// Numbas version: exam_results_page_options {"name": "PA2601 exam version 2", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], []], "questions": [{"name": "Blackbody v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

A star may have the spectrum of a blackbody.

", "advice": "

See Lecture 1, slides 19 & 20

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"surf_flux": {"name": "surf_flux", "group": "Ungrouped variables", "definition": "5.671*10^-8*t^4", "description": "

surface flux in J/s/m2/K4

", "templateType": "anything", "can_override": false}, "lambda_pk": {"name": "lambda_pk", "group": "Ungrouped variables", "definition": "2.89777*10^(-3)*10^(9)/t", "description": "

wavelength of peak intensity 

", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(1500..9500#500)", "description": "

Blackbody temperature in K

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["t", "lambda_pk", "surf_flux"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If a blackbody has a temperature of {t} K, at what wavelength (in nm) does its spectrum have its peak intensity? [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "lambda_pk*0.9", "maxValue": "lambda_pk*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If a star radiates as a blackbody at this temperature of {t} K, what is the stellar surface flux radiated in W.m-2? [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "surf_flux*0.9", "maxValue": "surf_flux*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Bohr model v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

The Bohr model of an atom is a simplified view in which the quantised orbital angular momentum of an electron causes electrons of different energies to orbit at different radii.

", "advice": "

See Lecture 2, slides 13 to 25

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "

part a: initial quantum state

", "templateType": "anything", "can_override": false}, "n_init": {"name": "n_init", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "

part b: initial quantum state

", "templateType": "anything", "can_override": false}, "energy": {"name": "energy", "group": "Ungrouped variables", "definition": "13.6*(n2^-2-n1^-2)", "description": "

part a: photon energy in eV

", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "1", "description": "

part a: final quantum state

", "templateType": "anything", "can_override": false}, "series": {"name": "series", "group": "Ungrouped variables", "definition": "series_set[n_init-1]", "description": "

series name of initial state

", "templateType": "anything", "can_override": false}, "n_final": {"name": "n_final", "group": "Ungrouped variables", "definition": "n_init+jump", "description": "

part b: final quantum state

", "templateType": "anything", "can_override": false}, "line_set": {"name": "line_set", "group": "Ungrouped variables", "definition": "['alpha','beta','gamma','delta','epsilon']", "description": "

set of line names

", "templateType": "anything", "can_override": false}, "jump": {"name": "jump", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "

part b: change in quantum number

", "templateType": "anything", "can_override": false}, "series_set": {"name": "series_set", "group": "Ungrouped variables", "definition": "[\"Lyman\",\"Balmer\",\"Paschen\"]", "description": "

part b

", "templateType": "anything", "can_override": false}, "line": {"name": "line", "group": "Ungrouped variables", "definition": "line_set[jump-1]", "description": "

Line name associated with change in state

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n1", "n2", "energy", "series_set", "n_init", "series", "line_set", "jump", "line", "n_final"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If an electron in a hydrogen atom makes a transition from principle quantum number {n1} to number {n2}, what is the energy of the photon emitted in eV? [[0]] 

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "energy*0.9", "maxValue": "energy*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What are the principle quantum numbers of the initial and final states in a {series} {line} photon absorption transition? [[0]] [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n_init", "maxValue": "n_init", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n_final", "maxValue": "n_final", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Magnitude v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

A photometer is a telescope-mounted instrument that measures the photon count rate from a star. It counts the following rates for two stars.

", "advice": "

See Lecture 1, slides 11 & 12

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(3..30#1)", "description": "", "templateType": "anything", "can_override": false}, "abs_mag_a": {"name": "abs_mag_a", "group": "Ungrouped variables", "definition": "-5*log(d)+5+mag_b", "description": "", "templateType": "anything", "can_override": false}, "mag_b": {"name": "mag_b", "group": "Ungrouped variables", "definition": "12.5", "description": "", "templateType": "anything", "can_override": false}, "mag_a": {"name": "mag_a", "group": "Ungrouped variables", "definition": "12.5-2.5*log(a/b)", "description": "

The magnitude of star A

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1000..7000#500)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(200..900#50)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "mag_a", "d", "abs_mag_a", "mag_b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Star A causes a rate of {a} counts per second, star B a rate of {b} through the same filter. If star B is a star of apparent magnitude 12.5, what is the apparent magnitude of star A in that filter? [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "mag_a*0.9", "maxValue": "mag_a*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If star B is at a distance of {d} parsecs, what is its absolute magnitude? [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "abs_mag_a*0.9", "maxValue": "abs_mag_a*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Doppler shift v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

The line-of-sight velocity of a light source affects the observed wavelengths of the photons; this is the Doppler effect.

