// Numbas version: exam_results_page_options {"name": "Skills Audit for Maths and Stats - Computer Systems Engineering, Automatic Control and Systems Engineering, Mechatronic and Robotics Engineering, Biomedical Engineering (ACS131)", "metadata": {"description": "

Skills Audit for Maths and Stats for MAS156 Aerospace Engineering students. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], "questions": [{"name": "NA5 - Convert Units (m/s and km/h)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Unit conversion between two compound units.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

A Cheetah runs at a speed of {speedkm} kilometres per hour (km/h). What is the Cheetah's speed in metres per second (m/s)?

\n

Give your ansswer to 2 decimal places where appropriate.

", "advice": "

There are a number of ways to work out the conversion. Here are a couple of suggestions.

\n

METHOD 1

\n

Since there are $1000$m in $1$km we first multiply by $1000$ to get the speed in metres per hour:

\n

\\begin{equation} 1000*\\var{speedkm} = \\var{step1}\\end{equation}

\n

Then we divide by $3600$ since that is the number of seconds in an hour to get the speed in metres per second:

\n

\\begin{equation} \\frac{\\var{step1}}{3600} = \\var{speedms} \\end{equation}

\n

Finally we round off to 2 decimal places as required, $\\var{roundanswer}$m/s.

\n

METHOD 2

\n

We can actually do all of the above in one step of working by using a single conversion factor. Since there are $1000$m in a km and $3600$ seconds in an hour, we can calaculate the conversion factor:

\n

\\begin{equation} \\frac{3600}{1000} = 3.6 \\end{equation}

\n

and then simply divide by that conversion factor:

\n

\\begin{equation} \\frac{\\var{speedkm}}{3.6} = \\var{speedms} \\end{equation}

\n

finally rounding off as before, $\\var{roundanswer}$m/s.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"speedkm": {"name": "speedkm", "group": "Ungrouped variables", "definition": "random(70 .. 120#10)", "description": "", "templateType": "randrange", "can_override": false}, "speedms": {"name": "speedms", "group": "Ungrouped variables", "definition": "1000*speedkm/3600", "description": "", "templateType": "anything", "can_override": false}, "step1": {"name": "step1", "group": "Ungrouped variables", "definition": "1000*speedkm", "description": "", "templateType": "anything", "can_override": false}, "roundanswer": {"name": "roundanswer", "group": "Ungrouped variables", "definition": "dpformat(speedms,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["speedkm", "speedms", "step1", "roundanswer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]m/s

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "speedms", "maxValue": "speedms", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "speedms", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA7 - Convert Units - volume - ml to l", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Metric Unit conversion - division by 1000. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express {liquid} millilitres ($ml$) in litres ($l$). Give your answer to 3 decimal places. 

", "advice": "

There are $1000ml$ in $1l$. To work out the conversion: $\\frac{\\var{liquid}}{1000} = \\var{answer}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"liquid": {"name": "liquid", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "liquid/1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["liquid", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$l$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA9 - Convert Units - metric prefixes - milligrams to micrograms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Using prefixes - milli and micro.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express {x} milligrams ($mg$) in micrograms ($\\mu g$). 

", "advice": "

There are $1000\\mu g$ in $1mg$. To work out the conversion: $\\var{x}*1000 = \\var{answer}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(0.1 .. 2#0.001)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x*1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$\\mu g$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA10 - Convert Units - metric prefixes - micrograms to milligrams", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

convert from micrograms to milligrams.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express {x} micrograms ($\\mu g$) in milligrams ($mg$). Give your answer to 3 decimal places. 

", "advice": "

There are $1000\\mu g$ in $1mg$. To work out the conversion: $\\frac{\\var{x}}{1000} = \\var{answer}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x/1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$mg$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA11 - Convert Units - Volume - ml to cubic cm", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

\"Convert\" from millilitres to cubic centimeters.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express {x} millilitres ($ml$) in cubic centimetres ($cm^3$).

", "advice": "

$1 ml$ is the same measurement of volume as $1 cm^3$ so there is nothing to do to convert except change the units.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$cm^3$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NC3 BIDMAS with a division 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Applying the order of operators.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

To calculate the following expression you press a sequence of buttons on your calculator.

\n

\\begin{align}\\frac{\\var{num}}{\\var{a}\\times\\var{b}}\\end{align}

\n

Which of the following would give the WRONG answer?

\n

", "advice": "

BIDMAS stands for:

\n

Brackets

\n

Indices

\n

Division

\n

Multiplication

\n

Addition

\n

Subtraction

\n

This is the standardized order of operations that we carry out and is part of how the calculator is designed to work. The most effective way to use most modern calculators is to use either the fraction button (on scientific calculators) or as is hinted at in this question, use brackets.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "a*b*3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a<>b", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "num"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\var{num}\\div (\\var{a}\\times\\var{b})$", "$\\var{num} \\div \\var{a} \\times \\var{b}$", "$\\var{num} \\div \\var{a} \\div \\var{b}$"], "matrix": [0, "1", 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "ND3 Rounding SF (decimal)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["rounding"], "metadata": {"description": "

Round numbers to a given number of significant figures.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

The first thing to do when we are rounding numbers is to identify the last digit we are keeping.

\n

When you're asked to round your answer to a number of significant figures, you need to decide whether to keep the last digit same (rounding down) or increase it by 1 (rounding up). If the following digit is less than 5 we round down and we round up when the next digit is 5 or more.

\n

To write it down in steps:

\n
    \n
      \n
        \n
          \n
        1. Identify the last digit we need to keep.
        2. \n
        3. Look at the following digit.
        4. \n
        5. If it's 5 or more, increase the previous digit by one.
        6. \n
        7. If it's 4 or less, keep the previous digit the same.
        8. \n
        9. Fill any spaces to the right of the digit with zeros if needed.
        10. \n
        \n
      \n
    \n
\n

It is important to keep in mind that if the digit we are increasing is 9, it becomes zero and we increase the previous digit instead. If this digit is 9 as well, we move along to the left side until we find a digit less than 9.

\n

The last digit we need to keep will depend on how many zeros there are.  We don't consider leading zeros to be significant,
i.e. 0.03 and 0.3 both have 1 significant figure (but 0.30 has two significant figures, since the second zero isn't a 'leading' zero).

\n

i)

\n

We round $\\var{e1}$ to 1 significant figure. The first non-zero digit is $\\var{edig[4]}$, followed by $\\var{edig[3]}$. This is lower than 5 so we round downmore than 5 so we round up to get $\\var{sigformat(e1,1)}$.

\n

ii)

\n

We round $\\var{e1}$ to {sf} significant figures. The first non-zero digit is $\\var{edig[4]}$. The second following digit is $\\var{edig[3]}$, the third following digit is $\\var{edig[2]}$ and the fourth following digit is $\\var{edig[1]}$. The digit following the last digit we are keeping is $\\var{edig[2]}$$\\var{edig[1]}$$\\var{edig[0]}$, so we round to get $\\var{sigformat(e1, sf)}$. These are our {sf} significant figures. 

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"edig": {"name": "edig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 5)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "n_from_digits(ddig)", "description": "

Random integer.

", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "n_from_digits(edig)*10^(random(-6,-7,-8))", "description": "

Random number with 7 decimal places.

", "templateType": "anything", "can_override": false}, "ddig": {"name": "ddig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 6)", "description": "", "templateType": "anything", "can_override": false}, "sf": {"name": "sf", "group": "Ungrouped variables", "definition": "3", "description": "

Number of significant figures to round.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["sf", "ddig", "edig", "d1", "e1"], "variable_groups": [], "functions": {"n_from_digits": {"parameters": [["digits", "list"]], "type": "number", "language": "jme", "definition": "if(\n len(digits)=0,\n 0,\n digits[0]+10*n_from_digits(digits[1..len(digits)])\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Round $\\var{e1}$

\n

iii) $\\var{e1}$ rounded to 1 significant figure is:  [[0]]

\n

iv) $\\var{e1}$ rounded to {sf} significant figures is:  [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(e1, 1)", "maxValue": "siground(e1, 1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(e1, sf)", "maxValue": "siground(e1, sf)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "ND4 - Upper/Lower bounds", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

State the Upper and lower bound of a distance that has been rounded to either the nearest 10 or 100 miles.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The distance between two towns had been rounded to the nearest {x} miles in an aticle in the newspaper. If they reported that the distance was {y} miles, what are the upper and lower bound for the reported number?

", "advice": "

If a number like {y} has been rounded to the nearest {x} then {y} would have been rounded down if it was less than {y+x/2} because {y} is the nearest multiple of {x}.

\n

Similarly {y} would have been rounded up if it was larger than or equal to {y-x/2}. This means the lower bound is {y-x/2} and the upper bound is {y+x/2}.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "10^random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(1000..10000 # x)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Upper bound:

\n

[[0]]

\n

Lower bound:

\n

[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x/2+y", "maxValue": "x/2+y", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "y-x/2", "maxValue": "y-x/2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NE4 - Multiplying Negatives 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations with negative numbers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate $(\\var{x})\\times(\\var{y})$.

", "advice": "

Multiplying two negative numbers gives a positive so we just calculate the multiplication as if both numbers were positive. This means we have

\n

\\[(\\var{x})\\times(\\var{y})=\\var{-x}\\times\\var{-y}=\\var{x*y}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x*y}", "maxValue": "{x*y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NE5 - Dividing Negatives", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations with negative numbers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate $(\\var{x})\\div(\\var{y})$.

", "advice": "

When we divide two numbers the rule is,

\n\n

In this calculation we have

\n

\\[(\\var{x})\\div(\\var{y})=\\var{x/y}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(-10..10)*y", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x/y}", "maxValue": "{x/y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF3 - Percentage change (decrease then increase)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Compound percentage change.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The value of a car is initially {StartingPrice}. If the value decreases by {dec}%, and then increases by {inc}%, what is the final value?

\n

Give your answer correct to two decimal places.

", "advice": "

There is a {dec}% decrease in price. This means that price after the decrease will be {100-dec}% of the old price.

\n

\\[\\frac{\\var{100-dec}}{100} \\times \\var{StartingPrice} = \\var{(100-dec)/100*StartingPrice}\\]

\n

Then there is a {inc}% increase in price. This means the final price will be {100+inc}% of the price after the decrease.

\n

\\[\\frac{\\var{100+inc}}{100} \\times \\var{(100-dec)/100*StartingPrice} = £\\var{dpformat((100+inc)/100*(100-dec)/100*StartingPrice,2)}\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"dec": {"name": "dec", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "inc": {"name": "inc", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "FinalPrice": {"name": "FinalPrice", "group": "Ungrouped variables", "definition": "StartingPrice*(1-dec/100)*(1+inc/100)", "description": "", "templateType": "anything", "can_override": false}, "StartingPrice": {"name": "StartingPrice", "group": "Ungrouped variables", "definition": "random(600..8000 # 10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec", "inc", "FinalPrice", "StartingPrice"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\n

£[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "FinalPrice", "maxValue": "FinalPrice", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF4 Reverse percentages", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": ["decrease", "percentages", "taxonomy"], "metadata": {"description": "

Find the original price before a discount by dividing the new price by the percentage discount.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

{name1} and {name2} are friends. {name1} noticed {name2}'s new {item} when he came over to visit her house. He immediately knew he wanted to buy the same model. When he got home, he bought the {item} online for £{newprice}.

", "advice": "

We need to find the original price paid by {name2}. This value represents 100%.

\n

By the time {name1} bought the {item}, the price had decreased by {percentage}%.

\n

{name1} therefore paid {100-percentage}% of the price {name2} paid.

\n

\n

We use the unitary method to find the original price. We know the price paid by {name1}.

\n

\\[\\var{100-percentage}\\text{%} = \\var{newprice} \\text{.}\\]

\n

Divide both sides by {100-percentage} to get

\n

\\[\\begin{align} 1\\text{%} &= \\var{newprice} \\div \\var{100-percentage} \\\\&= \\var{newprice/(100-percentage)} \\text{.} \\end{align}\\]

\n

Multiply both sides by 100 to get

\n

\\[\\begin{align} 100\\text{%} &= \\var{newprice/(100-percentage)} \\times 100 \\\\&= \\var{newprice/(100-percentage)*100} \\\\&= \\var{oldprice}\\text{.} \\end{align}\\]

\n

This is the original price paid by {name2} before the {percentage}% decrease.

\n

We can check our answer with a different method.

\n

\\[\\begin{align} \\var{100-percentage}\\text{% of } \\var{oldprice} &= \\var{(100-percentage)/100} \\times \\var{oldprice} \\\\&=  \\var{(100-percentage)/100*oldprice} \\\\&= \\var{precround((100-percentage)/100*oldprice, 2)}  \\text{.} \\end{align}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"newprice": {"name": "newprice", "group": "Ungrouped variables", "definition": "precround(oldprice*(100-percentage)/100,2)", "description": "", "templateType": "anything", "can_override": false}, "name2": {"name": "name2", "group": "Ungrouped variables", "definition": "random(\"Kaden\",\"Ola\",\"Pat\",\"Skylar\",\"Wren\",\"Zendaya\")", "description": "", "templateType": "anything", "can_override": false}, "name1": {"name": "name1", "group": "Ungrouped variables", "definition": "random(\"Adair\",\"Aya\",\"Bergen\",\"Dua\",\"Fadhili\",\"Harper\")", "description": "", "templateType": "anything", "can_override": false}, "oldprice": {"name": "oldprice", "group": "Ungrouped variables", "definition": "switch(\n item = \"TV\", random(179.99..1199.99 #10), \n item = \"laptop\", random(209.99..799.99 #10),\n item = \"smartphone\", random(109.99..799.99 #10),\n item = \"PC\", random(209.99..969.99 #10),\n item = \"gaming console\", random(89.99..349.99 #10),\n 399.99)", "description": "", "templateType": "anything", "can_override": false}, "percentage": {"name": "percentage", "group": "Ungrouped variables", "definition": "random(5..30)", "description": "

Discount percentage.

