// Numbas version: finer_feedback_settings {"question_groups": [{"pickingStrategy": "all-ordered", "name": "Group", "pickQuestions": 1, "questions": [{"name": "Max and Min 1 and 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "functions": {}, "ungrouped_variables": ["temp2", "temp1", "gmi", "valmin", "gma", "s", "m1", "valbegin", "a", "valmax", "valgmax", "valgmin", "rawvalend", "rawvalmax", "b", "rawvalbegin", "rawvalmin", "rtemp2", "c", "rtemp1", "d", "m", "l", "valend", "l1"], "tags": ["Calculus", "calculus", "classifying stationary points", "finding global maxima and minima", "finding local maxima and local minima", "finding stationary points", "finding the maximum and minimum of a function", "nature of a critical point", "nature of critical points", "nature of turning points", "optimisation", "optimising a function on an interval", "optimising functions", "stationary points", "turning points"], "preamble": {"css": "", "js": ""}, "advice": "
Differentiating, we have:
\n\\[g'(x)=\\simplify{{c}*x^2+{-c*(a+b)}*x+{c*a*b}={c}*(x+{-a})(x-{b})}\\]
\nNote that we have already factorised the derivative.
\nStationary points are given by solving $g'(x)=0 \\Rightarrow x=\\var{a},\\;\\;\\mbox{or }x=\\var{b}$
\nSo the least stationary point is $x=\\var{a}$ and the greatest is $x=\\var{b}$.
\nSince $\\var{a} > \\var{l}$ and $\\var{b} \\lt \\var{m}$ we have that both stationary points are in $I$.
\nThe second derivative is given by \\[g''(x)=\\simplify{{2*c}*x-{c*(a+b)}}\\]
\nAt the stationary point $x=\\var{a}$ we have $g''(\\var{a})=\\var{c*a-c*b} \\lt 0$.
\nHence at this value of $x$ we have a local maximum.
\nThe value of the function $g$ at this local maximum is $g(\\var{a})= \\var{valmax}$.
\nAt the stationary point $x=\\var{b}$ we have $g''(\\var{b})=\\var{c*b-c*a} \\gt 0$.
\nHence this point is a local minimum.
\nThe value of the function $g$ at this local minimum is $g(\\var{b})= \\var{valmin}$.
\nFirst we find the values at the endpoints of the interval $I=[\\var{l},\\var{m}]$ are:
\n$g(\\var{l})=\\var{valbegin}$ to 3 decimal places.
\n$g(\\var{m})=\\var{valend}$ to 3 decimal places.
\nTo find the global maximum note that we are only concerned with the values of $g$ on the interval $I$.
\nSo we proceed by comparing the values of the function at the endpoints with the local maximum.
\na) If the value at the local maximum is greater than either of the values at the endpoints then this is the global maximum on the interval.
\nb) Otherwise if the greatest value of the function at the endpoints is greater than the local maximum then this is the global maximum.
\n\\[\\begin{array}{c|c|c|c} x & \\mbox{Local Maximum}=\\var{a} & \\var{l} \\in I & \\var{m} \\in I \\\\ \\hline\\\\ g(x)& \\var{valmax} & \\var{valbegin} & \\var{valend} \\\\ \\end{array} \\]
\nSo for our example we see that the global maximum occurs at $x=\\var{gma}$ and $g(\\var{gma})=\\var{valgmax}$.
\nWe proceed as for the global maximum by comparing the values of the function at the endpoints with the local minimum.
\na) If the value at the local minimum is less than either of the values at the endpoints then this is the global minimum on the interval.
\nb) Otherwise if the least value of the function at the endpoints is less than the local minimum then this is the global minimum.
\n\\[\\begin{array}{c|c|c|c} x & \\mbox{Local Minimum}=\\var{b} & \\var{l} \\in I & \\var{m} \\in I \\\\ \\hline\\\\ g(x)& \\var{valmin} & \\var{valbegin} & \\var{valend} \\\\ \\end{array} \\]
\nIn our example we see that the global minimum occurs at $x=\\var{gmi}$ and $g(\\var{gmi})=\\var{valgmin}$.
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\nInput the first derivative of $g$ here, factorised into a product of two linear factors in the form $g'(x)=c(x-a)(x-b)$for suitable integers $a$, $b$ and $c$:
\n \n$g'(x)=\\;\\;$[[0]]
\n \n ", "marks": 0, "gaps": [{"notallowed": {"message": "Factorise the expression
", "showStrings": false, "strings": ["^", "x*x", "xx", "x x"], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{c} * (x + {-a}) * (x + {-b})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Factorise the expression
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nLeast stationary point: [[0]] Greatest stationary point: [[1]]
\nDo both these stationary points lie in the interval $I$ ? [[2]]
\n ", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{b}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"displayColumns": 0, "matrix": [1, 0], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nInput the second derivative of $g$:
\n \n$g''(x)=\\;\\;$ [[0]]
\n \nHence find all local maxima and minima given by the stationary points
\n \nLocal maximum is at $x=\\;\\;$ [[1]] and the value of the function at the local maximum = [[2]]
\n \nLocal minimum is at $x=\\;\\;$ [[3]] and the value of the function at the local minimum = [[4]]
\n \n ", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "(({(2 * c)} * x) + ( - {(c * (a + b))}))", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{valmax}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{b}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{valmin}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nWhat are the following values at the end points of the interval $I$ ?
