// Numbas version: finer_feedback_settings {"name": "Numbas Test", "duration": 0, "metadata": {"description": "
This is a test of the Numbas math question examiner
", "licence": "All rights reserved"}, "allQuestions": true, "shuffleQuestions": true, "percentPass": 0, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "feedback": {"showtotalmark": true, "advicethreshold": 0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-shuffled", "pickQuestions": 0, "questions": [{"name": "Adding Decimals", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Rob Cade", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/70/"}], "functions": {}, "ungrouped_variables": ["num1", "num2", "ans1", "num3", "num4", "ans2", "num5", "num6", "ans3", "num7", "num8", "ans4"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "THere is no advice for this question.
", "rulesets": {}, "parts": [{"prompt": "What's $\\var{num1} + \\var{num2} $?
\nPlease give your answer with exactly 1 decimal place.
\nAnswer: $\\var{num1} + \\var{num2} =$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "1", "maxValue": "ans1", "variableReplacementStrategy": "originalfirst", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "ans1", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "What's $\\var{num3} + \\var{num4} $?
\nPlease give your answer with exactly 2 decimal places.
\nAnswer: $\\var{num3} + \\var{num4} =$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "ans2", "variableReplacementStrategy": "originalfirst", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "ans2", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "What's $\\var{num7} + \\var{num8} $?
\nPlease give your answer with exactly 3 decimal places.
\nAnswer: $\\var{num7} + \\var{num8} =$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "ans4", "variableReplacementStrategy": "originalfirst", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "ans4", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "What's $\\var{num5} + \\var{num6} $?
\nPlease give your answer with exactly 3 decimal places.
\nAnswer: $\\var{num5} + \\var{num6} =$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "ans3", "variableReplacementStrategy": "originalfirst", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "ans3", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Try these without using a calculator.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"num4": {"definition": "random(1..5)+random(1..5)/10 +random(1..5)/100", "templateType": "anything", "group": "Ungrouped variables", "name": "num4", "description": ""}, "num5": {"definition": "random(1..5)+random(1..5)/100 +random(1..5)/1000", "templateType": "anything", "group": "Ungrouped variables", "name": "num5", "description": ""}, "num6": {"definition": "random(1..5)+random(1..5)/100 +random(1..5)/1000", "templateType": "anything", "group": "Ungrouped variables", "name": "num6", "description": ""}, "num7": {"definition": " random(1..5)+random(1..5)/10 +random(1..5)/100", "templateType": "anything", "group": "Ungrouped variables", "name": "num7", "description": ""}, "num1": {"definition": "random(1..5)+random(1..5)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "num1", "description": ""}, "num2": {"definition": "random(1..5)+random(1..5)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "num2", "description": ""}, "num3": {"definition": "random(1..5)+random(1..5)/10 +random(1..5)/100", "templateType": "anything", "group": "Ungrouped variables", "name": "num3", "description": ""}, "ans1": {"definition": "num1+num2", "templateType": "anything", "group": "Ungrouped variables", "name": "ans1", "description": ""}, "ans2": {"definition": "num3+num4", "templateType": "anything", "group": "Ungrouped variables", "name": "ans2", "description": ""}, "ans3": {"definition": "num5+num6", "templateType": "anything", "group": "Ungrouped variables", "name": "ans3", "description": ""}, "num8": {"definition": "random(1..5)+random(1..5)/10 +random(1..5)/100+random(1..5)/1000", "templateType": "anything", "group": "Ungrouped variables", "name": "num8", "description": ""}, "ans4": {"definition": "num7+num8", "templateType": "anything", "group": "Ungrouped variables", "name": "ans4", "description": ""}}, "metadata": {"description": "Four questions, of increasing complexity, involving addition of decimals. These should all be solvable without using a calculator.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Adding fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Rob Cade", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/70/"}], "functions": {}, "ungrouped_variables": ["denom1", "num1", "denom2", "num2", "lcm", "num1b", "num2b", "num3", "denom3", "num1simp", "denom1simp", "num2simp", "denom2simp", "prompts", "prompt"], "tags": [], "advice": "See step for part b.
", "rulesets": {"std": ["all"]}, "parts": [{"prompt": "We want to find:
\n{num1simp} | \n+ | \n{num2simp} | \n
{denom1simp} | \n\n | {denom2simp} | \n
We need to write the fractions with the same \"denominator\" (the number on the bottom).
\nWhat's the smallest number that divides by {denom1simp} and {denom2simp} (the \"lowest common multiple\")?