", "templateType": "anything", "can_override": false}, "item": {"name": "item", "group": "Ungrouped variables", "definition": "random(\"TV\", \"laptop\", \"smartphone\", \"PC\", \"gaming console\")", "description": "

The bought item.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "precround(precround(oldprice*(100-percentage)/100,2)*100/(100-percentage),2) = oldprice", "maxRuns": "1000"}, "ungrouped_variables": ["item", "name1", "percentage", "name2", "oldprice", "newprice"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

When {name1} told {name2} how much he had paid for the {item}, {name2} said the price had decreased by {percentage}% since she bought it.

\n

How much did {name2} pay for the {item}?

\n

£  [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "oldprice", "maxValue": "oldprice", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NG5 Multiply Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["improper fractions", "mixed numbers", "multiplication of fractions", "multiplying fractions", "squared fraction", "taxonomy"], "metadata": {"description": "

Several problems involving the multiplication of fractions, with increasingly difficult examples, including a mixed fraction and a squared fraction. The final part is a word problem. 

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following multiplication, giving the answer in its simplest form.

", "advice": "

\n

To multiply $\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$, address the numerators and denominators separately.

\n

Multiply the numerators across both fractions.

\n

$\\var{a_coprime}\\times\\var{b_coprime}=\\var{ab}$,

\n

and then multiply the denominators across both fractions.

\n

$\\var{c_coprime}\\times\\var{d_coprime}=\\var{cd}$.

\n

The values of the multiplied numerators and denominators will be the numerator and denominator of the new fraction: $\\displaystyle\\frac{\\var{ab}}{\\var{cd}}$.

\n

This answer may need simplifying down, and to do this, find the greatest common divisor in both the numerator and denominator and divide by this number.

\n

The greatest common divisor of $\\var{ab}$ and $\\var{cd}$ is $\\var{gcd}$.

\n

By using $\\var{gcd}$ to cancel down the fraction, the final answer is $\\displaystyle\\simplify{{ab}/{cd}}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"k": {"name": "k", "group": "Part b", "definition": "random(1..7 except j)", "description": "

Random number between 1 and 20

", "templateType": "anything", "can_override": false}, "bb": {"name": "bb", "group": "Part d", "definition": "28*aa", "description": "", "templateType": "anything", "can_override": false}, "cc": {"name": "cc", "group": "Part d", "definition": "bb/7", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Part b", "definition": "random(1 .. 7#1)", "description": "

Random number between 1 and 20.

", "templateType": "randrange", "can_override": false}, "cd": {"name": "cd", "group": "Part a", "definition": "c_coprime*d_coprime", "description": "

Variable c times variable d.

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Part a", "definition": "random(2..12 except c)", "description": "

Random number from 1 to 12.

", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Part a", "definition": "random(2 .. 12#1)", "description": "

Random number from 1 to 12.

", "templateType": "randrange", "can_override": false}, "l": {"name": "l", "group": "Part c", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "numif": {"name": "numif", "group": "Part b", "definition": "(f*h_coprime)+g_coprime", "description": "

Numerator of the improper fraction converted from a mixed number.

", "templateType": "anything", "can_override": false}, "gcd_gh": {"name": "gcd_gh", "group": "Part b", "definition": "gcd(g,h)", "description": "", "templateType": "anything", "can_override": false}, "fh": {"name": "fh", "group": "Part b", "definition": "f*h_coprime", "description": "

Variable f times variable h

", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "Part b", "definition": "g/gcd_gh", "description": "", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "Part b", "definition": "j/gcd_kj", "description": "", "templateType": "anything", "can_override": false}, "gcd_kj": {"name": "gcd_kj", "group": "Part b", "definition": "gcd(k,j)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Part b", "definition": "random(1 .. 4#1)", "description": "

Random number between 1 and 4 - integer part of the mixed number.

", "templateType": "randrange", "can_override": false}, "c_coprime": {"name": "c_coprime", "group": "Part a", "definition": "c/gcd_ac", "description": "", "templateType": "anything", "can_override": false}, "gcd": {"name": "gcd", "group": "Part a", "definition": "gcd(ab,cd)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part a", "definition": "random(2 .. 12#1)", "description": "

Random number from 1 to 12.

", "templateType": "randrange", "can_override": false}, "d_coprime": {"name": "d_coprime", "group": "Part a", "definition": "d/gcd_bd", "description": "", "templateType": "anything", "can_override": false}, "ddcc": {"name": "ddcc", "group": "Part d", "definition": "dd*cc", "description": "", "templateType": "anything", "can_override": false}, "gcdb": {"name": "gcdb", "group": "Part b", "definition": "gcd(num,denom)", "description": "", "templateType": "anything", "can_override": false}, "gcd_ac": {"name": "gcd_ac", "group": "Part a", "definition": "gcd(a,c)", "description": "

PART A

", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Part b", "definition": "j_coprime*(h_coprime/gcda)", "description": "

Denominator of new fraction.

", "templateType": "anything", "can_override": false}, "l_coprime": {"name": "l_coprime", "group": "Part c", "definition": "l/gcd_lm", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Part c", "definition": "random(1..12 except l)", "description": "", "templateType": "anything", "can_override": false}, "a_coprime": {"name": "a_coprime", "group": "Part a", "definition": "a/gcd_ac", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Part b", "definition": "random(7 .. 10#1)", "description": "

Random number between 1 and 20.

", "templateType": "randrange", "can_override": false}, "num": {"name": "num", "group": "Part b", "definition": "k_coprime*{numif/gcda}", "description": "

Numerator of gap 0

", "templateType": "anything", "can_override": false}, "m_coprime": {"name": "m_coprime", "group": "Part c", "definition": "m/gcd_lm", "description": "", "templateType": "anything", "can_override": false}, "aa": {"name": "aa", "group": "Part d", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "gcda": {"name": "gcda", "group": "Part b", "definition": "gcd({numif},{h_coprime})", "description": "

gcd of the numerator of the improper fraction

", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "Part b", "definition": "h/gcd_gh", "description": "", "templateType": "anything", "can_override": false}, "ee": {"name": "ee", "group": "Part d", "definition": "ddcc/4", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Part a", "definition": "random(3,5,7,11)", "description": "

Random number from 1 to 12.

", "templateType": "anything", "can_override": false}, "b_coprime": {"name": "b_coprime", "group": "Part a", "definition": "b/gcd_bd", "description": "", "templateType": "anything", "can_override": false}, "l_coprime2": {"name": "l_coprime2", "group": "Part c", "definition": "l_coprime^2/gcd_lcmc", "description": "", "templateType": "anything", "can_override": false}, "k_coprime": {"name": "k_coprime", "group": "Part b", "definition": "k/gcd_kj", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Part b", "definition": "Random(3,5,7,11,13,17)", "description": "

Random number between 1 and 20

", "templateType": "anything", "can_override": false}, "dd": {"name": "dd", "group": "Part d", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "gcd_lcmc": {"name": "gcd_lcmc", "group": "Part c", "definition": "gcd((l_coprime)^2,(m_coprime)^2)", "description": "", "templateType": "anything", "can_override": false}, "m_coprime2": {"name": "m_coprime2", "group": "Part c", "definition": "m_coprime^2/gcd_lcmc", "description": "", "templateType": "anything", "can_override": false}, "gcd_lm": {"name": "gcd_lm", "group": "Part c", "definition": "gcd(l,m)", "description": "", "templateType": "anything", "can_override": false}, "ab": {"name": "ab", "group": "Part a", "definition": "a_coprime*b_coprime", "description": "

Variable a times variable b

", "templateType": "anything", "can_override": false}, "gcd_bd": {"name": "gcd_bd", "group": "Part a", "definition": "gcd(b,d)", "description": "", "templateType": "anything", "can_override": false}, "gcd2": {"name": "gcd2", "group": "Part b", "definition": "gcd(num,denom)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["a", "b", "c", "d", "a_coprime", "b_coprime", "c_coprime", "d_coprime", "gcd_ac", "gcd_bd", "ab", "cd", "gcd"]}, {"name": "Part b", "variables": ["f", "g", "g_coprime", "h", "h_coprime", "gcd_gh", "k", "k_coprime", "j", "j_coprime", "gcd_kj", "fh", "numif", "num", "denom", "gcda", "gcdb", "gcd2"]}, {"name": "Part d", "variables": ["aa", "bb", "cc", "dd", "ddcc", "ee"]}, {"name": "Part c", "variables": ["l", "m", "gcd_lm", "l_coprime", "m_coprime", "gcd_lcmc", "l_coprime2", "m_coprime2"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$ =  [[0]] [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ab}/{gcd}", "maxValue": "{ab}/{gcd}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cd}/{gcd}", "maxValue": "{cd}/{gcd}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NG6 Divide Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["dividing fractions", "division of fractions", "Fractions", "fractions", "mixed numbers", "taxonomy"], "metadata": {"description": "

Several problems involving dividing fractions, with increasingly difficult examples, including mixed numbers and complex fractions. 

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following sums involving division of fractions. Simplify your answers where possible. 

", "advice": "

When faced with dividing fractions, it much easier to switch one of the fractions around and multiply them together instead of divide them.

\n

\\[ \\left( \\frac{\\var{f_coprime}}{\\var{g_coprime}}\\div\\frac{\\var{h_coprime}}{\\var{j_coprime}} \\right) \\equiv \\left( \\frac{\\var{f_coprime}}{\\var{g_coprime}}\\times\\frac{\\var{j_coprime}}{\\var{h_coprime}} \\right) = \\frac{\\var{fj}}{\\var{gh}} \\]

\n

Then, simplify by finding the highest common divisor in the numerator and denominator which in this case is $\\var{gcd1}$. 

\n

This gives a final answer of $\\displaystyle\\simplify{{fj}/{gh}}$.

\n

\n

\n

Use this link to find some resources which will help you revise this topic

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f4h4": {"name": "f4h4", "group": "Ungrouped variables", "definition": "f4*h4_coprime", "description": "

variable f4 times h4.

\n

Used in part c)

", "templateType": "anything", "can_override": false}, "g4_coprime": {"name": "g4_coprime", "group": "Ungrouped variables", "definition": "g4/gcd(g4,h4)", "description": "

PART C

", "templateType": "anything", "can_override": false}, "h4": {"name": "h4", "group": "Ungrouped variables", "definition": "random(5..8 except g4)", "description": "

Random number but not the same number as variable g4.

\n

Used in part c.

", "templateType": "anything", "can_override": false}, "h3_coprime": {"name": "h3_coprime", "group": "Ungrouped variables", "definition": "h3/gcd(g3,h3)", "description": "

PART C

", "templateType": "anything", "can_override": false}, "f_coprime": {"name": "f_coprime", "group": "part a", "definition": "f/gcd(f,g)", "description": "

PART A

", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "part a", "definition": "g/gcd(f,g)", "description": "

PART A

", "templateType": "anything", "can_override": false}, "j1_coprime": {"name": "j1_coprime", "group": "Ungrouped variables", "definition": "j1/gcd(h1,j1)", "description": "

PART B

", "templateType": "anything", "can_override": false}, "gcd2": {"name": "gcd2", "group": "Ungrouped variables", "definition": "gcd(f1j1,g1h1)", "description": "

greatest common divisor of variables f1j1 and g1h1.

\n

Used in part b).

", "templateType": "anything", "can_override": false}, "g1_coprime": {"name": "g1_coprime", "group": "Ungrouped variables", "definition": "g1/gcd(f1,g1)", "description": "

PART B

", "templateType": "anything", "can_override": false}, "h1_coprime": {"name": "h1_coprime", "group": "Ungrouped variables", "definition": "h1/gcd(h1,j1)", "description": "

PART B

", "templateType": "anything", "can_override": false}, "gcd3": {"name": "gcd3", "group": "Ungrouped variables", "definition": "gcd(num,denom)", "description": "

greatest common denominator for part c. 

", "templateType": "anything", "can_override": false}, "j1": {"name": "j1", "group": "Ungrouped variables", "definition": "random(h1..11 except h1)", "description": "

Random number between 2 and 20 and not the same value as variable h1.

\n

Used in part b).

", "templateType": "anything", "can_override": false}, "g1h1": {"name": "g1h1", "group": "Ungrouped variables", "definition": "g1_coprime*h1_coprime", "description": "

variable g1 times h1. 

\n

Used in part b).

", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "part a", "definition": "random(2..10)", "description": "

Random number between 2 and 10.

\n

Used in part a).

", "templateType": "anything", "can_override": false}, "f4": {"name": "f4", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "

Random number.

\n

Used in part c).

", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "

Random number between 2 and 20.

\n

Used in part b)

", "templateType": "anything", "can_override": false}, "g3": {"name": "g3", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "

Random number.

\n

Used in part c).

", "templateType": "anything", "can_override": false}, "f3h3": {"name": "f3h3", "group": "Ungrouped variables", "definition": "f3*h3_coprime", "description": "

variable f3 times h3.

", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "part a", "definition": "random(2..10)", "description": "

Random number from 2 to 10.

\n

Used in part a).

", "templateType": "anything", "can_override": false}, "gh": {"name": "gh", "group": "part a", "definition": "g_coprime*h_coprime", "description": "

variable g times variable h.

\n

Used in part a).

", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "part a", "definition": "j/gcd(h,j)", "description": "

PART A

", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Ungrouped variables", "definition": "h3_coprime*(f4h4+g4_coprime)", "description": "

Unsimplified denominator of part c.

", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "part a", "definition": "random(h..12 except h)", "description": "

Random number between 2 and 10 and not the same value as h.

\n

Used in part a).

", "templateType": "anything", "can_override": false}, "f1j1": {"name": "f1j1", "group": "Ungrouped variables", "definition": "f1_coprime*j1_coprime", "description": "

variable f1 times j1.

\n

Used in part b).