\n$g(\\var{l})=\\;\\;$ [[0]] $g(\\var{m})=\\;\\;$ [[1]]
\nInput both to 3 decimal places.
\n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "valbegin", "minValue": "valbegin", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "valend", "minValue": "valend", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nAt what value of $x \\in I$ does $g$ have a global maximum ?
\n$x=\\;\\;$ [[0]]
\nValue of $g$ at this global maximum = [[1]] (input to 3 decimal places).
\nAt what value of $x \\in I$ does $g$ have a global minimum ?
\n$x=\\;\\;$ [[2]]
\nValue of $g$ at this global minimum = [[3]] (input to 3 decimal places).
\n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "{gma}", "minValue": "{gma}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "valgmax", "minValue": "valgmax", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "{gmi}", "minValue": "{gmi}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "valgmin", "minValue": "valgmin", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nLet $I=[\\var{l},\\var{m}]$ be an interval and let $g: I \\rightarrow I$ be a function defined on this interval
given by :\\[g(x) = \\simplify{{c}/3*x^3+ {-c*(a+b)}/2*x^2+{c*a*b}*x+{d}}\\]
9/07/2102:
\n \t\tAdded tags.
\n \t\tQuestion appears to be working correctly.
\n \t\tChanged grammar in the Advice section.
\n \t\t", "description": "$I$ compact interval, $g:I\\rightarrow I,\\;g(x)=ax^3+bx^2+cx+d$. Find stationary points, local and global maxima and minima of $g$ on $I$
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Max and Min 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "calculus", "classifying stationary points", "finding global maxima and minima", "finding local mamima and minima", "finding the stationary points", "optimisation", "optimising functions", "third derivative test for maximum or minimum"], "advice": "\nDifferentiating we have:
\n\\[\\begin{eqnarray*} g'(x)&=&\\simplify{(x-{b})^3+3*(x-{a})*(x-{b})^2}\\\\ &=&\\simplify{(x-{b})^2(3*(x-{a})+x-{b})}\\\\ &=&\\simplify{4*(x-{k})*(x-{b})^2} \\end{eqnarray*} \\] and we have factorised the expression.
\nThese are given by solving $g'(x)=0 \\Rightarrow x=\\var{k},\\;\\;\\mbox{or }x=\\var{b}$
\nTherefore the least stationary point is $x=\\var{k}$ and the greatest is $x=\\var{b}$ and we see that both stationary points are in $I$.
\nThe second derivative is given by:
\\[\\begin{eqnarray*} g''(x)&=&\\simplify{4*(x-{b})^2+8*(x-{k})(x-{b})}\\\\ &=&\\simplify{4*(x-{b})(3*x-{2*k+b})} \\end{eqnarray*} \\]
At the stationary point $x=\\var{k}$ we have $g''(\\var{k})=\\var{4*(k-b)^2} \\gt 0$.
\nHence $x=\\var{k}$ is a local minimum.
\nThe value at $x=\\var{b}$ is $g(\\var{b})= 0$.
\nHence this test fails at this point and we proceed to use the third derivative to see in more information can be gained.
\nWe see that $g'''(x)=\\simplify{8*(3*x-{k+2*b})}$.
\nTesting the stationary point using the third derivative gives:
\n$g'''(\\var{b})=\\var{8*(b-k)} \\neq 0$.
\nTherefore there cannot be an extremum point at $x=\\var{b}$.
\nFirst we find the values at the endpoints of the interval $I=[\\var{l},\\var{m}]$ are:
\n$g(\\var{l})=\\var{valbegin}$.
\n$g(\\var{m})=\\var{valend}$.
\nTo find the global maximum note that we are only concerned with the values of $g$ on the interval $I$ and since $g$ does not have a local maximum on $I$ it must take its maximum value at one of the end points of $I$.
\nWe see from the values at the end points obtained above that the global maximum value on $I$ is at $x=\\var{xma}$.
\nWe have $g(\\var{xma})=\\var{gma}$.
\n$g$ has only one local minimum on $I$ at $x=\\var{k}$ and so this must be the global minimum on $I$.
\nWe have $g(\\var{k})=\\var{(k-a)*(k-b)^3}$.
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\nInput the first derivative of $g$ here, factorised into a product of two factors in the form $g'(x)=c(x-a)(x-b)^2$for suitable integers $a$, $b$ and $c$:
\n \n$g'(x)=\\;\\;$[[0]]
\n \n ", "gaps": [{"notallowed": {"message": "Factorise the expression
", "showstrings": false, "strings": ["x^2", "x^3"], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "4*(x + {-k}) * (x + {-b})^2", "type": "jme", "musthave": {"message": "Factorise the expression
", "showstrings": false, "strings": ["(", ")"], "partialcredit": 0.0}}], "type": "gapfill", "marks": 0.0}, {"prompt": "\nLeast stationary point: [[0]]
\n \nGreatest stationary point: [[1]]
\n \nDo both these stationary points lie in the interval $I$ ? [[2]]
\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{k}", "type": "jme"}, {"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{b}", "type": "jme"}, {"maxanswers": 0.0, "matrix": [1.0, 0.0], "shufflechoices": true, "minanswers": 0.0, "choices": ["Yes
", "No
"], "marks": 0.0, "displaytype": "radiogroup", "maxmarks": 0.0, "distractors": ["", ""], "displaycolumns": 0.0, "type": "1_n_2", "minmarks": 0.0}], "type": "gapfill", "marks": 0.0}, {"prompt": "\nInput the second derivative of $g$:
\n \n$g''(x)=\\;\\;$ [[0]]
\n \nUsing $g''(x)$, determine more information about the stationary points:
\n \nLeast stationary point is: (Choose one of the following)
[[1]]
Greatest stationary point is: (Choose one of the following)
[[2]]
A local minimum.