\nAnswer: the lowest common multiple of {denom1simp} and {denom2simp} = [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "lcm", "minValue": "lcm", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "So we can write both fractions as something over the lowest comon multiple.
\nThen we can add the numerators (the numbers on the top).
\n$\\var{prompt} $
\n{num1simp} | \n+ | \n{num2simp} | \n= | \n[[0]] | \n+ | \n[[1]] | \n= | \n[[4]] | \n
{denom1simp} | \n\n | {denom2simp} | \n\n | [[2]] | \n\n | [[3]] | \n\n | [[5]] | \n
The lowest common multiple of $\\var{denom1simp}$ and $\\var{denom2simp}$ is $\\var{lcm}$
\nSo you need to write $\\frac {\\var{num1simp}} {\\var{denom1simp}}$ as $\\frac {something} {\\var{lcm}}$ = $\\frac {?} {\\var{lcm}}$
\nand write $\\frac {\\var{num2simp}} {\\var{denom2simp}}$ as $\\frac {something} {\\var{lcm}}$ = $\\frac {?} {\\var{lcm}}$
\nThen you can add the numerators .
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 0, "scripts": {}, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "Adding 2 fractions with different denominators.
", "variable_groups": [], "variablesTest": {"maxRuns": "100", "condition": "((num1simp/denom1simp)+ (num2simp/denom2simp) <1)"}, "preamble": {"css": ".fractiontable table {\n width: 10%; \n padding: 0px; \n border-width: 0px; \n layout: fixed;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n width: 15%; \n border-bottom: 1px solid black; \n text-align: center;\n}\n\n.fractiontable .tdeq \n{\n width: 5%; \n border-bottom: 0px;\n font-size:x-large;\n}\n\n\n.fractiontable th {\n background-color:#aaa;\n}\n/*Fix the height of all cells EXCEPT table-headers to 40px*/\n.fractiontable td {\n height:40px;\n}\n", "js": ""}, "variables": {"denom1": {"definition": "random(2..12)\n", "templateType": "anything", "group": "Ungrouped variables", "name": "denom1", "description": ""}, "num2b": {"definition": "num2simp*lcm/denom2simp", "templateType": "anything", "group": "Ungrouped variables", "name": "num2b", "description": ""}, "denom3": {"definition": "lcm/gcd(num1b+num2b, lcm)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom3", "description": ""}, "denom2": {"definition": "random(2..12 except denom1)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom2", "description": ""}, "num1b": {"definition": "num1simp*lcm/denom1simp", "templateType": "anything", "group": "Ungrouped variables", "name": "num1b", "description": ""}, "num1": {"definition": "denom1-random(1..denom1-1) //make sure the numerator's bigger than denom\n", "templateType": "anything", "group": "Ungrouped variables", "name": "num1", "description": ""}, "num2": {"definition": "denom2-random(1..denom2-1) //make sure the numerator's bigger than denom", "templateType": "anything", "group": "Ungrouped variables", "name": "num2", "description": ""}, "num3": {"definition": "(num1b+num2b)/gcd(num1b+num2b, lcm)", "templateType": "anything", "group": "Ungrouped variables", "name": "num3", "description": ""}, "num1simp": {"definition": "num1/gcd(num1, denom1)", "templateType": "anything", "group": "Ungrouped variables", "name": "num1simp", "description": ""}, "prompts": {"definition": "[ \"Make sure you show the result in its simplest form: you\\'ll have to cancel ...\", \" \" ]", "templateType": "list of strings", "group": "Ungrouped variables", "name": "prompts", "description": ""}, "denom1simp": {"definition": "denom1/gcd(num1,denom1)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom1simp", "description": ""}, "denom2simp": {"definition": "denom2/gcd(num2,denom2)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom2simp", "description": ""}, "num2simp": {"definition": "num2/gcd(num2, denom2)", "templateType": "anything", "group": "Ungrouped variables", "name": "num2simp", "description": ""}, "prompt": {"definition": "switch(gcd(num1b+num2b,lcm)>1, prompts[0], prompts[1])", "templateType": "anything", "group": "Ungrouped variables", "name": "prompt", "description": ""}, "lcm": {"definition": "lcm(denom1simp,denom2simp)\n", "templateType": "anything", "group": "Ungrouped variables", "name": "lcm", "description": ""}}, "metadata": {"description": "Practice of adding fractions.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Decimal to Percentage", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Rob Cade", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/70/"}], "functions": {}, "ungrouped_variables": ["a1", "p2", "p1", "a2"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "To convert a decimal to a percentage
\nWhat is $\\var{a1}$ expressed as a percentage? [[0]]%
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{p1}", "minValue": "{p1}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "steps": [{"prompt": "
To convert $\\var{a1}$ to a percentage, move the decimal point 2 places to the right.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}, {"prompt": "What is $\\var{a2}$ expressed as a percentage? [[0]]%
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{p2}", "minValue": "{p2}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Converting Decimals to Percentages.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a1": {"definition": "random(0..1)+random(0..99)/100", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "p2": {"definition": "100*a2", "templateType": "anything", "group": "Ungrouped variables", "name": "p2", "description": ""}, "p1": {"definition": "100*a1", "templateType": "anything", "group": "Ungrouped variables", "name": "p1", "description": ""}, "a2": {"definition": "random(0..1)+random(0..999)/1000", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}}, "metadata": {"description": "Converting decimals to percentages.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Dividing by a decimal", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Rob Cade", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/70/"}], "functions": {}, "ungrouped_variables": ["basedividend", "divisor", "poweroften", "dividendredux", "numdp1", "basedivisor", "answer", "dividend"], "tags": ["decimals"], "advice": "See step.
