// Numbas version: finer_feedback_settings {"name": "Gareth's copy of Differentiation using the product rule", "feedback": {"showtotalmark": true, "advicethreshold": 0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "duration": 0, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "metadata": {"description": "
Use the product rule to differentiate various functions.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Chain rule - product of two functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "tags": ["algebraic manipulation", "Calculus", "calculus", "chain rule", "Chain rule", "checked2015", "derivative of the product of two functions", "differentiation", "Differentiation", "product rule"], "metadata": {"description": "The derivative of $\\displaystyle x ^ {m}(ax^2+b)^{n}$ is of the form $\\displaystyle x^{m-1}(ax^2+b)^{n-1}g(x)$. Find $g(x)$.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "$\\simplify[std]{f(x) = x ^ {m} * ({a} * x^2+{b})^{n}}$
", "advice": "The product rule says that if $u$ and $v$ are functions of $x$ then
\n\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
\nFor this example:
\n\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]
\n\\[\\simplify[std]{v = ({a} * x^2+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*n*a}*x * ({a} * x^2+{b})^{n-1}}\\]
\nFor this last differentiation we used the chain rule.
\nHence on substituting into the product rule above we get:
\n\\begin{align}
\\frac{\\mathrm{d}f}{\\mathrm{d}x} &= \\simplify[std]{{m}x ^ {m-1} * ({a} * x^2+{b})^{n}+x^{m} *{2*n*a}*x* ({a} * x^2+{b})^{n-1}}\\\\
&= \\simplify[std]{{m}x ^ {m-1} * ({a} * x^2+{b})^{n}+{2*n*a}*x^{m+1}* ({a} * x^2+{b})^{n-1}}\\\\
&= \\simplify[std]{x ^ {m-1} * ({a} * x^2+{b})^{n-1}*({m}*({a}*x^2+{b})+{2*n*a}x^{2})} \\\\
&= \\simplify[std]{x ^ {m-1} * ({a} * x^2+{b})^{n-1}*({m*a+2*a*n}*x^2+{m*b})}
\\end{align}
Hence $\\simplify[std]{g(x)={m*a+2*a*n}*x^2+{m*b}}$
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Differentiate $f(x)$.
\nThe answer can be written in the form
\n\\[\\frac{\\mathrm{d}f}{\\mathrm{d}x}=\\simplify[std]{x^{m-1}({a}x^2+{b})^{n-1}*g(x)}\\] for a polynomial $g(x)$.
\nYou have to find $g(x)$.
\n$g(x)=$ [[0]]
\nClick on Show steps for more information.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "You should use the the product rule and the chain rule for this example.
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "6", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m*a+2*a*n}*x^2+{m*b}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Differentation: Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "name": "b"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "n"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "({((m * b) + (n * a))} + ({(n * b)} * x))", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "dPoly", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t$\\simplify[dPoly]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$
\n\t\t\tYou are given that \\[\\simplify[dPoly]{Diff(f,x,1) = ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) * g(x)}\\]
\n\t\t\tfor a polynomial $g(x)$. You have to find $g(x)$.
\n\t\t\t$g(x)=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["algebraic manipulation", "checked2015", "derivative", "derivative ", "deriving a function", "differentiate", "differentiating a function", "differentiating a product of functions", "differentiation", "exponential function", "functions", "mas1601", "MAS1601", "product rule", "Steps", "steps"], "rulesets": {"std": ["all", "!collectNumbers"], "dpoly": ["std", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t20/06/2012:
\n\t\tAdded tags.
\n\t\t4/7/2012:
Added tags.
\n\t\t31/07/2012:
\n\t\tChecked calculation.
\n\t\tAllowed no penalty on looking at Steps.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate the function $f(x)=(a + b x)^m e ^ {n x}$ using the product rule. Find $g(x)$ such that $f\\;'(x)= (a + b x)^{m-1} e ^ {n x}g(x)$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[dPoly]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[dPoly]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify{v = e ^ ({n} * x)} \\Rightarrow \\simplify{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[dPoly]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) = ({a} + {b} * x) ^ {m -1} * ({m * b + n * a} + {n * b} * x) * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tThe last step was to take out the common term $\\simplify[dPoly]{({a} + {b} * x) ^ {m -1} * e ^ ({n} * x)}$.
\n\t \n\t \n\t \n\tHence \\[\\simplify[dPoly]{g(x) = {m * b + n * a} + {n * b} * x}\\].