", "templateType": "anything", "can_override": false}, "h4_coprime": {"name": "h4_coprime", "group": "Ungrouped variables", "definition": "h4/gcd(g4,h4)", "description": "

PART C

", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Ungrouped variables", "definition": "random(f1..11 except f1) ", "description": "

Random number between 2 and 30 and not the same value as variable f1.

\n

Used in part b).

", "templateType": "anything", "can_override": false}, "fj": {"name": "fj", "group": "part a", "definition": "f_coprime*j_coprime", "description": "

variable f times variable j.

\n

Used in part a).

", "templateType": "anything", "can_override": false}, "f3": {"name": "f3", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "

Random number between 2 and 6.

\n

Used in part c).

", "templateType": "randrange", "can_override": false}, "f1_coprime": {"name": "f1_coprime", "group": "Ungrouped variables", "definition": "f1/gcd(f1,g1)", "description": "

PART B

", "templateType": "anything", "can_override": false}, "h3": {"name": "h3", "group": "Ungrouped variables", "definition": "random(5..8)", "description": "

Random number and not the same value as variable g3. 

\n

Used in part c).

", "templateType": "anything", "can_override": false}, "gcd1": {"name": "gcd1", "group": "part a", "definition": "gcd(fj,gh)", "description": "

greatest common divisor of variable fj and gh.

\n

Used in part a).

", "templateType": "anything", "can_override": false}, "g3_coprime": {"name": "g3_coprime", "group": "Ungrouped variables", "definition": "g3/gcd(g3,h3)", "description": "

PART C

", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "part a", "definition": "h/gcd(h,j)", "description": "

PART A

", "templateType": "anything", "can_override": false}, "g4": {"name": "g4", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "

Random number.

\n

Used in part c).

", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "

Random number between 2 and 20. 

\n

Used in part b).

", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "h4_coprime*(f3h3+g3_coprime)", "description": "

numerator of the improper fraction in part c. Unsimplified. 

", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "part a", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["f1", "g1", "f1_coprime", "g1_coprime", "h1", "j1", "h1_coprime", "j1_coprime", "f1j1", "g1h1", "gcd2", "f3", "g3", "h3", "g3_coprime", "h3_coprime", "f4", "g4", "h4", "g4_coprime", "h4_coprime", "f3h3", "f4h4", "num", "denom", "gcd3"], "variable_groups": [{"name": "part a", "variables": ["g", "f", "f_coprime", "g_coprime", "h", "j", "h_coprime", "j_coprime", "fj", "gh", "gcd1"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}\\div\\frac{\\var{h_coprime}}{\\var{j_coprime}}=$  [[0]] [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "fj/gcd1", "maxValue": "fj/gcd1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "gh/gcd1", "maxValue": "gh/gcd1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NJ3 - Dividing amounts in ratios", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Dividing amounts in ratios

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The ratio of ethanol to water is {a}:{b} for an experiment. If I have {volWater}ml of water, how much ethanol do I need?

", "advice": "

If there is a ratio of {a}:{b} for ethanol:water then that means for every {b}ml of water we need {a}ml of ethanol.

\n

In our experiment there is {volwater}ml of water so to find the amount of ethanol we divide by {b} and then multiply by {a}.

\n

\\[\\var{volwater}\\text{ml}\\times\\frac{\\var{a}}{\\var{b}}=\\var{volwater*a/b}\\text{ml}\\]

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..12 except a)", "description": "", "templateType": "anything", "can_override": false}, "volwater": {"name": "volwater", "group": "Ungrouped variables", "definition": "UsedforVol-mod(UsedforVol,b)", "description": "", "templateType": "anything", "can_override": false}, "UsedforVol": {"name": "UsedforVol", "group": "Ungrouped variables", "definition": "random(70..1000)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "volwater", "UsedforVol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]ml

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "volwater/b*a", "maxValue": "volwater/b*a", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NK3 - Standard Form (Calculations)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations involving Standard form.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

To divide two numbers in standard form we can calculate the division of each part of the standard form number separately. In general we have,

\n

\\[\\frac{x\\times10^j}{y\\times10^k}=\\frac xy\\times\\frac{10^j}{10^k}=\\frac xy\\times 10^{j-k}\\]

\n

\n

In this question we therefore have,

\n

\\[\\frac{\\var{a}\\times10^{\\var{n}}}{\\var{b}\\times10^{\\var{m}}}=\\frac{\\var{a}}{\\var{b}}\\times\\frac{10^{\\var{n}}}{10^{\\var{m}}}=\\var{aDivBRound}\\times10^\\var{n-m}.\\]

\n
\n

Since {aDivBRound} is less than 1 then our answer isn't in standard form. In this case we need to reduce the exponent by 1 so the final answer is

\n

\\[\\var{MantAnsRound}\\times10^{\\var{ExponentAns}}.\\]

\n
\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9.9 # 0.1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9.9 # 0.1)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "IsADivBLessOne": {"name": "IsADivBLessOne", "group": "Ungrouped variables", "definition": "a/b<1", "description": "", "templateType": "anything", "can_override": false}, "ExponentAns": {"name": "ExponentAns", "group": "Ungrouped variables", "definition": "if(IsADivBLessOne,n-m-1,n-m)", "description": "", "templateType": "anything", "can_override": false}, "MantAns": {"name": "MantAns", "group": "Ungrouped variables", "definition": "if(IsADivBLessOne, a/b*10, a/b)", "description": "", "templateType": "anything", "can_override": false}, "aDivBRound": {"name": "aDivBRound", "group": "Ungrouped variables", "definition": "precround(a/b,2)", "description": "", "templateType": "anything", "can_override": false}, "MantAnsRound": {"name": "MantAnsRound", "group": "Ungrouped variables", "definition": "precround(MantAns,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n", "m", "IsADivBLessOne", "ExponentAns", "MantAns", "aDivBRound", "MantAnsRound"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

For the equation

\n

\\[\\frac{\\var{a}\\times10^{\\var{n}}}{\\var{b}\\times10^{\\var{m}}}=a\\times10^n\\]

\n

find the values of $a$ and $n$ which keep the answer in standard form.

\n

Give $a$ to two decimal places.

\n

$a=$[[0]]

$n=$[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "MantAns", "maxValue": "MantAns", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ExponentAns", "maxValue": "ExponentAns", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AA4 Indices - Fractional 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["category: Indices"], "metadata": {"description": "

Using indices rules to rewrite an expression from $a^\\frac{m}{n}$ to $b$, for integers $a$, $b$, $m$ and $n$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Evaluate the following expression:

\n

\\[\\var{a^n}^{\\frac{\\var{m}}{\\var{n}}}\\]

", "advice": "

To find $\\var{a^n}^{\\frac{\\var{m}}{\\var{n}}}$, we want to make use of the following rule:

\n

\\[\\left(a^n\\right)^m = a^{n\\times m}\\]

\n

By rewriting the power $\\frac{\\var{m}}{\\var{n}}$ as a product of $\\var{m} \\times \\frac{1}{\\var{n}}$, we can apply this rule:

\n

\\[ \\begin{split} \\var{a^n}^{\\frac{\\var{m}}{\\var{n}}} &\\,= \\var{a^n}^{\\left(\\var{m} \\times \\frac{1}{\\var{n}}\\right)} \\\\ &\\,= \\left(\\var{a^n}^\\frac{1}{\\var{n}}\\right)^\\var{m} \\\\ &\\,= \\var{a}^\\var{m}\\end{split} \\]

\n

Then calculating what is left:

\n

\\[ \\begin{split} \\var{a}^\\var{m} &\\,=\\var{a^(m)} \\end{split} \\]

\n

Therefore,

\n

\\[ \\var{a^n}^{\\frac{\\var{m}}{\\var{n}}} =\\var{a^(m)}. \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..3 except m)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2,3,4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "n", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a^m}", "maxValue": "{a^m}", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AA5 - Indices - negative", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

perform a calculation involving negative indices.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Evaluate and simplify the following expression:

\n

\\[\\frac{\\var{x}^\\var{n}}{\\var{y}^\\var{m}}\\]

", "advice": "

To simplify this expression we use the rule $a^{-n}=\\frac1{a^n}$.

\n

\\[\\frac{\\var{x}^\\var{n}}{\\var{y}^\\var{m}}=\\frac{\\var{y}^\\var{-m}}{\\var{x}^\\var{-n}}=\\frac{\\var{y^-m}}{\\var{x^-n}}=\\simplify{{y^-m}/{x^-n}}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-3..-1)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-3..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "x", "y", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x^n/y^m}", "maxValue": "{x^n/y^m}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AB3 - Collecting terms (higher powers)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Simple exercise in collecting terms in different powers of \\(x\\)

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Simplify the following expression by combining \"like\" terms.

", "advice": "

First we expand the minus sign in the bracket.

\n

\\[\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4-({f}x+{e}x^3)}=\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4+{-f}x+{-e}x^3}\\]

\n

The idea is to collect together and combine any terms that are the same kind of term so:

\n

$\\var{b}x$ and $\\var{-f}x$ both have an $x$ term. We can combine them to get $\\var{b-f}x$

\n

We can combine $\\var{a}x^4$ and $\\var{d}x^4$ to get $\\var{a+d}x^4$.

\n

We combine $\\var{c}x^3$ and $\\var{-e}x^3$ to get $\\var{c-e}x^3$. So our answer is:

\n

$\\simplify{{a+d}x^4+{c+e}x^3+{b+f}}$

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(-5..10 except 0 except b)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "random(-5..10 except 0 except c)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "f", "e"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4-({f}x+{e}x^3)}$

", "answer": "({a}+{d})x^4+({c}-{e})x^3+({b}-{f})x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n`?*x^4+`+-$n`?*x^3+`+-$n`?*x", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AB8 Expand Double Brackets (Hard)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Poppy Jeffries", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21275/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Expand two brackets involving powers of $x$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Expand the brackets and simplify

", "advice": "

To expand the brackets $\\simplify{({a[1]}x^{b[1]}+{a[2]}x^{b[2]})({a[3]}x^{b[3]}+{c[1]}x^{b[4]})}$ We first multiply all the terms in the left bracket by all the terms in the right bracket. This gives us

\n

\\[\\var{a[1]}x^\\var{b[1]}\\times\\var{a[3]}x^\\var{b[3]}+\\var{a[1]}x^\\var{b[1]}\\times\\var{c[1]}x^\\var{b[4]}+\\var{a[2]}x^\\var{b[2]}\\times\\var{a[3]}x^\\var{b[3]}+\\var{a[2]}x^\\var{b[2]}\\times\\var{c[1]}x^\\var{b[4]}\\]

\n

We can then simplify to give us the final answer of

\n

$\\simplify{{a[1]*a[3]}*x^{b[1]+b[3]}+{a[1]*c[1]}*x^{b[1]+b[4]}+{a[2]*a[3]}*x^{b[2]+b[3]}+{a[2]*c[1]}*x^{b[2]+b[4]}}.$

\n


Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(-5..10 except [0]),5\n)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random([-5,-9/2,-4,7/2,-3,-5/2,-2,-3/2,-1,-1/2,1/2,1,3/2,2,5/2,3,7/2,4,9/2,5]),5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(1..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{({a[1]}x^{b[1]}+{a[2]}x^{b[2]})({a[3]}x^{b[3]}+{c[1]}x^{b[4]})}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a[1]*a[3]}*x^{b[1]+b[3]}+{a[1]*c[1]}*x^{b[1]+b[4]}+{a[2]*a[3]}*x^{b[2]+b[3]}+{a[2]*c[1]}*x^{b[2]+b[4]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC4 Simultaneous Equations (2 linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["Category: Simultaneous equations"], "metadata": {"description": "

Solving a pair of linear simultaneous equations, giving answers as integers or fractions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve the simultaneous equations for x and y, giving your answers as integers or fractions, but not decimals.

\n

\\[ \\begin{split} \\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y}  &\\,=\\var{c1} \\end{split}\\]

", "advice": "

\\[\\begin{split}\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\qquad\\qquad&(1)\\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y}  &\\,=\\var{c1} \\qquad\\qquad&(2)\\end{split}\\]

\n

{advice1}

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-8..8 except [0,1,a])", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-5..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(2..10 except [round(a1*b/a),b,0,1])", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-7..7 except 0)", "description": "", "templateType": "anything", "can_override": false}, "aorsb": {"name": "aorsb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfb": {"name": "torfb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgn": {"name": "sgn", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),-1,1)", "description": "", "templateType": "anything", "can_override": false}, "xn": {"name": "xn", "group": "Ungrouped variables", "definition": "c*abs(b1)+sgn*c1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xd": {"name": "xd", "group": "Ungrouped variables", "definition": "a*abs(b1)+sgn*a1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xsimp": {"name": "xsimp", "group": "Ungrouped variables", "definition": "xn/xd", "description": "", "templateType": "anything", "can_override": false}, "samex": {"name": "samex", "group": "Ungrouped variables", "definition": "\"

For these equations, it is easiest to get a solution for $y$ first, due to the $x$-terms having {eqoroppa} coefficients.

\\n

If we {aorsa} equation (2) {torfa} equation (1) this eliminates the $x$-terms leaving us with one equation in terms of $y$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1)})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgna*(c1)}}\\\\\\\\ \\\\simplify{{b+sgna*(b1)}y} &\\\\,= \\\\simplify{{c+sgna*(c1)}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a}x + \\\\var{b} \\\\times \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{a}x &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c} - {c*b+b*sgna*(c1)}/{b+sgna*(b1)}} \\\\\\\\ x &\\\\,= \\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "eqoroppb": {"name": "eqoroppb", "group": "Ungrouped variables", "definition": "if(abs(b)*b1=abs(b1)*b,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "eqoroppa": {"name": "eqoroppa", "group": "Ungrouped variables", "definition": "if(abs(a)*a1=abs(a1)*a,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "samey": {"name": "samey", "group": "Ungrouped variables", "definition": "\"

For these equations, it is easiest to get a solution for $x$ first, due to the $y$-terms having {eqoroppb} coefficients.