", "rulesets": {}, "parts": [{"stepsPenalty": 0, "prompt": "What's $\\var{dividend}$ divided by $\\var{divisor}$?
\nAnswer: $\\var{dividend}$ divided by $\\var{divisor}$ = [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{answer}", "minValue": "{answer}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "steps": [{"prompt": "We want to find $\\frac {\\var{dividend}} {\\var{divisor}}$
\n$\\var{divisor} $ has $\\var{numdp1}$ number(s) after the decimal point.
\nSo we need to move the decimal point $\\var{numdp1}$ place(s) to the right to turn it into a whole number.
\nSo we have to multiply $\\var{divisor} $ by $\\var{powerOfTen}$
\nIf we multiply the bottom of the fraction by $\\var{powerOfTen}$, we'll have to multiply the top by $\\var{powerOfTen}$, too.
\nThat will give us $\\frac {\\var{dividendredux}} {\\var{basedivisor}}$ = ?
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 0, "scripts": {}, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "Try this without using a calculator.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"basedividend": {"definition": "random(0..3)*10 + random(0..3)+ random(0..5 except 0) * 0.1", "templateType": "anything", "group": "Ungrouped variables", "name": "basedividend", "description": ""}, "divisor": {"definition": "baseDivisor*10^(-numdp1)", "templateType": "anything", "group": "Ungrouped variables", "name": "divisor", "description": ""}, "poweroften": {"definition": "10^numdp1", "templateType": "anything", "group": "Ungrouped variables", "name": "poweroften", "description": ""}, "dividendredux": {"definition": "dividend*10^numdp1", "templateType": "anything", "group": "Ungrouped variables", "name": "dividendredux", "description": ""}, "numdp1": {"definition": "random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "numdp1", "description": ""}, "basedivisor": {"definition": "random(1..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "basedivisor", "description": ""}, "answer": {"definition": "dividend / divisor", "templateType": "anything", "group": "Ungrouped variables", "name": "answer", "description": ""}, "dividend": {"definition": "baseDividend * baseDivisor", "templateType": "anything", "group": "Ungrouped variables", "name": "dividend", "description": ""}}, "metadata": {"description": "Practice of dividing by a decimal. This should be solvable without using a calculator.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Dividing by a fraction", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Rob Cade", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/70/"}], "functions": {}, "ungrouped_variables": ["denom1", "num1", "denom2", "num2", "num3", "denom3", "num1simp", "denom1simp", "num2simp", "denom2simp", "prompts", "prompt"], "tags": [], "preamble": {"css": ".fractiontable table {\n width: 10%; \n padding: 0px; \n border-width: 0px; \n layout: fixed;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n width: 15%; \n border-bottom: 1px solid black; \n text-align: center;\n}\n\n.fractiontable .tdeq \n{\n width: 5%; \n border-bottom: 0px;\n font-size: x-large;\n}\n\n\n.fractiontable th {\n background-color:#aaa;\n}\n/*Fix the height of all cells EXCEPT table-headers to 40px*/\n.fractiontable td {\n height:40px;\n}\n", "js": ""}, "advice": "See steps.
", "rulesets": {"std": ["all"]}, "parts": [{"stepsPenalty": 0, "prompt": "We want to find:
\n{num1simp} | \n÷ | \n{num2simp} | \n
{denom1simp} | \n\n | {denom2simp} | \n
To divide by a fraction, turn it upsidedown and then multiply by the result.
