}^\\var{tens[1]}=\\var{tens[0]^tens[1]}$ and so $\\log_{\\var{tens[0]}}(\\var{tens[0]^tens[1]})=\\var{tens[1]}$.
Recall that $10^n$ is the same as a $1$ with $n$ zeros behind it.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{tens[1]}", "maxValue": "{tens[1]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Logs: resulting in negatives", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["logarithms", "Logarithms", "logs", "Logs", "negative indices", "negative powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "The following should be completed without the use of a calculator.
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"small": {"name": "small", "group": "Ungrouped variables", "definition": "random([2,3],[2,4],[3,3],[3,4],[4,3],[5,3])", "description": "", "templateType": "anything", "can_override": false}, "num1": {"name": "num1", "group": "Ungrouped variables", "definition": "random(10..90)", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "one": {"name": "one", "group": "Ungrouped variables", "definition": "random(map([b,1],b,list(2..12)))", "description": "", "templateType": "anything", "can_override": false}, "tens": {"name": "tens", "group": "Ungrouped variables", "definition": "random([10,3],[10,4],[10,5],[10,6])", "description": "", "templateType": "anything", "can_override": false}, "two": {"name": "two", "group": "Ungrouped variables", "definition": "random(map([b,2],b,list(2..12)))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["one", "two", "small", "tens", "num1", "num2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Recall that we can convert negative indices to fractions
\n$\\var{num1}^{-1}$ = [[0]]
\n$\\var{num2}^{-2}$ = [[1]]
", "stepsPenalty": "2", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "When learning index laws you would have seen that
\\[x^{-n}=\\frac{1}{x^n}.\\]
Indices and logs are intimately related, ensure you revise your index laws.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{one[0]}}\\left(\\frac{1}{\\var{one[0]}}\\right)$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{one[0]}}\\left(\\frac{1}{\\var{one[0]}}\\right)$, realise $\\var{one[0]}^{-1}=\\frac{1}{\\var{one[0]}}$ and so $\\log_{\\var{one[0]}}\\left(\\frac{1}{\\var{one[0]}}\\right)=-1$.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{two[0]}}\\left(\\frac{1}{\\var{two[0]^2}}\\right)$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{two[0]}}\\left(\\frac{1}{\\var{two[0]^2}}\\right)$, realise $\\var{two[0]}^{-2}=\\frac{1}{\\var{two[0]^2}}$ and so $\\log_{\\var{two[0]}}\\left(\\frac{1}{\\var{two[0]^2}}\\right)=-2$.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{small[0]}}\\left(\\frac{1}{\\var{small[0]^small[1]}}\\right)$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{small[0]}}\\left(\\frac{1}{\\var{small[0]^small[1]}}\\right)$, realise $\\var{small[0]}^{-\\var{small[1]}}=\\frac{1}{\\var{small[0]^small[1]}}$ and so $\\log_{\\var{small[0]}}\\left(\\frac{1}{\\var{small[0]^small[1]}}\\right)=-\\var{small[1]}$.
Using the definition and your times tables (or index laws) determine the following:
\n$\\log_{\\var{tens[0]}}(\\var{1/tens[0]^tens[1]})$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "To determine the value of $\\log_b(a)$, you can think \"$b$ to the what equals $a$\", and that will be your answer.
\n
To determine $\\log_{\\var{tens[0]}}(\\var{1/tens[0]^tens[1]})$, realise $\\var{tens[0]}^{-\\var{tens[1]}}=\\var{1/tens[0]^tens[1]}$ and so $\\log_{\\var{tens[0]}}(\\var{1/tens[0]^tens[1]})=-\\var{tens[1]}$.
Recall that $10^{-n}$ is the same as a decimal with zeros everywhere except a $1$ at the $n$th decimal place.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{-tens[1]}", "maxValue": "{-tens[1]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "contributors": [{"name": "Nuala Davis", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/821/"}], "extensions": [], "custom_part_types": [], "resources": []}