\\n

If we {aorsb} equation (2) {torfb} equation (1) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1)})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgn*(c1)}}\\\\\\\\ \\\\simplify{{a+sgn*(a1)}x} &\\\\,= \\\\simplify{{c+sgn*(c1)}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a} \\\\times\\\\simplify[fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} + \\\\var{b}y &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c} - {c*a+a*sgn*(c1)}/{a+sgn*(a1)}} \\\\\\\\ y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb": {"name": "lcmb", "group": "Ungrouped variables", "definition": "\"

To get a solution for $x$, if we multiply equation (2) by $\\\\simplify{{abs(b/b1)}}$ we will have two equations with {eqoroppb} $y$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b/b1)}x +{b1*abs(b/b1)}y}  &\\\\,=\\\\var{c1*abs(b/b1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]

\\n

If we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1*abs(b/b1))})x} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgn*(c1*abs(b/b1))}}\\\\\\\\ \\\\simplify{{a+sgn*(a1*abs(b/b1))}x} &\\\\,= \\\\simplify{{c+sgn*(c1*abs(b/b1))}} \\\\\\\\ x &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgn*(c1*abs(b/b1))}/{a+sgn*(a1*abs(b/b1))}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c)+a*sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c+a*sgn*c1*abs(b/b1))/(a+sgn*a1*abs(b/b1))}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb1": {"name": "lcmb1", "group": "Ungrouped variables", "definition": "\"

To get a solution for $x$, if we multiply equation (1) by $\\\\simplify{{abs(b1/b)}}$ we will have two equations with {eqoroppb} $y$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1/b)}x +{b*abs(b1/b)}y}  &\\\\,=\\\\var{c*abs(b1/b)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4)\\\\\\\\ \\\\end{split} \\\\]

\\n

If we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(a*abs(b1/b))}+{sgn*a1})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(b1/b))}+{sgn*c1}}\\\\\\\\ \\\\simplify{{(a*abs(b1/b))+sgn*a1}x} &\\\\,= \\\\simplify{{(c*abs(b1/b))+sgn*c1}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c*abs(b1/b))+a*sgn*c1}/{(a*abs(b1/b))+sgn*a1})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c*abs(b1/b)+a*sgn*c1)/(a*abs(b1/b)+sgn*a1)}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "full": {"name": "full", "group": "Ungrouped variables", "definition": "\"

To get a solution for $x$, if we multiply equation (1) by $\\\\var{abs(b1)}$ and equation (2) by $\\\\var{abs(b)}$, we will have two equations with {eqoroppb} $y$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1)}x+{b*abs(b1)}y} &\\\\,=\\\\var{c*abs(b1)} \\\\qquad\\\\qquad&(3)\\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b)}x +{b1*abs(b)}y}  &\\\\,=\\\\var{c1*abs(b)} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]

\\n

Now, {aorsb} equation (4) {torfb} equation (3) to eliminate the $y$ terms:

\\n

\\\\[ \\\\begin{split} (\\\\simplify[!collectNumbers]{{a*abs(b1)} +{sgn*a1*abs(b)}}) x &\\\\,= \\\\simplify[!collectNumbers]{{c*abs(b1)}+{sgn*c1*abs(b)}} \\\\\\\\  \\\\simplify{{a*abs(b1)+sgn*a1*abs(b)}} x &\\\\,= \\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}} .\\\\end{split} \\\\]

\\n

So the solution for $x$ is \\\\[ x=\\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}/{a*abs(b1)+sgn*a1*abs(b)}}.\\\\]

\\n

To obtain a solution for $y$ we can substitute this value of $x$ into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\simplify[noLeadingminus,fractionNumbers,unitFactor]{{a}  {xsimp} + {b}y} &\\\\,=\\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers,fractionNumbers]{{c}-{a*xsimp}} \\\\\\\\\\\\var{b}y &\\\\,= \\\\simplify[fractionNumbers]{{c-a*xsimp}} \\\\\\\\y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}} \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "aorsa": {"name": "aorsa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfa": {"name": "torfa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgna": {"name": "sgna", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,-1,1)", "description": "", "templateType": "anything", "can_override": false}, "lcma": {"name": "lcma", "group": "Ungrouped variables", "definition": "\"

To get a solution for $y$, if we multiply equation (2) by $\\\\simplify{{abs(a/a1)}}$ we will have two equations with {eqoroppa} $x$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(a/a1)}x +{b1*abs(a/a1)}y}  &\\\\,=\\\\var{c1*abs(a/a1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]

\\n

If we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1*abs(a/a1))})y} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgna*(c1*abs(a/a1))}}\\\\\\\\ \\\\simplify{{b+sgna*(b1*abs(a/a1))}y} &\\\\,= \\\\simplify{{c+sgna*(c1*abs(a/a1))}} \\\\\\\\ y &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgna*(c1*abs(a/a1))}/{b+sgna*(b1*abs(a/a1))}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c)+b*sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c+b*sgna*c1*abs(a/a1))/(b+sgna*b1*abs(a/a1))}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "lcma1": {"name": "lcma1", "group": "Ungrouped variables", "definition": "\"

To get a solution for $y$, if we multiply equation (1) by $\\\\simplify{{abs(a1/a)}}$ we will have two equations with {eqoroppa} $x$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(a1/a)}x +{b*abs(a1/a)}y}  &\\\\,=\\\\var{c*abs(a1/a)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]

\\n

If we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(b*abs(a1/a))}+{sgna*b1})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(a1/a))}+{sgna*c1}}\\\\\\\\ \\\\simplify{{(b*abs(a1/a))+sgna*b1}y} &\\\\,= \\\\simplify{{(c*abs(a1/a))+sgna*c1}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(a1/a))+sgna*c1}/{(b*abs(a1/a))+sgna*b1}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c*abs(a1/a)+sgna*c1}/{(b*abs(a1/a))+sgna*b1})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c*abs(a1/a))+b*sgna*c1}/{(b*abs(a1/a))+sgna*b1})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c*abs(a1/a)+b*sgna*c1)/(b*abs(a1/a)+sgna*b1)}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "advice1": {"name": "advice1", "group": "Ungrouped variables", "definition": "if(abs(b)=abs(b1), {samey},if(abs(a)=abs(a1),{samex},if(lcm(abs(b),abs(b1))=abs(b),{lcmb},if(lcm(abs(b),abs(b1))=abs(b1),{lcmb1},if(lcm(abs(a),abs(a1))=abs(a),{lcma},if(lcm(abs(a),abs(a1))=abs(a1),{lcma1},{full}))))))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(b-b1)>1 and\nabs(a-a1)>1 and\ngcd(a,c)=1 and\ngcd(a1,c1)=1", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "a1", "b1", "c", "c1", "aorsa", "torfa", "aorsb", "torfb", "sgna", "sgn", "xn", "xd", "xsimp", "eqoroppa", "eqoroppb", "advice1", "samey", "samex", "lcmb", "lcmb1", "lcma", "lcma1", "full"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$ [[0]]

\n

$y=$ [[1]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c-a*xsimp)/b}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC5 Simultaneous Equations (one non-linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Solving a pair of simultaneous equations of the form $a_1x+y=c_1$ and $a_2x^2+b_2xy=c_2$ by forming a quadratic equation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve the following simultaneous equations:

\n

\\[ \\begin{split} \\simplify{{a1}x+y} &\\,= \\var{c1} \\\\ \\simplify{{a2}x^2+{b2}x*y} &\\,= \\var{c2} \\end{split} \\]

\n

\n

Give your answers to 2 decimal places where necessary.

", "advice": "

To solve a pair of simultaneous equations of this type we want to rearrange the linear equation such that $y$ is the subject, which we can then substitute into the equation with the quadratic $x$-term. This will result in a quadratic equation in terms of $x$ only.

\n

For the equations 

\n

\\[ \\begin{split} \\simplify{{a1}x+y} &\\,= \\var{c1} \\qquad \\qquad &(1) \\\\\\simplify{{a2}x^2+{b2}x*y} &\\,= \\var{c2} \\qquad \\qquad &(2) \\end{split} \\]

\n

we can rearrange equation (1) to make $y$ the subject:

\n

\\[ y = \\simplify{{c1}-{a1}x}. \\qquad\\qquad (3)\\]

\n

Substituting this into equation (2):

\n

\\[ \\begin{split}\\simplify{{a2}x^2+{b2}x({c1}-{a1}x)} &\\,=\\var{c2} \\\\ \\simplify[!cancelTerms,unitFactor]{{a2}x^2+{b2*c1}x-{b2*a1}x^2} &\\,=\\var{c2}. \\end{split} \\]

\n

Collecting similar terms:

\n

\\[ \\simplify{({a2}-{b2*a1})x^2+{b2*c1}x-{c2}} =0. \\qquad\\qquad (4) \\]

\n

Using the quadratic formula, we find two solutions for $x$:

\n

{check}

\n

Therefore, the 2 pairs of solutions for these simultaneous equations are

\n

\\[ (x_1,y_1) = (\\var{x1dp},\\var{y1dp}) \\] and \\[ (x_2,y_2) = (\\var{x2dp},\\var{y2dp}). \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-5..-1)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(0..10)", "description": "", "templateType": "anything", "can_override": false}, "solx1": {"name": "solx1", "group": "Ungrouped variables", "definition": "(-b2*c1-sqrt((b2^2*c1^2)+4(a2-a1*b2)*c2))/(2(a2-b2*a1))", "description": "", "templateType": "anything", "can_override": false}, "solx2": {"name": "solx2", "group": "Ungrouped variables", "definition": "(-b2*c1+sqrt((b2^2*c1^2)+4(a2-a1*b2)*c2))/(2(a2-b2*a1))", "description": "", "templateType": "anything", "can_override": false}, "soly1": {"name": "soly1", "group": "Ungrouped variables", "definition": "c1-a1*solx1", "description": "", "templateType": "anything", "can_override": false}, "soly2": {"name": "soly2", "group": "Ungrouped variables", "definition": "c1-a1*solx2", "description": "", "templateType": "anything", "can_override": false}, "x2dp": {"name": "x2dp", "group": "Ungrouped variables", "definition": "precround(solx2,2)", "description": "", "templateType": "anything", "can_override": false}, "y1dp": {"name": "y1dp", "group": "Ungrouped variables", "definition": "precround(soly1,2)", "description": "", "templateType": "anything", "can_override": false}, "y2dp": {"name": "y2dp", "group": "Ungrouped variables", "definition": "precround(soly2,2)", "description": "", "templateType": "anything", "can_override": false}, "x1dp": {"name": "x1dp", "group": "Ungrouped variables", "definition": "precround(solx1,2)", "description": "", "templateType": "anything", "can_override": false}, "solutions1": {"name": "solutions1", "group": "Ungrouped variables", "definition": "matrix([x1dp,y1dp])", "description": "", "templateType": "anything", "can_override": false}, "solutions2": {"name": "solutions2", "group": "Ungrouped variables", "definition": "matrix([x2dp,y2dp])", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(x1dp=round(x1dp) and x2dp=round(x2dp),'{text}', if(x1dp=round(x1dp),'{text1}',if(x2dp=round(x2dp),'{text2}','{text3}')))", "description": "", "templateType": "anything", "can_override": false}, "text1": {"name": "text1", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\, \\\\text{ (2 d.p.)} \\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\, \\\\text{(2 d.p.)} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "text2": {"name": "text2", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\, \\\\text{ (2 d.p.)}\\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\text{(2 d.p.)} \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "text3": {"name": "text3", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\,  \\\\text{ (2 d.p.)}\\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\, \\\\text{(2 d.p.)} \\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\text{(2 d.p.)} \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\, \\\\text{(2 d.p.)} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "text": {"name": "text", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp}\\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}}, "variablesTest": {"condition": "(a2-a1*b2)>0 and (b2^2*c1^2+4(a2-a1*b2)*c2)>0 and gcd(a2,b2)=1", "maxRuns": 100}, "ungrouped_variables": ["a1", "c1", "a2", "b2", "c2", "solx1", "solx2", "soly1", "soly2", "x1dp", "y1dp", "x2dp", "y2dp", "solutions1", "solutions2", "check", "text", "text1", "text2", "text3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$(x_1,y_1)=$[[0]]

\n

$(x_2,y_2)=$[[1]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "correctAnswer": "solutions2", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "correctAnswer": "solutions1", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "correctAnswer": "solutions1", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "correctAnswer": "solutions2", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC6 Rearrange Formulae", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Luigi Pivano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18182/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Rearrange a specific formula. No randomisation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Rearrange the following equation, to make $y$ the subject:

\n

\\[{cy -b = 3x}\\] 

", "advice": "

In order to rearrange the equation so that it is in terms of $y$, we must first add $b$ to both sides, and then divide both sides of the equation by $c$:

\n

\\begin{split} cy-b  &= 3x \\\\ cy &= 3x + b \\\\ y &=\\frac{3x+b}{c} \\end{split}

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(3x+b)/c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "b", "value": ""}, {"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AD2 Quadratics - solve", "extensions": [], "custom_part_types": [{"source": {"pk": 2, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/2/edit"}, "name": "List of numbers", "short_name": "list-of-numbers", "description": "

The answer is a comma-separated list of numbers.

\n

The list is marked correct if each number occurs the same number of times as in the expected answer, and no extra numbers are present.

\n

You can optionally treat the answer as a set, so the number of occurrences doesn't matter, only whether each number is included or not.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "join(\n if(settings[\"correctAnswerFractions\"],\n map(let([a,b],rational_approximation(x), string(a/b)),x,settings[\"correctAnswer\"])\n ,\n settings[\"correctAnswer\"]\n ),\n settings[\"separator\"] + \" \"\n)", "hint": {"static": false, "value": "if(settings[\"show_input_hint\"],\n \"Enter a list of numbers separated by {settings['separator']}.\",\n \"\"\n)"}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "bits:\nlet(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)\n\nexpected_numbers:\nlet(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)\n\nvalid_numbers:\nif(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )\n\nis_sorted:\nassert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )\n\nincluded:\nmap(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentThe separate items in the student's answer

", "definition": "let(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)"}, {"name": "expected_numbers", "description": "", "definition": "let(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)"}, {"name": "valid_numbers", "description": "

Is every number in the student's list valid?