\n\t \n\t \n\t \n\t"}, {"name": "Differentiate product of binomial and exponential", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["algebraic manipulation", "Calculus", "checked2015", "derivative of a product", "differentiating a product of functions", "differentiating the exponential function", "differentiation", "exponential function", "MAS1601", "product rule", "Steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tAdded tags.
\n\t\tImproved display of prompt.
\n\t\tChecked calculation.
\n\t\tAllowed no penalty on looking at Steps.
\n\t\tIssue with Show steps to be resolved. Has been resolved.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate the function $(a + b x)^m e ^ {n x}$ using the product rule.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) }\\]
\n\t \n\t \n\t"}, {"name": "Differentiate product of binomial, trig, and exponential", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{b}x * cos({b} * x+{a}) + ({n}x+{m}) * sin({b} * x+{a})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n$\\simplify[std]{f(x) = x^{m}sin({b}x + {a}) * e ^ ({n} * x)}$
\nThe answer is of the form:
\n$\\displaystyle \\frac{df}{dx}= \\simplify[std]{x^{m-1}e^({n}x)g(x)}$ for a function $g(x)$. You have to find $g(x)$
\n$g(x)=\\;$[[0]]
\nif you input a function of the form $xf(x)$ where $f(x)$ is a function, then you must input it as $x*f(x)$ with * for multiplication e.g. input $x*\\sin(ax+b)$ and not $xsin(ax+b)$.
\nClick on Show steps for more information, you will not lose any marks by doing so.
\n ", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["checked2015", "MAS1601"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t31/07/2012:
\n \t\tChecked calculation.
\n \t\tAdded tags.
\n \t\tAllowed no penalty on looking at Show steps.
\n \t\tCorrected occurences of the form xsin and xcos to x*sin, x*cos.
\n \t\tIncluded message warning about the input of functions of the form xsin etc.
\n \t\tShow steps needs to be resolved. Now resolved.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $f(x)=x^{m}\\sin(ax+b) e^{nx}$.
\nThe answer is of the form:
$\\displaystyle \\frac{df}{dx}= x^{m-1}e^{nx}g(x)$ for a function $g(x)$.
Find $g(x)$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\nThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\\[\\simplify[std]{u = x^{m}} \\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x^{m-1}}\\]
\\[\\simplify[std]{v = sin({b} * x+{a})e^({n}x)}\\Rightarrow \\simplify[std]{Diff(v,x,1) = {b} * cos({b} * x+{a})e^({n}x)+{n}sin({b}x+{a})e^({n}x)}\\]
\nHence on substituting into the product rule above we get:
\n\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m}x^{m-1}sin({b} * x+{a})e^({n}x)+x^{m}({b} * cos({b} * x+{a}) * e ^ ({n} * x) + {n} * sin({b} * x+{a}) * e ^ ({n} * x))}\\\\ &=&\\simplify[std]{x^{m-1}e^({n}x)({b}x*cos({b}x+{a})+{n}x*sin({b}x+{a})+{m}sin({b}x+{a}))}\\\\ &=&\\simplify[std]{x^{m-1}e^({n}x)({b}x*cos({b}x+{a})+({n}x+{m})*sin({b}x+{a}))} \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{b}x*cos({b}x+{a})+({n}x+{m})*sin({b}x+{a})}$
$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * sin({n} * x)}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["Calculus", "checked2015", "differentiating a product", "differentiating trigonometric functions", "differentiation", "MAS1601", "product rule", "Steps", "trigonometric functions"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tAdded tags.
\n\t\tAdded description.
\n\t\tSteps problem to be addressed. Now resolved.
\n\t\tChecked calculation.OK.
\n\t\tImproved prompt display.
\n\t\tClicking on Show steps not lose any marks.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $ (a+bx) ^ {m} \\sin(nx)$
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = sin({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * cos({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{Diff(f,x,1) = {m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)}\\]
\n\t \n\t \n\t"}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "name": "n"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n$\\displaystyle \\simplify[std]{f(x) = x ^ {m} * ({a} * x+{b})^{n}}$
\n$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\nClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n ", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["algebraic manipulation", "calculus", "Calculus", "checked2015", "derivatives", "derivatives ", "differentiate a product", "differentiate polynomials", "differentiation", "elementary differentiation", "mas1601", "MAS1601", "polynomials", "product rule", "steps", "Steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t31/07/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tSteps problem to be addressed via an issue. Now resolved.