", "A local maximum.
", "Uncertain as the second derivative test fails.
"], "marks": 0.0, "displaytype": "radiogroup", "maxmarks": 0.0, "distractors": ["", "", ""], "displaycolumns": 0.0, "type": "1_n_2", "minmarks": 0.0}, {"maxanswers": 0.0, "matrix": [0.0, 0.0, 1.0], "shufflechoices": true, "minanswers": 0.0, "choices": ["A local minimum.
", "A local maximum.
", "Uncertain as the second derivative test fails.
"], "marks": 0.0, "displaytype": "radiogroup", "maxmarks": 0.0, "distractors": ["", "", ""], "displaycolumns": 0.0, "type": "1_n_2", "minmarks": 0.0}], "type": "gapfill", "marks": 0.0}, {"prompt": "\nUsing the third derivative answer the following questions:
$g'''(x) = \\;\\;$[[0]]
If $a$ is the least stationary point then $g'''(a) =\\;\\;$[[1]]
\n \nIf $b$ is the other stationary point then $g'''(b) =\\;\\;$[[2]]
\n \nThis information tells us that: (Choose one of the following).
[[3]]
{k} is not a local minimum or a local maximum.
", "{b} is not a local minimum or a local maximum.
", "{b} is not a local minimum or a local maximum and neither is {k}.
", "{k} is a local maximum and {b} is a local minimum.
", "{k} is a local minimum and {b} is a local maximum.
"], "marks": 0.0, "displaytype": "radiogroup", "maxmarks": 0.0, "distractors": ["", "", "", "", ""], "displaycolumns": 0.0, "type": "1_n_2", "minmarks": 0.0}], "type": "gapfill", "marks": 0.0}, {"prompt": "\nWhat are the following values at the end points of the interval $I$ ?
\n \n$g(\\var{l})=\\;\\;$ [[0]]
\n \n$g(\\var{m})=\\;\\;$ [[1]]
\n \nInput both to 2 decimal places.
\n \n ", "gaps": [{"minvalue": "{valbegin}", "type": "numberentry", "maxvalue": "{valbegin}", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "{valend}", "type": "numberentry", "maxvalue": "{valend}", "marks": 0.5, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "\nAt what value of $x \\in I$ does $g$ have a global maximum ?
\n \n$x=\\;\\;$ [[0]]
\n \nValue of $g$ at this global maximum = [[1]].
\n \nAt what value of $x \\in I$ does $g$ have a global minimum ?
\n \n$x=\\;\\;$ [[2]]
\n \nValue of $g$ at this global minimum = [[3]].
\n \n ", "gaps": [{"minvalue": "{xma}", "type": "numberentry", "maxvalue": "{xma}", "marks": 1.0, "showPrecisionHint": false}, {"minvalue": "{gma}", "type": "numberentry", "maxvalue": "{gma}", "marks": 1.0, "showPrecisionHint": false}, {"minvalue": "{k}", "type": "numberentry", "maxvalue": "{k}", "marks": 1.0, "showPrecisionHint": false}, {"minvalue": "{gmi}", "type": "numberentry", "maxvalue": "{gmi}", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "\nLet $I=[\\var{l},\\var{m}]$ be an interval and let $g: I \\rightarrow \\mathbb{R}$ be a function defined on this interval
given by :\\[g(x) = \\simplify{(x-{a})*(x-{b})^3}\\]
9/07/2012:
\n \t\tAdded tags.
\n \t\tQuestion appears to be working correctly.
\n \t\t", "description": "$I$ compact interval, $g:I\\rightarrow I$, $g(x)=(x-a)(x-b)^2$. Stationary points in interval. Find local and global maxima and minima of $g$ on $I$.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Max and Min 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "b", "valmin", "valmax", "lmi", "s", "tol", "lma"], "tags": ["Calculus", "calculus", "classifying stationary points", "functions", "global maxima and minima", "limit", "limits", "local maxima and minima", "maxima and minima", "optimisation", "optimising", "optimising functions", "rational polynomials", "stationary points", "taking limits"], "preamble": {"css": "", "js": ""}, "advice": "\nThe function $g(x)$ is continuous and differentiable at all points in $\\mathbb{R}$.
\nUsing the quotient rule for differentiation we see that
\\[\\begin{eqnarray*}g'(x)&=&\\simplify{({a}*(x^2+{b^2})-{2*a}*x^2)/(x^2+{b^2})^2}\\\\ &=&\\simplify{({-a}*(x-{b})(x+{b}))/(x^2+{b^2})^2} \\end{eqnarray*} \\]
The stationary points are given by solving $g'(x)=0$.