", "advice": "

See Lecture 2, slide 13

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"energy": {"name": "energy", "group": "Ungrouped variables", "definition": "13.6*(n2^-2-n1^-2)", "description": "

photon energy in eV

", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "

initial quantum state

", "templateType": "anything", "can_override": false}, "lambda": {"name": "lambda", "group": "Ungrouped variables", "definition": "(6.626*10^-34*2.998*10^8*10^9)/(energy_3dp*1.602*10^-19)", "description": "

emitted photon wavelength, nm

", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "1", "description": "

final quantum state

", "templateType": "anything", "can_override": false}, "lambda_obs": {"name": "lambda_obs", "group": "Ungrouped variables", "definition": "(1+(1000*v)/(2.998*10^8))*lambda", "description": "

Observed wavelength of photon, nm

", "templateType": "anything", "can_override": false}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "random(1.1..3.0#0.1)*10^3", "description": "

star's recessional velocity, km/s

", "templateType": "anything", "can_override": false}, "energy_3dp": {"name": "energy_3dp", "group": "Ungrouped variables", "definition": "precround(energy,3)", "description": "

energy to 3 decimal places

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n1", "energy", "n2", "v", "lambda_obs", "lambda", "energy_3dp"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If the atoms in the surface of a star are making a quantum state change and thus are absorbing photons of energy {energy_3dp} eV, and the star is moving away from us at a speed of {v} km.s-1, what would be the observed wavelength (in nm) of the spectral line due to these transitions?  [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "lambda_obs*1.003", "maxValue": "Lambda_obs*1.01", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ionisation fraction v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

The Saha equation tells us the ratio of ions in one ionisation state to those in a different ionisation state.

", "advice": "

See Lecture 4, slides 10-13

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"temp": {"name": "temp", "group": "Ungrouped variables", "definition": "random(8.0..12.0#0.5)*1000", "description": "

stellar temperature, in K

", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(1.0..10.0#0.1)", "description": "

Electron pressure in N/m^2

", "templateType": "anything", "can_override": false}, "ratio": {"name": "ratio", "group": "Ungrouped variables", "definition": "(2*1.381*10^-23*temp/(p*2))*((2*3.14159*9.109*10^-31*1.381*10^-23*temp/(6.626*10^-34)^2)^1.5)*exp((-13.6*1.602*10^-19)/(1.381*10^-23*temp))", "description": "

ratio of H ionised

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["temp", "p", "ratio"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the ratio of hydrogen that is ionised to that which is neutral if the electron pressure is {p} N.m-2 and it is at a temperature of {temp} K? [[0]] 

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ratio*0.9", "maxValue": "ratio*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Maxwell-Boltzmann distribution v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

A gas in thermal equilibrium will have a Maxwell-Boltzmann distribution of velocities.

", "advice": "

See Lecture 3, slides 18 to 21.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"vel": {"name": "vel", "group": "Ungrouped variables", "definition": "random(1.1..9.9#0.1)", "description": "

RMS particle velocity in km/s

", "templateType": "anything", "can_override": false}, "element_set": {"name": "element_set", "group": "Ungrouped variables", "definition": "['He-4','Li-7','Be-9','B-11','C-12','N-14','O-16']", "description": "

element list

", "templateType": "anything", "can_override": false}, "v_mean": {"name": "v_mean", "group": "Ungrouped variables", "definition": "(v1+v2)/2", "description": "

part b: mean velocity

", "templateType": "anything", "can_override": false}, "element": {"name": "element", "group": "Ungrouped variables", "definition": "element_set[element_no-2]", "description": "

Element 

", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Ungrouped variables", "definition": "(((1.673*10^-27+9.109*10^-31)/(2*3.14159*1.381*10^-23*t_cloud))^1.5)", "description": "", "templateType": "anything", "can_override": false}, "mass": {"name": "mass", "group": "Ungrouped variables", "definition": "element_no*(1.673+9.109/10000)+neutron_no*1.675", "description": "

mass of nucleus in 10^-27 kg

", "templateType": "anything", "can_override": false}, "f3": {"name": "f3", "group": "Ungrouped variables", "definition": "exp(-(1.673*10^-27+9.109*10^-31)*(v_mean*1000)^2/(2*1.381*10^-23*t_cloud))", "description": "", "templateType": "anything", "can_override": false}, "v1": {"name": "v1", "group": "Ungrouped variables", "definition": "random(0.3..3.0#0.1)", "description": "