", "definition": "if(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )"}, {"name": "is_sorted", "description": "

Are the student's answers in ascending order?

", "definition": "assert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )"}, {"name": "included", "description": "

Is each number in the expected answer present in the student's list the correct number of times?

", "definition": "map(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentHas every number been included the right number of times?

", "definition": "all(included)"}, {"name": "no_extras", "description": "

True if the student's list doesn't contain any numbers that aren't in the expected answer.

", "definition": "if(all(map(x in expected_numbers, x, interpreted_answer)),\n true\n ,\n incorrect(\"Your answer contains \"+extra_numbers[0]+\" but should not.\");\n false\n )"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "if(lower(studentAnswer) in [\"empty\",\"\u2205\"],[],\n map(\n if(settings[\"allowFractions\"],parsenumber_or_fraction(x,notationStyles), parsenumber(x,notationStyles))\n ,x\n ,bits\n )\n)"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=\"\",fail(\"You have not entered an answer\"),false);\napply(valid_numbers);\napply(included);\napply(no_extras);\ncorrectif(all_included and no_extras)"}, {"name": "notationStyles", "description": "", "definition": "[\"en\"]"}, {"name": "isSet", "description": "

Should the answer be considered as a set, so the number of times an element occurs doesn't matter?

", "definition": "settings[\"isSet\"]"}, {"name": "extra_numbers", "description": "

Numbers included in the student's answer that are not in the expected list.

", "definition": "filter(not (x in expected_numbers),x,interpreted_answer)"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The list of numbers that the student should enter. The order does not matter.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "allowFractions", "label": "Allow the student to enter fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "correctAnswerFractions", "label": "Display the correct answers as fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "isSet", "label": "Is the answer a set?", "help_url": "", "hint": "If ticked, the number of times an element occurs doesn't matter, only whether it's included at all.", "input_type": "checkbox", "default_value": false}, {"name": "show_input_hint", "label": "Show the input hint?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": true}, {"name": "separator", "label": "Separator", "help_url": "", "hint": "The substring that should separate items in the student's list", "input_type": "string", "default_value": ",", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solving a quadratic equation via factorisation (or otherwise) with the $x^2$-term having a coefficient of 1.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve the following quadratic equation by factorisation or otherwise:

\n

\\[ \\simplify[unitFactor]{x^2+{b}x+{c}=0} \\]

", "advice": "

To solve a quadratic equation of the form \\[ x^2+bx+c=0\\] by factorisation, we want to factorise the equation into the form \\[(x+p)(x+q)=0,\\] where $p+q=b$ and $p \\times q = c$. 

\n

Hence, for the equation \\[\\simplify{x^2+{b}x+{c}=0}, \\]

\n

this can be factorised to \\[\\simplify{(x+{p})(x+{q})=0}.\\] This equation is satisfied when either \\[\\simplify{x+{p}=0} \\quad \\text{or} \\quad \\simplify{x+{q}=0}, \\] which implies the solutions to this quadratic equation are \\[ \\simplify{x={-p}} \\quad \\text{and} \\quad \\simplify{x={-q}} .\\]

\n

Use this link to find resources to help you revise how to solve quadratic equations by factorising the expression.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "{p+q}", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "{p*q}", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(-10..10 except [0,p])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "[-p,-q]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(p+q)>0", "maxRuns": 100}, "ungrouped_variables": ["b", "c", "p", "q", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x= $[[0]]

", "gaps": [{"type": "list-of-numbers", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "{sol}", "allowFractions": false, "correctAnswerFractions": false, "isSet": false, "show_input_hint": true, "separator": ","}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AD3 Completing the square", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["complete the square", "completing the square", "taxonomy"], "metadata": {"description": "

Rearrange expressions in the form $ax^2+bx+c$ to $a(x+b)^2+c$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

We can rewrite quadratic equations given in the form $ax^2+bx+c$ as a square plus another term - this is called \"completing the square\".

\n

This can be useful when it isn't obvious how to fully factorise a quadratic equation.

\n

Rewrite the following expressions in the form \\[(x+b)^2-c\\]

", "advice": "

Completing the square works by noticing that

\n

\\[ (x+a)^2 = x^2 + 2ax + a^2 \\]

\n

So when we see an expression of the form $x^2 + 2ax$, we can rewrite it as $(x+a)^2-a^2$.

\n

\n

Replace $x^2+\\var{evens2}x$ with $(x+\\var{evens2/2})^2 - \\var{evens2/2}^2$. Remember to keep the $\\var{evens2-evens1}$ term on the end!

\n

\\begin{align}
\\simplify[basic]{ x^2 + {evens2}x + {evens2-evens1}}  &= \\simplify[basic]{ (x+{evens2/2})^2 - {evens2/2}^2 + {evens2-evens1} } \\\\
&= \\simplify[basic]{ (x+{evens2/2})^2 + {evens2-evens1 - evens2^2/4} }
\\end{align}

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"multiall2": {"name": "multiall2", "group": "Ungrouped variables", "definition": "all2*random(2..10 #2)", "description": "", "templateType": "anything", "can_override": false}, "odds3": {"name": "odds3", "group": "Odds and Evens", "definition": "random(11..30 #2 except odds odds2)", "description": "", "templateType": "anything", "can_override": false}, "evens3": {"name": "evens3", "group": "Odds and Evens", "definition": "random(2..30 #2 except evens1 evens2)", "description": "", "templateType": "anything", "can_override": false}, "evens2": {"name": "evens2", "group": "Odds and Evens", "definition": "random(10..30 #2 except evens1)", "description": "", "templateType": "anything", "can_override": false}, "multiall": {"name": "multiall", "group": "Ungrouped variables", "definition": "all*random(2..10#2)", "description": "", "templateType": "anything", "can_override": false}, "evens1": {"name": "evens1", "group": "Odds and Evens", "definition": "random(10..30 #2)", "description": "", "templateType": "anything", "can_override": false}, "all2": {"name": "all2", "group": "Ungrouped variables", "definition": "random(2..6 except all)", "description": "", "templateType": "anything", "can_override": false}, "odds2": {"name": "odds2", "group": "Odds and Evens", "definition": "random(11..30 #2 except odds)", "description": "", "templateType": "anything", "can_override": false}, "big": {"name": "big", "group": "Ungrouped variables", "definition": "random(30..50)", "description": "", "templateType": "anything", "can_override": false}, "all": {"name": "all", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "sml": {"name": "sml", "group": "Ungrouped variables", "definition": "random(2..6#2)", "description": "", "templateType": "anything", "can_override": false}, "odds": {"name": "odds", "group": "Odds and Evens", "definition": "random(11..30 #2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["all", "all2", "multiall", "big", "sml", "multiall2"], "variable_groups": [{"name": "Odds and Evens", "variables": ["evens1", "evens2", "evens3", "odds", "odds2", "odds3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify {x^2+ {evens2}x +{evens2-evens1}} =$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x+{evens2/2})^2+{-(evens2/2)^2+evens2-evens1}", "answerSimplification": "basic, fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["(x", ")^2"], "showStrings": false, "partialCredit": 0, "message": "

It doesn't look like you've completed the square.

"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AE2 Algebraic Fractions - addition (harder)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Simplify the sum of two algebraic fractions where spotting factorising of both numerators and denominators can reduce the work massively.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ simplifying as much as possible. Your answer should be in the form $\\frac{\\alpha\\var{v}+\\beta}{\\delta\\var{v}^2-\\gamma}.$

", "advice": "

To write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ first factorise as much as possible and look for any cancellations:

\n

\\[\\begin{split}
&\\frac{\\var{a}\\times\\var{b}}{\\var{den1fact}} + \\frac{\\var{num2}}{\\var{den2fact}}\\\\
& = \\frac{\\var{b}}{\\var{den1simp}} + \\frac{1}{\\var{f1c}}.
\\end{split}\\]

\n

Then get a common denominator for the two fractions and combine into a single fraction:

\n

\\[\\begin{split}
&\\frac{\\var{b}}{\\var{den1simp}} + \\frac{\\var{f1}}{\\var{den1simp}}\\\\
& = \\frac{\\var{b}+\\var{f1}}{\\var{den1simp}}\\\\
& = \\var{ans}.
\\end{split}\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Set up", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Set up", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "v": {"name": "v", "group": "Set up", "definition": "random(\"a\",\"b\",\"c\",\"d\",\"f\",\"g\",\"h\",\"k\",\"m\",\"n\",\"p\",\"q\",\"r\",\"s\",\"t\",\"u\",\"v\",\"w\",\"x\",\"y\",\"z\")", "description": "", "templateType": "anything", "can_override": false}, "cf1": {"name": "cf1", "group": "Set up", "definition": "repeat(random(2..4),2)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"+\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "f1c": {"name": "f1c", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"-\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "cf2": {"name": "cf2", "group": "Set up", "definition": "repeat(random(2..5),2)", "description": "", "templateType": "anything", "can_override": false}, "f2": {"name": "f2", "group": "Set up", "definition": "simplify(cf2[0]+\"*\"+v+\"+\"+cf2[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1fact": {"name": "den1fact", "group": "Advice", "definition": "simplify(a+\"*\"+\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}, "num1": {"name": "num1", "group": "Question", "definition": "a*b", "description": "", "templateType": "anything", "can_override": false}, "den2": {"name": "den2", "group": "Question", "definition": "simplify(den2fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Question", "definition": "simplify(f2,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1": {"name": "den1", "group": "Question", "definition": "simplify(den1fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "den2fact": {"name": "den2fact", "group": "Advice", "definition": "simplify(expression(\"(\"+string(f1c)+\")*(\"+string(f2)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansn": {"name": "ansn", "group": "Question", "definition": "simplify(string(f1) + \"+\" + b,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansd": {"name": "ansd", "group": "Question", "definition": "simplify(expression(\"(\"+string(f1)+\")\"+\"*\"+ \"(\"+string(f1c)+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Question", "definition": "simplify(expression(\"(\"+string(ansn)+\")\"+\"/\"+\"(\"+string(ansd)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1simp": {"name": "den1simp", "group": "Advice", "definition": "simplify(\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "f1<>f2 AND f1c<>f2 AND cf1[0]<>cf1[1] AND cf2[0]<>cf2[1]", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Set up", "variables": ["a", "b", "v", "cf1", "f1", "f1c", "cf2", "f2"]}, {"name": "Question", "variables": ["num1", "den1", "num2", "den2", "ansn", "ansd", "ans"]}, {"name": "Advice", "variables": ["den1fact", "den2fact", "den1simp"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "?`+/?`+", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AE3 - Cancelling algebraic fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Luke Park", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/826/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

A question to practice simplifying fractions with the use of factorisation (for binomial and quadratic expressions).

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Simplify the following algebraic expression.

", "advice": "

\\[\\frac{{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}}{{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}}\\]

\n

In this question there is a quadratic expression which needs to be factorised into the products of binomials in both the numerator and denominator.

\n

\\[\\frac{({\\simplify{n+{e1}}})({\\simplify{n+{e2}}})}{({\\simplify{n+{e1}}})({\\simplify{n+{e3}}})}\\]

\n

The repeated binomials in the numerator and denominator cancel, leaving:

\n

\\[\\frac{({\\simplify{n+{e2}}})}{({\\simplify{n+{e3}}})}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "e3": {"name": "e3", "group": "Ungrouped variables", "definition": "random(-5..5 except 0 except e2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["e1", "e2", "e3"], "variable_groups": [], "functions": {"": {"parameters": [], "type": "number", "language": "jme", "definition": ""}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\frac{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}\\]

", "answer": "(n+{e2})/(n+{e3})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["^2", "^"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "n", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AE5 - Multiplication of algebraic fractions 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Simplifying first is essential in terms of managing expressions that might need factorising.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Expand and simplify $\\displaystyle{\\var{LeftMul}\\times\\var{RightMul}}.$

", "advice": "

Before we multiply the fractions together first lets check if we can do any cancellation. Notice that $\\var{RightMulBottom}$ has a factor of $\\var{Num}$ so we can cancel this straight away.