\n$g'(x)=0 \\Rightarrow \\simplify{{-a}*(x-{b})(x+{b})=0} \\Rightarrow x=\\var{b} \\mbox{ or } x=\\var{-b}$
\nThe second derivative can be found by applying the quotient rule to the derivative of $g(x)$ and we obtain:
\nUsing the quotient rule for differentiation we see that
\\[\\begin{eqnarray*}g''(x)&=&\\simplify[std]{({-2*a}*x*(x^2+{b^2})^2+{4*a}*x*(x^2-{b^2})(x^2+{b^2}))/(x^2+{b^2})^4}\\\\ &=&\\simplify[std]{({2*a}*x*(x^2-{3*b^2}))/(x^2+{b^2})^3} \\end{eqnarray*} \\]
The nature of the stationary points are determined by evaluating $g''(x)$ at the stationary points.
\nFor $x= \\var{lma}$ we have: \\[g''(\\var{lma})= \\simplify[std]{-{abs(a)}/{2*b^3}} \\lt 0\\]
\nHence is a local maximum.
\nEvaluating the function at $x=\\var{lma}$ gives $g(\\var{lma})=\\var{valmax}$ to 3 decimal places.
\nFor $x= \\var{lmi}$ we have: \\[g''(\\var{lmi})= \\simplify[std]{{abs(a)}/{2*b^3}} \\gt 0\\]
\nHence is a local minimum.
\nEvaluating the function at $x=\\var{lmi}$ gives $g(\\var{lmi})=\\var{valmin}$ to 3 decimal places.
\nIf we divide $g(x)$ top and bottom by $x^2$ (OK as $x \\neq 0$ at any time) we obtain: \\[g(x)=\\simplify[std]{({a}/x)/(1+{b^2}/x^2)}\\]
\nThen using the fact that $\\displaystyle \\frac{1}{x}$ and $\\displaystyle \\frac{1}{x^2}$ both tend to $0$ as $ x \\rightarrow \\pm\\infty$ we see that
\n$\\displaystyle \\lim_{x \\to \\infty}g(x)=\\frac{0}{1}=0$ and similarly
\n$\\lim_{x \\to -\\infty}g(x)=0$
\nSince $g$ has a finite limit of $0$ as $x \\rightarrow \\pm\\infty$ and we have that $0$ lies between the local minimum $\\var{valmin}$ and the local maximum $\\var{valmax}$
\nThen:
\nGlobal Maximum: The local maximum of $g$ we have found at $x=\\var{lma}$ must be a global maximum and similarly,
\nGlobal Minimum: The local minimum of $g$ we have found at $x=\\var{lmi}$ must be a global minimum.
\nSo we have shown \\[\\forall x \\in \\mathbb{R},\\;\\;\\var{valmin} \\le g(x) \\le \\var{valmax}\\]
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"displayColumns": 0, "prompt": "\nIs $g(x)$ continuous at all points of $\\mathbb{R}$?
\n \nChoose Yes or No.
\n \n ", "matrix": [1, 0], "shuffleChoices": false, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"prompt": "\nThe first derivative of $g$ can be written in the form $\\displaystyle \\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)=(x^2+\\var{b^2})^2$ are polynomials.
\nInput the numerator $p(x)$ of the first derivative of $g$ here, factorised into a product of two linear factors in the form
\\[p(x)=c(x-a)(x-b)\\]for suitable integers $a$, $b$ and $c$:
$p(x)\\;=\\;$[[0]]
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Factorise the expression
", "showStrings": false, "strings": ["^", "x*x", "xx", "x x"], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({( - a)} * (x + ( - {b})) * (x + {b}))", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Factorise the expression
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"displayColumns": 0, "prompt": "\nIs $g(x)$ differentiable at all points of $\\mathbb{R}$?
\n \nChoose Yes or No.
\n \n ", "matrix": [1, 0], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"prompt": "\nLeast stationary point: [[0]]
\n \nGreatest stationary point: [[1]]
\n \n ", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{-b}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{b}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nThe second derivative of $g$ can be written in the form $\\displaystyle \\frac{r(x)}{s(x)}$ where $r(x)$ and $s(x)=(x^2+\\var{b^2})^3$ are polynomials.
\nInput the numerator $r(x)$ of the second derivative of $g$ here, factorised into a product of a linear factor and a quadratic factor in the form
\\[r(x)=a_1x(x^2-a_2)\\] for suitable integers $a_1$, $a_2$
$r(x)=\\;\\;$ [[0]]
\nHence find all local maxima and minima given by the stationary points
\nLocal maximum is at $x=\\;\\;$ [[1]] and the value of the function at the local maximum (to 3 decimal places)= [[2]]
\nLocal minimum is at $x=\\;\\;$ [[3]] and the value of the function at the local minimum (to 3 decimal places) = [[4]]
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Factorise the expression as asked in the question.
", "showStrings": false, "strings": ["x^3"], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{2*a}*x*(x^2-{3*b^2})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Factorise the expression
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{lma}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"allowFractions": false, "marks": 1, "maxValue": "{valmax+tol}", "minValue": "{valmax-tol}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{lmi}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"allowFractions": false, "marks": 1, "maxValue": "{valmin+tol}", "minValue": "{valmin-tol}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nWhat are the following limits?