part b: lower velocity limit, km/s

", "templateType": "anything", "can_override": false}, "fraction": {"name": "fraction", "group": "Ungrouped variables", "definition": "(((1.673*10^-27+9.109*10^-31)/(2*3.14159*1.381*10^-23*t_cloud))^1.5)*(4*3.14159*(v_mean)^2*(v2-v1)*10^9)*exp(-(1.673*10^-27+9.109*10^-31)*(v_mean*1000)^2/(2*1.381*10^-23*t_cloud))", "description": "

fraction of atoms between v1 & v2

", "templateType": "anything", "can_override": false}, "t_cloud": {"name": "t_cloud", "group": "Ungrouped variables", "definition": "random(2..8#0.1)*1000", "description": "

part b: temperature of the cloud of H, in K

", "templateType": "anything", "can_override": false}, "v2": {"name": "v2", "group": "Ungrouped variables", "definition": "random(0.2..0.9#0.1)+v1", "description": "

part b: upper velocity limit in km/s

", "templateType": "anything", "can_override": false}, "neutron_no_set": {"name": "neutron_no_set", "group": "Ungrouped variables", "definition": "[2,4,5,6,6,7,8]", "description": "

Numbers of neutrons for each element_no

", "templateType": "anything", "can_override": false}, "element_no": {"name": "element_no", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "f2": {"name": "f2", "group": "Ungrouped variables", "definition": "(4*3.14159*(v_mean)^2*(v2-v1)*10^9)", "description": "", "templateType": "anything", "can_override": false}, "neutron_no": {"name": "neutron_no", "group": "Ungrouped variables", "definition": "neutron_no_set[element_no-2]", "description": "

Number of neutrons

", "templateType": "anything", "can_override": false}, "temp": {"name": "temp", "group": "Ungrouped variables", "definition": "(mass*10^-27)*((vel*1000)^2)/(3*1.381*10^-23)", "description": "

gas temperature in K

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["vel", "neutron_no_set", "element_no", "neutron_no", "mass", "temp", "element_set", "element", "v1", "v2", "v_mean", "t_cloud", "fraction", "f1", "f2", "f3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If the atoms in a pure {element} neutral gas have a root-mean-squared velocity of {vel} km.s-1, taking account of the number of protons, neutrons and electrons (and ignoring the effect of nuclear binding energy); what is the temperature of the gas in kelvin? [[0]] 

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "temp*0.9", "maxValue": "temp*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A cloud of neutral H has a temperature of {t_cloud} K, what fraction of the atoms in the cloud have velocities between {v1} and {v2} km.s-1? [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "fraction*0.9", "maxValue": "fraction*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Boltzmann equation v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

The Boltzmann equation gives the ratio of the number atoms in one state of excitation to the number in another. 

", "advice": "

See Lecture 3, slides 22-26

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"temp": {"name": "temp", "group": "Ungrouped variables", "definition": "-(-3.4+13.6)/(8.62*10^-5*ln((n/(m*10^7))*2/8))", "description": "

part b: temperature of the cloud of H, in K

", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..30)", "description": "

number of atoms in 1st excited state

", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "

number of atoms in ground state x 10^-7

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["temp", "n", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If a cloud of neutral H atoms are mostly in the ground state, what temperature is the cloud is there are {n} atoms in the first excited state for every {m}x107 in the ground state? [[0]] 

\n

Hint: work in units of eV, where k = 8.62x10-5 eV.K-1

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "temp*0.9", "maxValue": "temp*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "4", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Line broadening v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Spectral lines have a natural width due to the uncertainty principle, but other broadening mechanisms often dominate.

", "advice": "

See Lecture 6, slides 10 to 16

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"FWHM_therm": {"name": "FWHM_therm", "group": "Ungrouped variables", "definition": "(10^9)*((2*lambda*10^-9)/(2.998*10^8))*(((2*1.381*10^-23*temp*ln(2))/(1.673*10^-27+9.109*10^-31))^0.5)", "description": "

Doppler broadening FWHM in nm

", "templateType": "anything", "can_override": false}, "vel": {"name": "vel", "group": "Ungrouped variables", "definition": "random(1..9)*10", "description": "

vel, km/s

", "templateType": "anything", "can_override": false}, "line_set": {"name": "line_set", "group": "Ungrouped variables", "definition": "[121.6,102.6,97.3,95.0,656.3,486.1,434.0,410.2,1875,1282,1094,1005]", "description": "

Hydrogen lines (Lyman - Pashen, alpha - delta)