\n

We also have a factor of $x$ in both $\\var{QuadCoeff[0]}x^2+\\var{QuadCoeff[1]}x$ and $\\var{RightMulTop}$ so we're now left with multiplying

\n

\\[\\frac1{\\var{QuadCoeff[0]}x+\\var{QuadCoeff[1]}}\\times\\frac{\\simplify[all,expandBrackets]{(x+{Lin1Coeff})*({QuadCoeff[0]}x+{QuadCoeff[1]})}}{\\var{Lin2Coeff[0]}x+\\var{Lin2Coeff[1]}}.\\]

\n

We're not necesserily done with cancellation though! To make sure that a fraction with a quadratic is simplified we have to factorise it to make sure there are no linear factors we can cancel. In this case we have
\\[\\simplify[all,expandBrackets]{(x+{Lin1Coeff})*({QuadCoeff[0]}x+{QuadCoeff[1]})}={(x+\\var{Lin1Coeff})(\\var{QuadCoeff[0]}x+\\var{QuadCoeff[1]})}.\\]

\n

This gives us one last factor to cancel and then we can finally multiply whats left of each fraction to give us a final answer of

\n

\\[\\var{ans}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"QuadCoeff": {"name": "QuadCoeff", "group": "Ungrouped variables", "definition": "[random(1..6),random(1..6)]", "description": "", "templateType": "anything", "can_override": false}, "Num": {"name": "Num", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "Lin2Coeff": {"name": "Lin2Coeff", "group": "Ungrouped variables", "definition": "[random(1..6),random(1..6)]", "description": "", "templateType": "anything", "can_override": false}, "Lin1Coeff": {"name": "Lin1Coeff", "group": "Ungrouped variables", "definition": "random(1..6 except Lin2Coeff[1]/Lin2Coeff[0])", "description": "", "templateType": "anything", "can_override": false}, "Lin1": {"name": "Lin1", "group": "Ungrouped variables", "definition": "\"x\"+\"+\"+Lin1Coeff", "description": "", "templateType": "anything", "can_override": false}, "Lin2": {"name": "Lin2", "group": "Ungrouped variables", "definition": "Lin2Coeff[0]+\"x\"+\"+\"+Lin2Coeff[1]", "description": "", "templateType": "anything", "can_override": false}, "Quad": {"name": "Quad", "group": "Ungrouped variables", "definition": "QuadCoeff[0]+\"x^2+\"+QuadCoeff[1]+\"x\"", "description": "", "templateType": "anything", "can_override": false}, "LeftMul": {"name": "LeftMul", "group": "Ungrouped variables", "definition": "expression(Num+\"/(\"+Quad+\")\")", "description": "", "templateType": "anything", "can_override": false}, "RightMulTop": {"name": "RightMulTop", "group": "Ungrouped variables", "definition": "simplify(expression(\"(\"+Quad+\")*(\"+Lin1+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "RightMulBottom": {"name": "RightMulBottom", "group": "Ungrouped variables", "definition": "simplify(expression(Num+\"*(\"+Lin2+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "RightMul": {"name": "RightMul", "group": "Ungrouped variables", "definition": "expression(\"(\"+string(RightMulTop)+\")\"+\"/\"+\"(\"+string(RightMulBottom)+\")\")", "description": "", "templateType": "anything", "can_override": false}, "Ans": {"name": "Ans", "group": "Ungrouped variables", "definition": "expression(\"(\"+Lin1+\")/(\"+Lin2+\")\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["QuadCoeff", "Num", "Lin2Coeff", "Lin1Coeff", "Lin1", "Lin2", "Quad", "LeftMul", "RightMulTop", "RightMulBottom", "RightMul", "Ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "(`+-$n`?*x+`+-$n`?)/(`+-$n`?*x+`+-$n`?)", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AE6 Partial Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "

Rewrite the expression $\\frac{mx^2+nx+k}{(x+a)(x^2+bx+c)}$ as partial fractions in the form $\\frac{A}{x+a}+\\frac{Bx+C}{x^2+bx+c}$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Rewrite the following expression as partial fractions:

\n

\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))}. \\]

\n

", "advice": "

To express \\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} \\] as partial fractions, we want to set this equal to the sum of two fractions with denominators $\\simplify{x+{a}}$ and $\\simplify{x^2+{b}x+{c}}$. Since we have a linear factor and a quadratic factor, this tells us that the form of the partial fractions will be

\n

\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\simplify{A/(x+{a}) + (B*x+C)/(x^2+{b}x+{c})},\\]

\n

where $A$, $B$, and $C$ are constants.

\n

To find the values of $A$, $B$, and $C$, we want to first multiply this equation by the denominator of the left-hand side. This gives

\n

\\[ \\simplify{{m}x^2+{n}x+{k}=A(x^2+{b}x+{c})+B*x(x+{a}) + C(x+{a})}.\\]

\n

(Note: To find $A$, $B$, and $C$, we will use a combination of choosing suitable values of $x$ to eliminate terms, and equating coefficients. It can be solved by only equating coefficients, but this is a more efficient process.)

\n

\n

To find $A$, we can eliminate $B$ and $C$ by setting $x=\\var{-a}$:

\n

\\[ \\simplify{{m*a^2-n*a+k}=A{(a^2-b*a+c)}} \\implies A=\\simplify[fractionNumbers]{{Asol}}.\\]

\n

To find $C$, we can eliminate $B$ by setting $x=0$ and substituting in the result of $A$:

\n

\\[ \\simplify{{k}={c}A+{a}C} \\implies C=\\simplify[all,fractionNumbers]{({k}-{c}A)/{a}}.\\]

\n

Hence,

\n

\\[ C = \\simplify[fractionNumbers]{{Csol}}.\\]

\n

Finally, by equating coefficients of the $x^2$-terms we can find $B$:

\n

\\[ (x^2): \\quad \\var{m} = \\simplify{A+B} \\implies B=\\var{m}-A. \\]

\n

Therefore, \\[ B=\\simplify[fractionNumbers]{{Bsol}}, \\]

\n

and

\n

{check}

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pairs[index][1]", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "if(k=1,random(-1,1)*random([1,3,4,5]),if (k=2,random(-1,1)*random([1,2,4,5]),if(k=3,random(-1,1)*random([1,2,3,5]),if(k=5,random(-1,1)*random([1,2,3,4,5,7]),random(-1,1)*random([1,2,3,4,5,7])))))", "description": "", "templateType": "anything", "can_override": false}, "Asol": {"name": "Asol", "group": "Ungrouped variables", "definition": "(m*a^2-n*a+k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Bsol": {"name": "Bsol", "group": "Ungrouped variables", "definition": "(m*c-m*b*a+n*a-k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Csol": {"name": "Csol", "group": "Ungrouped variables", "definition": "(k*(a-b)-m*a*c+n*c)/(a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(Asol=round(Asol) and Bsol=round(Bsol),'{sol1}',if(simp2=1,'{sol2}','{sol3}'))", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify{{Asol}/(x+{a})+({Bsol}x+{Csol})/(x^2+{b}x+{c})}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({m*c-m*b*a+n*a-k}x+{k*(a-b)-m*a*c+n*c})/({a^2-a*b+c}(x^2+{b}x+{c}))}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "pairs[index][0]", "description": "", "templateType": "anything", "can_override": false}, "simp1": {"name": "simp1", "group": "Ungrouped variables", "definition": "gcd(k*(a-b)-m*a*c+n*c,m*c-m*b*a+n*a-k)", "description": "", "templateType": "anything", "can_override": false}, "simp2": {"name": "simp2", "group": "Ungrouped variables", "definition": "gcd(simp1,a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "sol3": {"name": "sol3", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random([1,2,3,5,7])", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[[1,random(-1,1)*random([1,3,4,5])],[2,random(-1,1)*random([1,2,4,5])],[3,random(-1,1)*random([1,2,3,5])],[5,random(-1,1)*random([1,2,3,4,5,7])],[7,random(-1,1)*random([1,2,3,4,5,7])]]", "description": "", "templateType": "anything", "can_override": false}, "index": {"name": "index", "group": "Ungrouped variables", "definition": "random(0..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a^2-a*b+c>0 or a^2-a*b+c<0", "maxRuns": 100}, "ungrouped_variables": ["a", "pairs", "index", "b", "c", "m", "k", "n", "Asol", "Bsol", "Csol", "check", "sol1", "sol2", "sol3", "simp1", "simp2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(m*a^2-n*a+k)}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`! (((`+-$n`?*x^2+`+-$n`?*x+`+-$n)/((x+`+-$n)(x^2+`+-$n*x+`+-$n))))", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF1 Sigma Notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Basic calculation from a sum given in Sigma notation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate:

\n

\\[\\displaystyle{\\Sigma_{n=1}^3} \\var{b}n.\\]

\n

", "advice": "

The sigma notation $\\displaystyle\\sum_{n=1}^{3}\\var{b}n$ is asking us to find the sum of the first three terms of the sequence $\\var{b}n$

\n

\\[\\begin{split}\\Sigma_{n=1}^3 \\var{b}n &\\, = (\\var{b}\\times 1) + (\\var{b}\\times 2) + (\\var{b}\\times 3) \\\\ &\\, = \\var{b1} + \\var{b2} + \\var{b3} \\\\ &\\, = \\var{sum}.\\end{split}\\]

\n

Use this link to find resources to help you revise sigma notation.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "b*1", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "b*2", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "b*3", "description": "", "templateType": "anything", "can_override": false}, "sum": {"name": "sum", "group": "Ungrouped variables", "definition": "b1+b2+b3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "b1", "b2", "b3", "sum"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA6 - Volume of a semicylinder", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Find the volume of a semicylinder from a diagram.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the volume of this (all lengths are in $cm$):

\n

{geogebra_applet('https://www.geogebra.org/m/vdbvgwkf',[height: height,radius: radius])}

", "advice": "

In order to work out the volume of a prism you need to work out the cross sectional area first. In this question the cross section is a semi-circle. Find the area of a circle and then half it.

\n

The area of a semi-circle is given by:

\n

\\begin{align} \\frac{\\pi\\times r^2}{2}  \\end{align}

\n

where $r$ is the radius of the circle.

\n

\\begin{align} \\frac{\\pi\\times\\var{radius}^2}{2}  = \\var{precround(semiarea,2)}... \\quad  cm^2 \\end{align}

\n

Then to calculate the volume you multiply the cross-sectional area by the length,

\n

\\begin{align} \\frac{\\pi\\times r^2}{2} \\times l  \\end{align}

\n

\\begin{align} \\var{precround(semiarea,2)}... \\times \\var{height} = \\var{precround(answer,2)}cm^3.\\end{align}

\n

\n

Use this link to find resources to help you revise how to calculate the volume of a prism.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"height": {"name": "height", "group": "Ungrouped variables", "definition": "random(8 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "radius": {"name": "radius", "group": "Ungrouped variables", "definition": "random(4 .. 7#0.5)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "(pi*radius^2)*height/2", "description": "", "templateType": "anything", "can_override": false}, "semiarea": {"name": "semiarea", "group": "Ungrouped variables", "definition": "pi*radius^2/2", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["height", "radius", "answer", "semiarea"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$cm^3$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Volume", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GB3 - sec/cosec/cot", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Match the graphs to the functions. No randomisation. Multiple choice.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

This is about knowledge of graphs. Generally with trigonometric graphs it is best to start with making sure you know and understand the graphs of the functionts $\\sin(x)$, $\\cos(x)$ and $\\tan(x)$. From there you can use knowledge of where they are zero to work out the position of the asymptotes in the graphs of $\\sec(x)$, $\\text{cosec}(x)$ and $\\cot(x)$. However, you still need really to be able to recall the shape of each graph for some purposes and be confident about where the zeros and turning points are.

\n

Use this link to find some resources to help you familiarise yourself with these graphs.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Match the graph to its function.

", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\sec(x)$", "$\\text{cosec}(x)$", "$\\cot(x)$"], "matrix": [["1", "0", 0], [0, "1", 0], ["0", 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["{geogebra_applet('https://www.geogebra.org/m/h9d8hzna')}", "{geogebra_applet('https://www.geogebra.org/m/kqnrbjzy')}", "{geogebra_applet('https://www.geogebra.org/m/xm44vcwe')}"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GB5 Trigonometric Identities 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "

Rewriting a trigonometric expression of the form $A\\cos(\\theta)\\pm B\\sin(\\theta)$ to either $R\\sin(\\theta+\\alpha)$ or $R\\cos(\\theta+\\alpha)$ by calculating $R$ and $\\alpha$. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

If

\n

{question}

\n

find the values for $R$ and $\\alpha$, given $R>0$ and $0<\\alpha<\\frac{\\pi}{2}$.

", "advice": "

\n

{answer}

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "random(1..5 except A)", "description": "", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "sqrt(A^2+B^2)", "description": "", "templateType": "anything", "can_override": false}, "Rround": {"name": "Rround", "group": "Ungrouped variables", "definition": "precround(R,2)", "description": "", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "arctan(B/A)", "description": "", "templateType": "anything", "can_override": false}, "Rsol": {"name": "Rsol", "group": "Ungrouped variables", "definition": "if(R=round(R),'{Rsol1}','{Rsol2}')", "description": "", "templateType": "anything", "can_override": false}, "Rsol1": {"name": "Rsol1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split} R^2\\\\cos^2(\\\\alpha) + R^2 \\\\sin^2(\\\\alpha) &\\\\,= \\\\var{A}^2+\\\\var{B}^2 \\\\\\\\ R^2 (\\\\cos^2(\\\\alpha) +\\\\sin^2(\\\\alpha)) &\\\\,= \\\\var{A^2+B^2} \\\\\\\\ R &\\\\,= \\\\var{R}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "Rsol2": {"name": "Rsol2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split} R^2\\\\cos^2(\\\\alpha) + R^2 \\\\sin^2(\\\\alpha) &\\\\,= \\\\var{A}^2+\\\\var{B}^2 \\\\\\\\ R^2 (\\\\cos^2(\\\\alpha) +\\\\sin^2(\\\\alpha)) &\\\\,= \\\\var{A^2+B^2} \\\\\\\\ R &\\\\,= \\\\sqrt{\\\\var{A^2+B^2}}\\\\\\\\ &\\\\,=\\\\var{Rround} \\\\text{ (2 d.p.)}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "alpharound": {"name": "alpharound", "group": "Ungrouped variables", "definition": "precround(alpha,2)", "description": "", "templateType": "anything", "can_override": false}, "question": {"name": "question", "group": "Ungrouped variables", "definition": "if(Q=1,'{q1}','{q2}')", "description": "", "templateType": "anything", "can_override": false}, "Q": {"name": "Q", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "sign": {"name": "sign", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "q1": {"name": "q1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify[unitFactor]{{A}sin(theta)+{sign*B}cos(theta)} = \\\\simplify[unitFactor]{R sin (theta+{sign}*alpha)},\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify[unitFactor]{{A}cos(theta)-{sign*B}sin(theta)} = \\\\simplify[unitFactor]{R cos (theta+{sign}*alpha)},\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "\"

To find $R$ and $\\\\alpha$ we want to first rewrite our equation using the double-angle formula, $\\\\simplify[unitFactor]{sin(a+{sign}*b)=sin(a)cos(b)+{sign}*sin(b)cos(a)}$:

\\n

\\\\[ \\\\begin{split}\\\\simplify[unitFactor]{{A}sin(theta)+{sign*B}cos(theta)} &\\\\,= \\\\simplify{R sin(theta+{sign}*alpha)} \\\\\\\\ &\\\\,= \\\\simplify{R(sin(theta)cos(alpha) + {sign}*sin(alpha)cos(theta))} \\\\\\\\ &\\\\,= \\\\simplify{Rsin(theta)cos(alpha) + {sign}*R sin(alpha)cos(theta)}. \\\\end{split} \\\\]

\\n

By comparing the coefficients of $\\\\sin(\\\\theta)$ and $\\\\cos(\\\\theta)$, we find that

\\n

\\\\[ R\\\\cos(\\\\alpha) = \\\\var{A},\\\\quad \\\\text{and} \\\\quad R\\\\sin(\\\\alpha) = \\\\var{B}. \\\\]

\\n

To calculate $R$, we want to square these results and add them together, allowing us to make use of $\\\\sin^2(\\\\alpha)+\\\\cos^2(\\\\alpha) = 1$:

\\n

{Rsol}

\\n

Similarly, to find $\\\\alpha$ we can divide $R\\\\sin(\\\\alpha) = \\\\var{B}$ by $R\\\\cos(\\\\alpha) = \\\\var{A}$, and use the identity $\\\\tan(\\\\alpha) = \\\\frac{\\\\sin(\\\\alpha)}{\\\\cos(\\\\alpha)}$:

\\n

\\\\[ \\\\frac{R\\\\sin(\\\\alpha)}{R\\\\cos(\\\\alpha)} = \\\\frac{\\\\var{B}}{\\\\var{A}} \\\\implies \\\\tan(\\\\alpha) = \\\\simplify[fractionNumbers]{{B/A}}.\\\\]

\\n

Therefore, \\\\[ \\\\begin{split} \\\\alpha &\\\\,= \\\\tan^{-1}\\\\left(\\\\simplify[fractionNumbers]{{B/A}}\\\\right) \\\\\\\\ &\\\\,= \\\\var{alpharound} \\\\text{ (2 d.p.)}. \\\\end{split} \\\\]

\\n

\"", "description": "", "templateType": "long string", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "\"

To find $R$ and $\\\\alpha$ we want to first rewrite our equation using the double-angle formula, $\\\\simplify{cos(a+{sign}*b)=cos(a)cos(b)-{sign}*sin(a)sin(b)}$:

\\n

\\\\[ \\\\begin{split}\\\\simplify[unitFactor]{{A}cos(theta)-{sign*B}sin(theta)} &\\\\,= \\\\simplify[unitFactor]{R cos (theta + {sign}*alpha)} \\\\\\\\ &\\\\,= \\\\simplify{R(cos(theta)cos(alpha) - {sign}*sin(theta)sin(alpha))} \\\\\\\\ &\\\\,= \\\\simplify{Rcos(theta)cos(alpha) - {sign}*R sin(theta)sin(alpha)}. \\\\end{split} \\\\]

\\n

By comparing the coefficients of $\\\\cos(\\\\theta)$ and $\\\\sin(\\\\theta)$, we find that

\\n

\\\\[ R\\\\cos(\\\\alpha) = \\\\var{A},\\\\quad \\\\text{and} \\\\quad R\\\\sin(\\\\alpha) = \\\\var{B}. \\\\]

\\n

To calculate $R$, we want to square these results and add them together, allowing us to make use of $\\\\sin^2(\\\\alpha)+\\\\cos^2(\\\\alpha) = 1$:

\\n

{Rsol}

\\n

Similarly, to find $\\\\alpha$ we can divide $R\\\\sin(\\\\alpha) = \\\\var{B}$ by $R\\\\cos(\\\\alpha) = \\\\var{A}$, and use the identity $\\\\tan(\\\\alpha) = \\\\frac{\\\\sin(\\\\alpha)}{\\\\cos(\\\\alpha)}$:

\\n

\\\\[ \\\\frac{R\\\\sin(\\\\alpha)}{R\\\\cos(\\\\alpha)} = \\\\frac{\\\\var{B}}{\\\\var{A}} \\\\implies \\\\tan(\\\\alpha) = \\\\simplify[fractionNumbers]{{B/A}}.\\\\]

\\n

Therefore, \\\\[ \\\\begin{split} \\\\alpha &\\\\,= \\\\tan^{-1}\\\\left(\\\\simplify[fractionNumbers]{{B/A}}\\\\right) \\\\\\\\ &\\\\,= \\\\var{alpharound} \\\\text{ (2 d.p.)}. \\\\end{split} \\\\]

\\n

\"", "description": "", "templateType": "long string", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "if(Q=1,'{a1}','{a2}')", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Q", "A", "B", "sign", "R", "Rround", "alpha", "alpharound", "Rsol", "Rsol1", "Rsol2", "question", "q1", "q2", "answer", "a1", "a2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$R=$[[0]]

\n

$\\alpha=$[[1]]

\n

(Give your answers to 2 decimal places where necessary.)

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{Rround}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{alpharound}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CA3 - Graphs of trig functions (sin, cos, tan)", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Match the relevant graph (sin, cos, tan) with its equation. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

This is about core knowledge of graphs. You should know the shapes of the fundamental trig graphs, if you don't familiarize yourself with them from the resources linked below. In this setting the $x$-axis is given with a scale in radians but you might also find some where it is given in degrees. You should also be aware of the difference between those two different units of angles.

\n

\n

Use this link to find some resources to help you familiarise yourself with these graphs.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Match the graph to its function.

", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\sin(x)$", "$\\cos(x)$", "$\\tan(x)$"], "matrix": [["1", 0, 0], [0, "1", 0], [0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["{geogebra_applet('https://www.geogebra.org/m/ntqvuwqr')}", "{geogebra_applet('https://www.geogebra.org/m/fsqmnhsc')}", "{geogebra_applet('https://www.geogebra.org/m/yg6f9eqz')}"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CA4 Function notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Evaluating a linear function for a given value of $x$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Given $f(x)=\\simplify{{m}x+{c}}$, find $f(\\var{n})$.

", "advice": "

If $f(x)=\\simplify{{m}x+{c}}$, to find $f(\\var{n})$ we need to evaluate $f(x)$ when $x=\\var{n}$:

\n

\\[ \\begin{split} f(\\var{n}) &\\,= \\simplify[alwaysTimes]{{m}({n})+{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{m*n}+{c}} \\\\ &\\,= \\simplify{{m*n+c}}. \\end{split} \\]

\n

Use this link to find resources to help you revise function notation.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except [0,m])", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-9..9 except [0,1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f(\\var{n})=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m*n+c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CA5 Domain and Range", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Determining the range of a function of the form $f = m|x| + a$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

The range is the set of values that can be taken by $f(x)$, i.e. the values on the $y$-axis.

\n

{geogebra_applet('https://www.geogebra.org/m/aqcgkurg',[a: a, m: m])}

\n

Therefore, for $f(x)=\\simplify{{m}x^2+{a}}$, the range is $[\\var{a}, \\infty)$. 

\n

Use this link to find some resources to help you revise how to find the domain and range of a function.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..2 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-2..2 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-2,2,-1,3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "n", "m", "b", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $f(x)=\\simplify{{m}x^2+{a}}$

What is the range of $f(x)$?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\mathbb{R}$", "$[\\var{a},\\infty)$", "$\\left[\\simplify{{a}/{m}},\\infty\\right)$", "$(-\\infty,\\var{a}]$", "$(\\var{a},\\infty)$"], "matrix": [0, "1", 0, 0, 0], "distractors": ["", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CA6 Inverse functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Finding the inverse of a function of the form $f(x)=\\frac{mx+c}{x+a},\\,x\\neq-a$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

If $f(x)=\\simplify{({m}x+{c})/(x+{a})},\\,x\\neq \\simplify{{-a}}$, find the inverse function, $f^{-1}(x)$.

", "advice": "

To find $f^{-1}x$, it can help to first set $f(x)$ to a different variable, which we will call $y$:

\n

\\[ y = f(x) = \\simplify{({m}x+{c})/(x+{a})}\\]

\n

Since the function $f(x)$ takes us from $x$ to $y$, the inverse function $f^{-1}$ will take us from $y$ to $x$. So to obtain $f^{-1}$, we want to rearrange $y=\\simplify{({m}x+{c})/(x+{a})}$ so that it is $x$ as a function of $y$:

\n

\\[ \\begin{split} y &\\,= \\simplify{({m}x+{c})/(x+{a})} \\\\\\\\ \\simplify{(x+{a})y} &\\,= \\simplify{{m}x+{c}} \\\\\\\\ \\simplify{x*y+{a}y} &\\,= \\simplify{{m}x+{c}} \\\\\\\\ \\simplify{x*y - {m}x} &\\,= \\simplify{{c}- {a}y}   \\\\  \\\\ \\simplify{x(y-{m})} &\\,= \\simplify{{c}-{a}y} \\\\\\\\ x&\\,= \\simplify{({c}-{a}y)/(y-{m})}. \\end{split} \\]

\n

Hence, $f^{-1}(y) =\\simplify{({c}-{a}y)/(y-{m})}$, and therefore \\[ f^{-1}(x) =\\simplify{({c}-{a}x)/(x-{m})}.\\]

\n

(Note: The inverse is valid for all values of $x$ except $x=\\var{m}$, since this would make the denominator equal to 0.)

\n

Use this link to find resources to help you revise how to find the inverse of functions.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-8..8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(m)-abs(c)>0 or abs(m)-abs(c)<0", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f^{-1}(x)=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({c}-{a}x)/(x-{m})", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CA9 Logs - rules 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solving $a\\log(x)+\\log(b)=\\log(c)$ for $x$, where $a$, $b$ and $c$ are positive integers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve for $x$:

\n

\\[ \\var{a}\\log(x)+\\log(\\var{b})=\\log(\\var{c}). \\]

", "advice": "

To solve $\\var{a}\\log(x)+\\log(\\var{b})=\\log(\\var{c})$ for $x$, we want to use the following logarithm rules:

\n\n

Hence, 

\n

\\[ \\begin{split} \\var{a}\\log(x)+\\log(\\var{b}) &\\,=\\log(\\var{c}) \\\\ \\log(x^\\var{a})+\\log(\\var{b}) &\\,= \\log(\\var{c}) \\\\ \\log(\\var{b}x^\\var{a}) &\\,= \\log(\\var{c}). \\end{split} \\]

\n

If $\\log(a)=\\log(b)$ then this implies $a=b$. Therefore,

\n

\\[  \\begin{split} \\var{b}x^\\var{a} &\\,=\\var{c} \\\\ x^\\var{a} &\\,= \\simplify[fractionNumbers]{{c/b}} \\\\ x &\\,= \\simplify[fractionNumbers]{({c/b})^(1/{a})} \\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}\\end{split} \\]

\n

Use this link to find rsources to help you revise how the rules of logarithms to help you solve logarithmic equations.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround((c/b)^(1/a),2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..40 except [b,b^(a+1)])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$ [[0]] (Give you answer to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CA10 Logs - Solving equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solving an equation of the form $a^x=b$ using logarithms to find $x$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve for $x$:

\n

\\[ \\var{a}^x = \\var{b} \\,. \\]

", "advice": "

To solve $\\var{a}^x = \\var{b}$ for $x$, since $x$ is the exponent we want to make use of the following logarithm rule:

\n\n

\n

By taking the logarithm of each side and applying the above rule:

\n

\\[ \\begin{split}\\var{a}^x &\\,= \\var{b} \\\\ \\log_{10}(\\var{a}^x) & \\,= \\log_{10}(\\var{b})\\\\ x \\log_{10}(\\var{a}) &\\,= \\log_{10}(\\var{b}) \\\\\\\\ x&\\,=\\simplify{log({b})/log({a})} \\\\\\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}.  \\end{split} \\]

\n

Use this link to find resources to help you revise how logarithms.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9 except [a,a^2,a^3])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround(log(b)/log(a),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$ [[0]] (Give you answer to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CB2 Differentiating polynomials 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Differentiate a polynomial expression involving coefficients and, negative and fractional indices. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the derivative of $y=\\simplify[unitFactor, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}}$.