\n1) $\\lim_{x \\to \\infty}g(x)\\;\\;$
\nChoose one of the following [[0]]
\n2) $\\lim_{x \\to -\\infty}g(x)$
\nChoose one of the following [[1]]
\nDoes $g$ have a finite global maximum? Click on Yes or No
[[2]]
Does $g$ have a finite global maximum? Click on Yes or No
[[2]]
$-\\infty$
", "$\\infty$
", "$\\var{b}$
", "$\\var{valmax}$
", "$0$
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"displayColumns": 0, "matrix": [0, 0, 0, 0, 1], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", "", "", "", ""], "choices": ["$-\\infty$
", "$\\infty$
", "$\\var{a}$
", "$\\var{valmin}$
", "$0$
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"displayColumns": 0, "matrix": [1, 0], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"displayColumns": 0, "matrix": [1, 0], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "Let $g: \\mathbb{R} \\rightarrow \\mathbb{R}$ be the function given by:
\\[g(x)=\\simplify{{a}*x/(x^2+{b}^2)}\\]
10/07/2012:
Added tags.
Question appears to be working correctly.
\n \t\t9/07/2012:
\n \t\tAdded tags.
\n \t\tCorrected mistake in Advice ($x$ instead of $x^2$).
\n \t\tTolerance variable set to tol=0.001 for a numeric entry.
\n \t\t", "description": "$g: \\mathbb{R} \\rightarrow \\mathbb{R}, g(x)=\\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Max and Min 5", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "valmax", "s", "lmi", "valend", "tol", "valbegin", "lma", "valmin"], "tags": ["Calculus", "calculus", "classifying stationary points", "finding local maxima and minima", "finding the stationary points", "limit", "limits", "maxima and minima", "maximum", "min", "minimum", "optimisation", "optimising functions on an interval", "stationary points", "taking limits"], "preamble": {"css": "", "js": ""}, "advice": "The function $g(x)$ is continuous and differentiable at all points in $\\mathbb{R}$.
\nUsing the quotient rule for differentiation we see that
\\[\\begin{eqnarray*}g'(x)&=&\\simplify{({a}*(x^2+{b^2})-{2*a}*x^2)/(x^2+{b^2})^2}\\\\ &=&\\simplify{({-a}*(x-{b})(x+{b}))/(x^2+{b^2})^2} \\end{eqnarray*} \\]
The stationary points are given by solving $g'(x)=0$.
\n$g'(x)=0 \\Rightarrow \\simplify{{-a}*(x-{b})(x+{b})=0} \\Rightarrow x=\\var{b} \\mbox{ or } x=\\var{-b}$
\nWe see that both stationary points are in the inerval $I$.
\nThe second derivative can be found by applying the quotient rule to the derivative of $g(x)$ and we obtain:
\nUsing the quotient rule for differentiation we see that
\\[\\begin{eqnarray*}g''(x)&=&\\simplify[std]{({-2*a}*x*(x^2+{b^2})^2+{4*a}*x*(x^2-{b^2})(x^2+{b^2}))/(x^2+{b^2})^4}\\\\ &=&\\simplify[std]{({2*a}*x*(x^2-{3*b^2}))/(x^2+{b^2})^3} \\end{eqnarray*} \\]
The nature of the stationary points are determined by evaluating $g''(x)$ at the stationary points.
\nFor $x= \\var{lma}$ we have: \\[g''(\\var{lma})= \\simplify[std]{-{abs(a)}/{2*b^3}} \\lt 0\\]
\nHence is a local maximum.
\nEvaluating the function at $x=\\var{lma}$ gives $g(\\var{lma})=\\var{valmax}$ to 3 decimal places.
\nFor $x= \\var{lmi}$ we have: \\[g''(\\var{lmi})= \\simplify[std]{{abs(a)}/{2*b^3}} \\gt 0\\]
\nHence is a local minimum.
\nEvaluating the function at $x=\\var{lmi}$ gives $g(\\var{lmi})=\\var{valmin}$ to 3 decimal places.
\nThe values of $g$ at the endpoints are:
\n$g(\\var{c})=\\var{valbegin}$ and $g(\\var{d})=\\var{valend}$ to 3 decimal places.
\nSince $g$ has a finite limit of $0$ as $x \\rightarrow \\pm\\infty$ and we have that $0$ lies between the local minimum value $\\var{valmin}$ and the local maximum value $\\var{valmax}$ (and these occur at values in $I$).
\nthen:
\nGlobal Maximum: The local maximum of $g$ we have found at $x=\\var{lma} \\in I$ must be a global maximum and similarly,
\nGlobal Minimum: The local minimum of $g$ we have found at $x=\\var{lmi} \\in I$ must be a global minimum.
\nSo we have shown \\[\\forall x \\in \\mathbb{R},\\;\\;\\var{valmin} \\le g(x) \\le \\var{valmax}\\]
\n(all to 3 decimal places).
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"displayColumns": 0, "prompt": "\nIs $g(x)$ continuous at all points of $I$?
\n \nChoose Yes or No.
\n \n ", "matrix": [1, 0], "shuffleChoices": false, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"prompt": "\nThe first derivative of $g$ can be written in the form $\\displaystyle \\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)=(x^2+\\var{b^2})^2$ are polynomials.