\n \t\tChecked calculation.OK.
\n \t\tImproved prompt display.
\n \t\tClicking on Show steps does not lose any marks.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $f(x) = x^m(a x+b)^n$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \nThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n \n \n \n\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]
\n \n \n \n\\[\\simplify[std]{v = ({a} * x+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n*a} * ({a} * x+{b})^{n-1}}\\]
\n \n \n \nHence on substituting into the product rule above we get:
\n \n \n \n\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}}\\]
\n \n \n "}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t$\\simplify[std]{f(x) = x ^ {m} * cos({a} * x+{b})}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClicking on Show steps gives you more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["calculus", "Calculus", "checked2015", "derivative of a product", "differentiating a product", "differentiating trigonometric functions", "differentiation", "MAS1601", "mas1601", "product rule", "Steps", "steps", "trigonometric functions"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tAdded tags.
\n\t\tAdded description.
\n\t\tSteps problem to be addressed. Now resolved.
\n\t\tChecked calculation.OK.
\n\t\tImproved prompt display.
\n\t\tClicking on Show steps does not lose any marks.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $x^m\\cos(ax+b)$
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = cos({a} * x+{b})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = -{a} * sin({a} * x+{b})}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})}\\]
\n\t \n\t \n\t"}, {"name": "Differentiation: Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(2..5)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "name": "b"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "m"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "b", "s2", "s1", "m", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t$\\simplify[std]{f(x) = sin({b}x + {a}) * e ^ ({n} * x)}$
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClick on Show steps for more information, you will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
Differentiate the following function $f(x)$ using the product rule.
", "tags": ["calculus", "Calculus", "checked2015", "derivative of a product", "differentiating a product", "differentiating exponential functions", "differentiating trigonometric functions", "differentiation", "mas1601", "MAS1601", "product rule", "Steps", "steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t31/07/2012:
\n\t\tChecked calculation.
\n\t\tAdded tags.
\n\t\tAllowed no penalty on looking at Show steps.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $ \\sin(ax+b) e ^ {nx}$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = sin({a} + {b} * x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {b} * cos({a} + {b} * x)}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]
\n\t \n\t \n\t \n\tHence on substituting into the product rule above we get:
\n\t \n\t \n\t \n\t\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)}\\\\\n\t \n\t &=&\\simplify[std]{({b}cos({a}+{b}x)+{n}sin({a}+{b}x))e^({n}x)}\n\t \n\t \\end{eqnarray*}\\]
\n\t \n\t \n\t"}, {"name": "DIfferentiation: product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "tags": ["algebraic manipulation", "Calculus", "calculus", "checked2015", "derivative", "deriving a function", "differentiate", "differentiating a function", "differentiating a product of functions", "differentiation", "Differentiation", "exponential function", "functions", "product rule", "Steps", "steps"], "metadata": {"description": "Differentiate the function $f(x)=(a + b x)^m e ^ {n x}$ using the product rule. Find $g(x)$ such that $f^{\\prime}(x)= (a + b x)^{m-1} e ^ {n x}g(x)$.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Differentiate the following function $f(x)$ using the product rule.
", "advice": "\n \n \nThe product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]
For this example:
\n \n \n \n\\[\\simplify[dPoly]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[dPoly]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]
\n \n \n \n\\[\\simplify{v = e ^ ({n} * x)} \\Rightarrow \\simplify{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]
\n \n \n \nHence on substituting into the product rule above we get:
\n \n \n \n\\[\\simplify[dPoly]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) = ({a} + {b} * x) ^ {m -1} * ({m * b + n * a} + {n * b} * x) * e ^ ({n} * x)}\\]
\n \n \n \nThe last step was to take out the common term $\\simplify[dPoly]{({a} + {b} * x) ^ {m -1} * e ^ ({n} * x)}$.
\n \n \n \nHence \\[\\simplify[dPoly]{g(x) = {m * b + n * a} + {n * b} * x}\\].
\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers"], "dpoly": ["std", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "s1", "b", "m", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n$\\simplify[dPoly]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$
\nYou are given that \\[\\simplify[dPoly]{Diff(f,x,1) = ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) * g(x)}\\]
\nfor a polynomial $g(x)$. You have to find $g(x)$.
\n$g(x)=\\;$[[0]]
\nClick on Show steps to get more information, you will not lose any marks by doing so.
\n ", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]