\n$\\var{prompt} $
\n{num1simp} | \n÷ | \n{num2simp} | \n= | \n{num1simp} | \n× | \n[[0]] | \n= | \n[[1]] | \n
{denom1simp} | \n\n | {denom2simp} | \n\n | {denom1simp} | \n\n | [[2]] | \n\n | [[3]] | \n
Turn the second fraction upsidedown, then multiply by the result.
\nSo you'll have to do $\\frac {\\var{num1simp }} {\\var{denom1simp}} × \\frac {\\var{denom2simp }} {\\var{num2simp}} $
\nThe top (or numerator) of the product = {num1simp} × {denom2simp} = ?
\nThe bottom (or denominator) of the product = {denom1simp} × {num2simp} = ?
\nRemember to cancel the result if you can.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "How to divide by a fraction.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "(num1simp*denom2simp)/(num2simp*denom1simp)<1"}, "variables": {"denom1": {"definition": "random(2..5)\n", "templateType": "anything", "group": "Ungrouped variables", "name": "denom1", "description": ""}, "denom3": {"definition": "(denom1simp*denom2simp)/gcd(num1simp*num2simp, denom1simp*denom2simp)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom3", "description": ""}, "denom2": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom2", "description": ""}, "prompt": {"definition": "switch(gcd(num1simp*denom2simp,denom1simp*num2simp)>1, prompts[0],prompts[1])", "templateType": "anything", "group": "Ungrouped variables", "name": "prompt", "description": ""}, "num1": {"definition": "denom1-random(1..denom1-1) //make sure the numerator's bigger than denom\n", "templateType": "anything", "group": "Ungrouped variables", "name": "num1", "description": ""}, "num2": {"definition": "denom2-random(1..denom2-1) //make sure the numerator's bigger than denom", "templateType": "anything", "group": "Ungrouped variables", "name": "num2", "description": ""}, "num3": {"definition": "(num1simp*num2simp)/gcd(num1simp*num2simp, denom1simp*denom2simp)", "templateType": "anything", "group": "Ungrouped variables", "name": "num3", "description": ""}, "num1simp": {"definition": "num1/gcd(num1, denom1)", "templateType": "anything", "group": "Ungrouped variables", "name": "num1simp", "description": ""}, "prompts": {"definition": "[ \"Make sure you show the result in its simplest form: you\\'ll have to cancel ...\", \" \" ]", "templateType": "list of strings", "group": "Ungrouped variables", "name": "prompts", "description": ""}, "denom1simp": {"definition": "denom1/gcd(num1,denom1)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom1simp", "description": ""}, "denom2simp": {"definition": "denom2/gcd(num2,denom2)", "templateType": "anything", "group": "Ungrouped variables", "name": "denom2simp", "description": ""}, "num2simp": {"definition": "num2/gcd(num2, denom2)", "templateType": "anything", "group": "Ungrouped variables", "name": "num2simp", "description": ""}}, "metadata": {"description": "Pratice of dividing by a fraction.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Pythagorean Identity recognition", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["Pythagoras", "pythagoras", "Trigonometry", "trigonometry"], "metadata": {"description": "Using $\\cos^2\\theta+\\sin^2\\theta=1$ to evaluate expressions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "The following questions require some familiarity with trigonometric identities.
\n", "advice": "We will use the following Pythagorean identity \\[\\cos^2\\theta+\\sin^2\\theta=1.\\]
\nFor part a)
\nGiven $\\simplify{(cos^2(x)+sin^2(x))^{m1}+{m2}}$ we can replace $\\cos^2(x)+\\sin^2(x)$ with $1$. So our expression is $\\simplify{1^{m1}+{m2}}$. Therefore our expression simplifies to $\\var{m2+1}$.
\n$\\simplify{{m1}+{m2}(2-sin^2(y)-cos^2(y))}$ | \n$=$ | \n$\\simplify{{m1}+{m2}(2-(sin^2(y)+cos^2(y)))}$ | \n
\n | $=$ | \n$\\simplify[!collectNumbers]{{m1}+{m2}(2-1)}$ | \n
\n | $=$ | \n$\\simplify[!collectNumbers]{{m1}+{m2}}$ | \n
\n | $=$ | \n$\\var{m1+m2}$ | \n
$\\simplify{{m1^2}cos^4(z)+{2*m1^2}cos^2(z)sin^2(z)+{m1^2}sin^4(z)}$ | \n$=$ | \n$\\simplify{{m1^2}(cos^4(z)+2cos^2(z)sin^2(z)+sin^4(z))}$ | \n
\n | $=$ | \n$\\simplify{{m1^2}(cos^2(z)+sin^2(z))^2}$ | \n
\n | $=$ | \n$\\var{m1^2}\\times 1^2$ | \n
\n | $=$ | \n$\\var{m1^2}$ | \n
For part b)
\nRearranging the Pythagorean identity $\\cos^2\\theta+\\sin^2\\theta=1$ for $\\sin\\theta$ gives the equation \\[\\sin\\theta=\\pm\\sqrt{1-\\cos^2\\theta}\\]
\nRecall that $\\sin\\theta$ is the $y$ value of a point on the unit circle, whether $\\sin\\theta$ is taken as the postive square root or as the negative square root depends on the whether the point on the circle is on the top semicircle (positive $y$ value) or the bottom semicircle (negative $y$ value).