\nInput the numerator $p(x)$ of the first derivative of $g$ here, factorised into a product of two linear factors in the form
\\[p(x)=c(x-a)(x-b)\\]for suitable integers $a$, $b$ and $c$:
$p(x)=\\;\\;$[[0]]
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Factorise the expression
", "showStrings": false, "strings": ["^", "x*x", "xx", "x x"], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({( - a)} * (x + ( - {b})) * (x + {b}))", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Factorise the expression
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"displayColumns": 0, "prompt": "\nIs $g(x)$ differentiable at all points of $I$?
\n \nChoose Yes or No.
\n \n ", "matrix": [1, 0], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"prompt": "\nAssume now that $g$ is a function $g:\\mathbb{R} \\rightarrow \\mathbb{R}$.
\n \nLeast stationary point: [[0]]
\n \nGreatest stationary point: [[1]]
\n \nAre both stationary points in the interval $I$? Choose Yes or No.
[[2]]
Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nThe second derivative of $g$ can be written in the form $\\displaystyle \\frac{r(x)}{s(x)}$ where $r(x)$ and $s(x)=(x^2+\\var{b^2})^3$ are polynomials.
\nInput the numerator $r(x)$ of the second derivative of $g$ here, factorised into a product of a linear factor and a quadratic factor in the form
\\[r(x)=a_1x(x^2-a_2)\\] for suitable integers $a_1$, $a_2$
$r(x)=\\;\\;$ [[0]]
\nHence find all local maxima and minima given by the stationary points
\nLocal maximum is at $x=\\;\\;$ [[1]] and the value of the function at the local maximum (to 3 decimal places)= [[2]]
\nLocal minimum is at $x=\\;\\;$ [[3]] and the value of the function at the local minimum (to 3 decimal places) = [[4]]
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Factorise the expression
", "showStrings": false, "strings": ["x^2", "x x", "xx"], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{2*a}*x*(x^2-{3*b^2})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Factorise the expression
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{lma}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"allowFractions": false, "marks": 1, "maxValue": "{valmax+tol}", "minValue": "{valmax-tol}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{lmi}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"allowFractions": false, "marks": 1, "maxValue": "{valmin+tol}", "minValue": "{valmin-tol}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nWhat are the following values at the end points of the interval $I$ ?
\n \n$g(\\var{c})=\\;\\;$ [[0]]
\n \n$g(\\var{d})=\\;\\;$ [[1]]
\n \nInput both to 3 decimal places.
\n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "precround(valbegin+0.001,3)", "minValue": "precround(valbegin-0.001,3)", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "precround(valend+0.001,3)", "minValue": "precround(valend-0.001,3)", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nAssume now that $g: \\mathbb{R} \\rightarrow \\mathbb{R}$ and you are given that:
\n \n$\\lim_{x \\to \\infty}g(x)=0$ and $\\lim_{x \\to -\\infty}g(x)=0$
\n \nAt what value of $x \\in I$ does $g$ have a global maximum ?
\n \n$x=\\;\\;$ [[0]]
\n \nAt what value of $x \\in I$ does $g$ have a global minimum ?
\n \n$x=\\;\\;$ [[1]]
\n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "{lma}", "minValue": "{lma}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "{lmi}", "minValue": "{lmi}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nLet $I=[\\var{c},\\var{d}]$ be an interval and let $g: I \\rightarrow I$ be the function given by:
\\[g(x)=\\simplify{{a}*x/(x^2+{b}^2)}\\]
Answer the following questions. There are seven parts and you may need to scroll down to complete all parts.
\n \n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "s*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "-b-random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "b+random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "valmax": {"definition": "-valmin", "templateType": "anything", "group": "Ungrouped variables", "name": "valmax", "description": ""}, "valend": {"definition": "precround(a*d/(d^2+b^2),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "valend", "description": ""}, "lmi": {"definition": "if(a<0,b,-b)", "templateType": "anything", "group": "Ungrouped variables", "name": "lmi", "description": ""}, "s": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s", "description": ""}, "tol": {"definition": "0.001", "templateType": "anything", "group": "Ungrouped variables", "name": "tol", "description": ""}, "valbegin": {"definition": "precround(a*c/(c^2+b^2),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "valbegin", "description": ""}, "lma": {"definition": "if(a>0,b,-b)", "templateType": "anything", "group": "Ungrouped variables", "name": "lma", "description": ""}, "valmin": {"definition": "precround(-abs(a)*b/(2*b^2),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "valmin", "description": ""}}, "metadata": {"notes": "\n \t\t9/07/2012:
\n \t\tAdded tags.
\n \t\tCorrected mistake in Advice ($x$ instead of $x^2$).
\n \t\tTolerance variable set to tol=0.001 for a numeric entry.
\n \t\t\n \t\t
10/07/2012:
Added tags.
\n \t\tEdited grammar in the Advice section.
Question appears to be working correctly.
\n \t\t", "description": "$I$ compact interval. $\\displaystyle g: I \\rightarrow I, g(x)=\\frac{ax}{x^2+b^2}$. Find stationary points and local maxima, minima. Using limits, has $g$ a global max, min?