", "templateType": "anything", "can_override": false}, "temp": {"name": "temp", "group": "Ungrouped variables", "definition": "random(8.0..12.0#0.5)*1000", "description": "

stellar temperature, in K

", "templateType": "anything", "can_override": false}, "FWHM_turb": {"name": "FWHM_turb", "group": "Ungrouped variables", "definition": "(10^9)*((2*lambda*10^-9)/(2.998*10^8))*((ln(2)*((vel*1000)^2+(2*1.381*10^-23*temp)/(1.673*10^-27+9.109*10^-31)))^0.5)", "description": "", "templateType": "anything", "can_override": false}, "l_index": {"name": "l_index", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "

line index

", "templateType": "anything", "can_override": false}, "lambda": {"name": "lambda", "group": "Ungrouped variables", "definition": "line_set[l_index-1]", "description": "

line wavelength in nm

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["temp", "l_index", "line_set", "lambda", "FWHM_therm", "vel", "FWHM_turb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the full width at half maximum in nm of the spectral line at {lambda} nm from a static pure neutral H gas at a temperature of {temp} K? [[0]] 

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "FWHM_therm*0.9", "maxValue": "FWHM_therm*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If the gas is turbulent with a most probable velocity of {vel} km.s-1, what is the FWHM in nm of this same spectral line? [[0]] 

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "FWHM_turb*0.9", "maxValue": "FWHM_turb*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Main Sequence v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

The main sequence is a region of the Hertzsprung-Russell diagram occupied by stars that are burning hydrogen in their core.

", "advice": "

See Lecture 5, slide 23

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"L": {"name": "L", "group": "Ungrouped variables", "definition": "lumin_set[index-1]", "description": "

Luminosity (solar units)

", "templateType": "anything", "can_override": false}, "index": {"name": "index", "group": "Ungrouped variables", "definition": "random(1..11)", "description": "

stellar mass index number

", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "mass_set[index-1]", "description": "

stellar mass in solar units

", "templateType": "anything", "can_override": false}, "mass_set": {"name": "mass_set", "group": "Ungrouped variables", "definition": "[1.0,1.25,1.5,2,3,5,9,15,25,40,60]", "description": "

list of masses (solar units)

", "templateType": "anything", "can_override": false}, "lumin_set": {"name": "lumin_set", "group": "Ungrouped variables", "definition": "[2,4,10,22,130,1000,10000,40000,1.6*10^5,4*10^5,8*10^5]", "description": "

set of luminosities

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["index", "mass_set", "lumin_set", "m", "L"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If a star has a mass {m} solar masses when it joins the main sequence, what is it's luminosity in solar units when it leaves the main sequence?  [[0]] 

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0.7*L", "maxValue": "1.3*L", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Star properties v2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julian Osborne", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1416/"}, {"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

It is possible to learn much about a star from its surface properties.

", "advice": "

See Lecture 5, slides 13 & 18

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"radius": {"name": "radius", "group": "Ungrouped variables", "definition": "((1/temp^2)*((10^L*3.90*10^26)/(4*3.14159*5.671*10^-8))^0.5)/(6.96*10^8)", "description": "

radius of star in units of the radius of Jupiter

", "templateType": "anything", "can_override": false}, "m_round": {"name": "m_round", "group": "Ungrouped variables", "definition": "siground(m,3)", "description": "", "templateType": "anything", "can_override": false}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "((10^L)/1.4)^(1/3.5)", "description": "

stellar mass in solar units

", "templateType": "anything", "can_override": false}, "L": {"name": "L", "group": "Ungrouped variables", "definition": "random(0.0..3.0#0.1)", "description": "

Log_10 stellar luminosity in solar units

", "templateType": "anything", "can_override": false}, "density": {"name": "density", "group": "Ungrouped variables", "definition": "(m_round*1.989*10^30/((4/3)*3.14159*(radius*6.96*10^8)^3))/1.225", "description": "

star mean density in units of density of water

", "templateType": "anything", "can_override": false}, "temp": {"name": "temp", "group": "Ungrouped variables", "definition": "random(3.5..19.5#0.5)*1000", "description": "

stellar temperature, in K

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["temp", "L", "radius", "M", "m_round", "density"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A star has a surface temperature of {temp} K and a log_10 luminosity of {L} in solar luminosity units. Assuming it emits as a blackbody, what is its radius in units of the radius of the Sun (which is $6.96 \\times 10 ^8 $m)? [[0]] 

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "radius*0.9", "maxValue": "radius*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The standard density of air (at sea level) is 1.225 kg.m-3. If the star in part a of this question has a mass of {m_round} solar masses, what is its mean density in units of the standard density of air? [[0]] 

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "density*0.9", "maxValue": "density*1.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "allowAttemptDownload": false, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": false, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Martin Barstow", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5191/"}], "extensions": [], "custom_part_types": [], "resources": []}