\nSince we are told $\\theta$ is in the first or second quadrant, the $y$ value must be postive, that is $\\sin\\theta=\\sqrt{1-\\cos^2\\theta}$. Therefore our expresson simplifies as follows
\n$\\simplify{{n}sin(theta)-{n}sqrt(1-cos^2(theta))}$ | \n$=$ | \n$\\simplify{{n}sin(theta)-{n}sin(theta)}$ | \n
\n | $=$ | \n$0$ | \n
Since we are told $\\theta$ is in the third or fourth quadrant, the $y$ value must be negative, that is $\\sin\\theta=-\\sqrt{1-\\cos^2\\theta}$ or equivalently $-\\sin\\theta=\\sqrt{1-\\cos^2\\theta}$. Therefore our expresson simplifies as follows
\n\n$\\simplify{{n}sin(theta)-{n}sqrt(1-cos^2(theta))}$ | \n$=$ | \n$\\simplify{{n}sin(theta)-{n}sin(theta)}$ | \n
\n | $=$ | \n$0$ | \n
Rearranging the Pythagorean identity $\\cos^2\\theta+\\sin^2\\theta=1$ for $\\cos\\theta$ gives the equation \\[\\cos\\theta=\\pm\\sqrt{1-\\sin^2\\theta}\\]
\nRecall that $\\cos\\theta$ is the $x$ value of a point on the unit circle, whether $\\cos\\theta$ is taken as the postive square root or as the negative square root depends on the whether the point on the circle is on the right semicircle (positive $x$ value) or the left semicircle (negative $x$ value).
\nSince we are told $\\theta$ is in the first or fourth quadrant, the $x$ value must be postive, that is $\\cos\\theta=\\sqrt{1-\\sin^2\\theta}$. Therefore our expresson simplifies as follows
\n$\\simplify{{n}cos(theta)-{n}sqrt(1-sin^2(theta))}$ | \n$=$ | \n$\\simplify{{n}cos(theta)-{n}cos(theta)}$ | \n
\n | $=$ | \n$0$ | \n
Since we are told $\\theta$ is in the second or third quadrant, the $x$ value must be negative, that is $\\cos\\theta=-\\sqrt{1-\\sin^2\\theta}$ or equivalently $-\\cos\\theta=\\sqrt{1-\\sin^2\\theta}$. Therefore our expresson simplifies as follows
\n\n$\\simplify{{n}cos(theta)-{n}sqrt(1-sin^2(theta))}$ | \n$=$ | \n$\\simplify{{n}cos(theta)-{n}cos(theta)}$ | \n
\n | $=$ | \n$0$ | \n
The expression
\n\\[\\simplify{(cos^2(x)+sin^2(x))^{m1}+{m2}}\\] \\[\\simplify{{m1}+{m2}(2-sin^2(y)-cos^2(y))}\\] \\[\\simplify{{m1^2}cos^4(z)+{2*m1^2}cos^2(z)sin^2(z)+{m1^2}sin^4(z)}\\]
\ncan be simplified to [[0]].
\nNote: For this question, your answer should be a number.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The expression
\n\\[\\simplify{{n}sin(theta)-{n}sqrt(1-cos^2(theta))}\\] \\[\\simplify{{n}sin(theta)+{n}sqrt(1-cos^2(theta))}\\]\\[\\simplify{{n}cos(theta)-{n}sqrt(1-sin^2(theta))}\\] \\[\\simplify{{n}cos(theta)+{n}sqrt(1-sin^2(theta))}\\]
\ncan be simplified to [[0]] for $\\theta$ in the first or second quadrant. third or fourth quadrant. first or fourth quadrant. second or third quadrant.
\nNote: For this question, your answer should be a number.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "contributors": [{"name": "Myles Thies", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/853/"}], "extensions": [], "custom_part_types": [], "resources": []}