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Max and Min 6", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "valmin", "m", "l", "xma", "lmi", "s", "u", "valend", "tol", "l1", "valbegin", "lma", "statpoint", "xmi", "valsd"], "tags": ["Calculus", "Differentiation", "calculus", "classifying stationary points", "continuous functions", "derivative", "derivatives", "differentiable functions", "differentiate", "differentiation", "first derivative", "functions", "global maximum", "global minimum", "local maximum", "local minimum", "max and min", "maxima", "maximum", "maximum and minimum", "maximum and minimum of a function on an interval", "minima", "minimum", "optimising a function on an interval", "quadratic", "quadratics", "quotient rule", "second derivative", "solution of a quadratic", "stationary points"], "preamble": {"css": "", "js": ""}, "advice": "\nThe function $g(x)$ is continuous and differentiable at all points in $\\mathbb{R}$ as $ \\var{c} \\notin I$.
\nOn differentiating we see that
\\[\\begin{eqnarray*}g'(x)&=&\\simplify{2*x/(x-{c})^({a}/{b}) - {a}*x^2/({b}(x-{c})^({a+b}/{b}))}\\\\ &=&\\simplify{({2*b}x*(x-{c})-{a}*x^2)/({b}(x-{c})^({a+b}/{b}))}\\\\ &=&\\simplify{(x*({2*b-a}x-{2*b*c}))/({b}(x-{c})^({a+b}/{b}))} \\end{eqnarray*} \\]
The stationary points are given by solving $g'(x)=0$.
\n$\\displaystyle g'(x)=0 \\Rightarrow \\simplify{x*({2*b-a}x-{2*b*c})=0} \\Rightarrow x=0 \\mbox{ or } x=\\simplify[std]{{2*b*c}/{2*b-a}}$
\nWe see that $\\displaystyle x=\\simplify[std]{{2*b*c}/{2*b-a}}$ is the only stationary point in $I$.
\nThe second derivative can be found by applying the quotient rule to the derivative of $g(x)$ and we obtain:
\nUsing the quotient rule for differentiation we see that
\\[g''(x)=\\simplify[std]{({a^2-3*a*b+2*b^2}*x^2+{4*b*c*(a-b)}*x+{2*c^2*b^2})/({b^2}(x-{c})^({a+2*b}/{b}))}\\]
Hence \\[r(x)=\\simplify[std]{({a^2-3*a*b+2*b^2}*x^2+{4*b*c*(a-b)}*x+{2*c^2*b^2})}\\]
\nThe nature of the stationary points are determined by evaluating $g''(x)$ at the stationary points.
\nThere is only one stationary point $\\displaystyle x=\\simplify[std]{{2*b*c}/{2*b-a}}$ in $I$ and at that point we have:
\\[g''\\left(\\simplify[std]{{2*b*c}/{2*b-a}}\\right)=\\var{valsd} \\gt 0\\]
Hence this point is a local minimum.
\nThe values of $g$ at the endpoints are:
\n$g(\\var{l})=\\var{valbegin}$ and $g(\\var{m})=\\var{valend}$, both to 3 decimal places.
\nGlobal Maximum: Since $g$ does not have a local maximum in the interval $I$, it must take a global maximum value at one of the end points of the interval.
\nFrom the values found for $g(\\var{l})$ and $g(\\var{m})$ found above, we see that $x=\\var{xma}$ is the global maximum for $g$ in the interval $I$.
\nGlobal Minimum: The local minimum of $g$ given by $ \\displaystyle x=\\simplify[std]{{2*b*c}/{2*b-a}} \\in I$ is the only local minimum and must be a global minimum in $I$.
\nNote that the global minimum value for $g$ on $I$ is:
\n\\[g\\left(\\simplify[std]{{2*b*c}/{2*b-a}}\\right)=\\var{valmin}\\]
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"displayColumns": 0, "prompt": "\nIs $g(x)$ continuous at all points of $I$?
\n \nChoose Yes or No.
\n \n ", "matrix": [1, 0], "shuffleChoices": false, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"prompt": "\nThe first derivative of $g$ can be written in the form $\\displaystyle \\frac{p(x)}{q(x)}$ where $p(x)$ is a polynomial of degree $2$ and $q(x)=\\simplify{{b}*(x-{c})^({a+b}/{b})}$.
\nInput the numerator $p(x)$ of the first derivative of $g$ here:
\n$p(x)=\\;\\;$[[0]]
\n ", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "x*({2*b-a}*x-{2*b*c})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"displayColumns": 0, "prompt": "\nIs $g(x)$ differentiable at all interior points of $I$?
\n \nChoose Yes or No.
\n \n ", "matrix": [1, 0], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", ""], "choices": ["Yes
", "No
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}, {"prompt": "\nAssume now that $g$ is a function $g:\\mathbb{R} \\backslash \\{\\var{c}\\} \\rightarrow \\mathbb{R}$.
\n \nLeast stationary point: [[0]]
\n \nGreatest stationary point: [[1]] (Input as a fraction or an integer and not as a decimal)
\n \nWhich stationary point is in the interval $I$? Choose one of the following:
[[2]]
Input as a fraction or an integer and not as a decimal
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{2*b*c}/{2*b-a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"displayColumns": 0, "matrix": [1, 0], "shuffleChoices": true, "maxMarks": 0, "distractors": ["", ""], "choices": ["The greatest
", "The least
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nThe second derivative of $g$ can be written in the form $\\displaystyle \\frac{r(x)}{s(x)}$ where $r(x)$ is a quadratic polynomial and $s(x)=\\simplify{{b^2}(x-{c})^({a+2*b}/{b})}$.
\nInput the numerator $r(x)$ of the second derivative of $g$ here:
\n$r(x)=\\;\\;$ [[0]]
\nHence determine the type of the stationary point which lies in $I$. Choose one of the following:
[[1]]
Local maximum
", "Local minimum
"], "displayType": "radiogroup", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "minMarks": 0}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nWhat are the following values at the end points of the interval $I$ ?
\n \n$g(\\var{l})=\\;\\;$ [[0]]
\n \n$g(\\var{m})=\\;\\;$ [[1]]
\n \nInput both to 3 decimal places.
\n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "valbegin+tol", "minValue": "valbegin-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "marks": 1, "maxValue": "valend+tol", "minValue": "valend-tol", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nAt what value of $x \\in I$ does $g$ have a global maximum in $I$?
\n \n$x=\\;\\;$ [[0]]
\n \nAt what value of $x \\in I$ does $g$ have a global minimum in $I$ ?
\n \n$x=\\;\\;$ [[1]] (Input as a fraction or an integer and not as a decimal)
\n \n ", "marks": 0, "gaps": [{"allowFractions": false, "marks": 1, "maxValue": "{xma}", "minValue": "{xma}", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}, {"notallowed": {"message": "Input as a fraction or an integer and not as a decimal
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{2*b*c}/{2*b-a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nLet $I=[\\var{l},\\var{m}]$ be an interval and let $g: I \\rightarrow \\mathbb{R}$ be the function given by:
\\[g(x)=\\simplify{x^2/(x-{c})^({a}/{b})}\\]
Answer the following questions. There are seven parts and you may need to scroll down to complete all parts.
\n\n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "if(b=3,random(1,2,4,5),if(b=5,random(1,2,3,4,6,7,8,9),random(2,3,4,5,6,8,9)))", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "round(2b/a)+random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(3,5,7)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "valmin": {"definition": "precround(statpoint^2/(statpoint-c)^(a/b),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "valmin", "description": ""}, "m": {"definition": "round(statpoint)+random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "l": {"definition": "if(l1=c,l1+1,l1)", "templateType": "anything", "group": "Ungrouped variables", "name": "l", "description": ""}, "xma": {"definition": "if(valend>valbegin,m,l)", "templateType": "anything", "group": "Ungrouped variables", "name": "xma", "description": ""}, "lmi": {"definition": "if(a<0,b,-b)", "templateType": "anything", "group": "Ungrouped variables", "name": "lmi", "description": ""}, "s": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s", "description": ""}, "valend": {"definition": "precround(m^2/(m-c)^(a/b),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "valend", "description": ""}, "u": {"definition": "random(0..90)", "templateType": "anything", "group": "Ungrouped variables", "name": "u", "description": ""}, "valsd": {"definition": "precround(2*(2*b/a-1)^(a/b+2)/c^(a/b),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "valsd", "description": ""}, "tol": {"definition": "0.001", "templateType": "anything", "group": "Ungrouped variables", "name": "tol", "description": ""}, "l1": {"definition": "round((u*(c+1)+(100-u)*round(statpoint-1))/100)", "templateType": "anything", "group": "Ungrouped variables", "name": "l1", "description": ""}, "valbegin": {"definition": "precround(l^2/(l-c)^(a/b),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "valbegin", "description": ""}, "lma": {"definition": "if(a>0,b,-b)", "templateType": "anything", "group": "Ungrouped variables", "name": "lma", "description": ""}, "xmi": {"definition": "lmi", "templateType": "anything", "group": "Ungrouped variables", "name": "xmi", "description": ""}, "statpoint": {"definition": "2*b*c/(2*b-a)", "templateType": "anything", "group": "Ungrouped variables", "name": "statpoint", "description": ""}}, "metadata": {"notes": "\n \t\t
9/07/2012:
\n \t\tAdded tags.
\n \t\tCorrected mistake in definition of variable valsd. Changed the number of decimal places to 5 for this variable as can be very small and positive.
\n \t\tModified display in Advice slightly.
\n \t\tSet new variable tolerance to be tol=0.001 for entries to 3 dps.
\n \t\t\n \t\t
10/07/2012:
Added tags.
In Advice section, increased size of brackets so that they were big enough to contain a fraction.
\n \t\tQuestion appears to be working correctly.
\n \t\t", "description": "
$I$ compact interval. $\\displaystyle g: I\\rightarrow I, g(x)=\\frac{x^2}{(x-c)^{a/b}}$. Are there stationary points and local maxima, minima? Has $g$ a global max, global min?
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "showstudentname": true, "duration": 0, "feedback": {"showtotalmark": true, "feedbackmessages": [], "advicethreshold": 0, "allowrevealanswer": false, "showactualmark": false, "showanswerstate": true, "intro": "", "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "oncompletion", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "showQuestionGroupNames": false, "timing": {"timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}, "allowPause": true}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "5 questions on finding local and global maxima and minima on compact intervals and on the real line for differentiable functions.
"}, "name": "Paul 's copy of Maths Support: Maxima and minima for differentiable functions on intervals", "navigation": {"allowregen": true, "reverse": true, "onleave": {"action": "none", "message": ""}, "preventleave": false, "showfrontpage": false, "browse": true, "showresultspage": "oncompletion"}, "percentPass": 50, "type": "exam", "contributors": [{"name": "Paul Howes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/632/"}], "extensions": [], "custom_part_types": [], "resources": []}