\n

\n

", "advice": "

From the Table of Derivatives we see that a function of the form \\[ f(x)=kx^n \\] has a derivative \\[ \\frac{df}{dx} = knx^{n-1}. \\]

\n

Additionally, the derivative of the sum or difference of two or more functions is equal to the sum or difference of the derivatives of each function: \\[ \\frac{d}{dx}(f(x)\\pm g(x)) = \\frac{df}{dx} \\pm \\frac{dg}{dx}.\\]

\n

\n

{advice}

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3>0,'{solutiona}',{advice2})", "description": "", "templateType": "anything", "can_override": false}, "solutiona": {"name": "solutiona", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutionb": {"name": "solutionb", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutionc": {"name": "solutionc", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutiond": {"name": "solutiond", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "advice2": {"name": "advice2", "group": "Ungrouped variables", "definition": "if(a_2<0 and a_3>0,'{solutionb}',{advice3})", "description": "", "templateType": "anything", "can_override": false}, "advice3": {"name": "advice3", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3<0,'{solutionc}','{solutiond}')", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "b/c", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(b,c)=1", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "b", "c", "advice", "advice2", "advice3", "solutiona", "solutionb", "solutionc", "solutiond"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a_1*b_1}x^{{b_1}-1}+{a_2*b_2}x^{{b_2}-1}+{a_3*b_3}x^{{b_3}-1}", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CB4 Definite integration", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Calculating the definite integral $\\int_{n_1}^{n_2}a_1x^{b_1}+a_2x^{b_2}+a_3x^{b_3} dx$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Evaluate \\[ \\int_{\\var{n_1}}^{\\var{n_2}}\\simplify[unitFactor, unitPower, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}} \\,dx.\\]

\n

", "advice": "

Integrating a function of the form  \\[ f(x)=x^n \\] has the integral \\[ \\int_a^b x^n dx  =  \\left[\\frac{x^{n+1}}{n+1}\\right]_a^b,\\]

\n

and \\[\\int_a^b kf(x) dx = k \\int_a^b f(x) dx.\\]

\n

Additionally, the integral of the sum or difference of two or more functions is equal to the sum or difference of the integrals of each function: \\[ \\int(f(x)\\pm g(x))\\, dx = \\int f(x)\\, dx  \\pm \\int g(x) \\, dx.\\]

\n

\n

Therefore,

\n

\\[ \\begin{split}\\simplify[unitFactor,unitPower]{defint({a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3},x,{n_1},{n_2})} &\\,= \\simplify{{a_1}defint(x^{b_1},x,{n_1},{n_2})+{a_2}defint(x^{b_2},x,{n_1},{n_2})+{a_3}defint(x^{b_3},x,{n_1},{n_2})} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers]{{a_1}x^{b_1+1}/{b_1+1}+{a_2}x^{b_2+1}/{b_2+1}+{a_3}x^{b_3+1}/{b_3+1}}\\right]_\\var{n_1}^\\var{n_2} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_2^(b_1+1)}/{b_1+1}+{a_2*n_2^(b_2+1)}/{b_2+1}+{a_3*n_2^(b_3+1)}/{b_3+1}}\\right] -\\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_1^(b_1+1)}/{b_1+1}+{a_2*n_1^(b_2+1)}/{b_2+1}+{a_3*n_1^(b_3+1)}/{b_3+1}}\\right] \\\\ &\\,= \\simplify[!collectNumbers]{{eval2a}-{eval1a}} \\\\ &\\,=\\var{sol1} \\end{split} \\]

\n

Use this link to find some resources on areas under curves which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "2", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n_1": {"name": "n_1", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "n_2": {"name": "n_2", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "eval2": {"name": "eval2", "group": "Ungrouped variables", "definition": "a_1*n_2^(b_1+1)/(b_1+1)+a_2*n_2^(b_2+1)/(b_2+1)+a_3*n_2^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval1": {"name": "eval1", "group": "Ungrouped variables", "definition": "a_1*n_1^(b_1+1)/(b_1+1)+a_2*n_1^(b_2+1)/(b_2+1)+a_3*n_1^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval2a": {"name": "eval2a", "group": "Ungrouped variables", "definition": "precround(eval2,3)", "description": "", "templateType": "anything", "can_override": false}, "eval1a": {"name": "eval1a", "group": "Ungrouped variables", "definition": "precround(eval1,3)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "eval2-eval1", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "precround(sol,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b_1>b_2 and b_2>b_3 and n_2>n_1", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "n_1", "n_2", "eval2", "eval1", "eval2a", "eval1a", "sol", "sol1"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]] (Give answers to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CB5 - Finding turning points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Finding the stationary points of a cubic equation and determining their nature.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Given the function \\[ \\simplify{y={a}x^3+{b}x^2+{c}x+{d}} ,\\] find its stationary points and determine their nature.

", "advice": "

To find the stationary points of the function, we must solve $\\tfrac{dy}{dx}=0$ for $x$. For the function $\\simplify{y={a}x^3+{b}x^2+{c}x+{d}}$, 

\n

\\[ \\frac{dy}{dx} = \\simplify{{3a}x^2+{2b}x+{c}}. \\]

\n

Setting $\\frac{dy}{dx}=0$ and solving for $x$:

\n

\\[ \\simplify{{3a}x^2+{2b}x+{c}} =0  \\\\ \\\\ \\implies x=\\var{solx1dp} \\var{x1} \\text{ and } x=\\var{solx2dp} \\var{x2}. \\]

\n

Hence, the function has two stationary points at $x=\\var{solx1dp}$ and $x=\\var{solx2dp}$. To find the corresponding $y$-coordinates, we want to plug these values back into the initial equation.

\n

When $x=\\var{solx1dp}$,

\n

\\[ \\begin{split} y &\\,= \\simplify[unitFactor,!cancelTerms]{{a}*({solx1dp})^3+{b}*({solx1dp})^2+{c}*({solx1dp})+{d}} \\\\ &\\,=\\simplify{{soly1dp}} \\var{y1}. \\end{split} \\]

\n

When $x=\\var{solx2dp}$, 

\n

\\[ \\begin{split} y &\\,= \\simplify[unitFactor,!cancelTerms]{{a}*({solx2dp})^3+{b}*({solx2dp})^2+{c}*({solx2dp})+{d}} \\\\ &\\,=\\simplify{{soly2dp}} \\var{y2}. \\end{split} \\]

\n

Therefore, the stationary points of $y=\\simplify{{a}x^3+{b}x^2+{c}x+{d}}$ are

\n

\\[ (\\simplify{{solx1dp}},\\, \\simplify{{soly1dp}}) \\, , \\,(\\simplify{{solx2dp}},\\, \\simplify{{soly2dp}}). \\]

\n

Finally, we need to determine the nature of the stationary points. To do this we want to calculate the second derivative of the initial function and then evaluate it for each $x$-value of the stationary points. 

\n

Recall:

\n\n

To calculate $\\tfrac{d^2y}{dx^2}$, we want to differentiate $\\tfrac{dy}{dx}$ again with respect to $x$:

\n

\\[ \\begin{split} &\\frac{dy}{dx} = \\simplify{{3a}x^2+{2b}x+{c}}, \\\\ \\\\\\implies &\\frac{d^2y}{dx^2} = \\simplify{{6a}x+{2b}}. \\end{split}\\]

\n

For $(\\simplify{{solx1dp}},\\, \\simplify{{soly1dp}})$, $\\frac{d^2y}{dx^2} = \\simplify{{check}}$, so it is a minimum.

\n

For $(\\simplify{{solx2dp}},\\, \\simplify{{soly2dp}})$, $\\frac{d^2y}{dx^2} = \\simplify{{check2}}$, so it is a maximum.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-7..7)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..5 except b)", "description": "", "templateType": "anything", "can_override": false}, "solx1": {"name": "solx1", "group": "Ungrouped variables", "definition": "(-2b+sqrt((2b)^2-12*a*c))/(6a)", "description": "", "templateType": "anything", "can_override": false}, "solx2": {"name": "solx2", "group": "Ungrouped variables", "definition": "(-2b-sqrt((2b)^2-12*a*c))/(6a)", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "precround(6a*solx1+2b,2)", "description": "", "templateType": "anything", "can_override": false}, "check2": {"name": "check2", "group": "Ungrouped variables", "definition": "precround(6a*solx2+2b,2)", "description": "", "templateType": "anything", "can_override": false}, "soly1": {"name": "soly1", "group": "Ungrouped variables", "definition": "a*(solx1)^3+b*(solx1)^2+c*solx1+d", "description": "", "templateType": "anything", "can_override": false}, "soly2": {"name": "soly2", "group": "Ungrouped variables", "definition": "a*(solx2)^3+b*(solx2)^2+c*solx2+d", "description": "", "templateType": "anything", "can_override": false}, "solx1dp": {"name": "solx1dp", "group": "Ungrouped variables", "definition": "precround(solx1,2)", "description": "", "templateType": "anything", "can_override": false}, "solx2dp": {"name": "solx2dp", "group": "Ungrouped variables", "definition": "precround(solx2,2)", "description": "", "templateType": "anything", "can_override": false}, "soly1dp": {"name": "soly1dp", "group": "Ungrouped variables", "definition": "precround(soly1,2)", "description": "", "templateType": "anything", "can_override": false}, "soly2dp": {"name": "soly2dp", "group": "Ungrouped variables", "definition": "precround(soly2,2)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "if(round(solx1)=solx1,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "if(round(solx2)=solx2,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "if(round(soly1)=soly1,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "if(round(soly2)=soly2,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b^2>3*a*c", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "d", "solx1", "soly1", "solx2", "soly2", "check", "check2", "solx1dp", "solx2dp", "soly1dp", "soly2dp", "x1", "x2", "y1", "y2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

There is a minimum point at ([[0]], [[1]]) and a maximum point at ([[2]] , [[3]]).

\n

(Give the coordinates of the stationary points to 2 decimal places where necessary.)

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{solx1dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{soly1dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{solx2dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{soly2dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CB7 Differentiating Trig 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Find the derivative of a function of the form $y=a \\sin(bx+c)$ using a table of derivatives.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Using the Table of Derivatives, calculate the derivative of $y=\\simplify[unitFactor]{{a}sin({b}x+{c})}.$

\n

\n

", "advice": "

From the Table of Derivatives we see that a function of the form \\[ f(x)=a \\sin(kx+c) \\] has a derivative \\[ak \\cos (kx+c).\\]

\n

Therefore, the function  \\[y=\\simplify[unitFactor]{{a}*sin({b}x+{c})}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})\\cos(\\simplify[unitFactor]{{b}x+{c}})\\\\ &= \\simplify[unitFactor]{{a*b}cos({b}x+{c})}.\\end{split}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-15..15)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*b}cos({b}x+{c})", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CB9 Differentiating with Exponentials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculating the derivative of an exponential function of the form $ae^{bx}$, using a table of derivatives.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the derivative of $y=\\simplify[all]{{a}*e^({b}x)}.$

", "advice": "

From the Table of Derivatives we see that a function of the form \\[ f(x)=a e^{kx} \\] has a derivative \\[ak e^{kx}.\\]

\n

Therefore, the function  \\[y=\\simplify[unitFactor]{{a}*e^({b}x)}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})e^{\\simplify[unitFactor]{{b}x}}\\\\ &= \\simplify[unitFactor]{{a*b}e^({b}x)}.\\end{split}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-20..20 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*b}e^({b}x)", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CC1 Chain Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculating the derivative of a function of the form $\\sin(ax^m+bx^n)$ using the chain rule.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the derivative of $y=\\simplify[all]{sin({a}*x^{n}+{b}*x^{m})}$.

", "advice": "

If we have a function of the form $y=f(g(x))$, sometimes described as a function of a function, to calculate its derivative we need to use the chain rule:

\n

\\[ \\frac{dy}{dx} = \\frac{du}{dx} \\times \\frac{dy}{du}.\\]

\n

\n

This can be split up into steps:

\n\n

\n

Following this process, we must first identify $g(x)$. Since the function is of the form $y=f(g(x))$, we are looking for the 'inner' function.

\n

So, for $y=\\simplify[all,fractionNumbers]{sin({a}*x^{n}+{b}*x^{m})}$, \\[g(x)=\\simplify[all, fractionNumbers, unitFactor]{{a}*x^{n}+{b}*x^{m}}.\\]

\n

If we now set $u=g(x)$, we can rewrite $y$ in terms of $u$ such that $y=f(u)$:

\n

\\[y=\\simplify[all, fractionNumbers,unitFactor]{sin(u)}.\\]

\n

Next, we calculate the two derivatives $\\frac{du}{dx}$ and $\\frac{dy}{du}$:

\n

\\[\\frac{du}{dx}=\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}}, \\quad \\frac{dy}{du}=\\simplify[all, fractionNumbers, unitFactor]{cos(u)}.\\]

\n

Plugging these into the chain rule:

\n

\\[ \\begin{split} \\frac{dy}{dx} &= \\frac{du}{dx} \\times \\frac{dy}{du}, \\\\&=(\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}}) \\times\\simplify[all, fractionNumbers, unitFactor]{cos(u)}. \\end{split} \\]

\n

Finally, we need to express $\\frac{dy}{dx}$ only in terms of $x$, so we must replace the $u$ term using the initial substitution $u=\\simplify[all, fractionNumbers, unitFactor]{{a}*x^{n}+{b}*x^{m}}$:

\n

\\[ \\frac{dy}{dx} =(\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}})\\simplify[all, fractionNumbers, unitFactor]{cos({a}*x^{n}+{b}*x^{m})}.\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "n>m", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a*n}*x^{n-1}+{b*m}*x^{m-1})*cos({a}x^{n}+{b}x^{m})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CC2 Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculating the derivative a function of the form $ax^n \\sin(bx)$ using the product rule.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the derivative of \\[ \\simplify{y={a}x^{n} sin({b}x)}. \\]

", "advice": "

If we have a function of the form $y=u(x)v(x)$, to calculate its derivative we need to use the product rule:

\n

\\[ \\dfrac{dy}{dx} = u(x) \\times \\dfrac{dv}{dx} + v(x) \\times\\dfrac{du}{dx}.\\]

\n

This can be split up into steps:

\n
    \n
  1. Identify the functions $u(x)$ and $v(x)$;
  2. \n
  3. Calculate their derivatives $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$;
  4. \n
  5. Substitute these into the formula for the product rule to obtain an expression for $\\tfrac{dy}{dx}$;
  6. \n
  7. Simplify $\\tfrac{dy}{dx}$ where possible.
  8. \n
\n

Following this process, we must first identify $u(x)$ and $v(x)$.

\n

As \\[ \\simplify{y={a}x^{n} sin({b}x)}, \\]

\n

let \\[ u(x) = \\simplify{{a}x^{n}} \\quad \\text{and} \\quad v(x)=\\simplify{sin({b}x)}.\\]

\n

Next, we need to find the derivatives, $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$:

\n

\\[ \\dfrac{du}{dx} = \\simplify{{a*n}x^{n-1}}\\quad \\text{and} \\quad\\dfrac{dv}{dx}=\\simplify{{b}cos({b}x)}.\\]

\n

Substituting these results into the product rule formula we can obtain an expression for $\\tfrac{dy}{dx}$:

\n

\\[ \\begin{split} \\dfrac{dy}{dx} &\\,= \\dfrac{du}{dx}\\times v(x) + u(x) \\times\\dfrac{dv}{dx} \\\\ &\\,=\\simplify{{a*n}x^{n-1}} \\times\\simplify{sin({b}x)} +\\simplify{{a}x^{n}} \\times \\simplify{{b}cos({b}x)}.  \\end{split}\\]

\n

Simplifying,

\n

\\[\\dfrac{dy}{dx} = \\simplify{{n*a}x^{n-1}sin({b}x) + {a*b}x^{n}cos({b}x)}. \\]

\n

\n

Use this link to find some resources which will help you revise this topic

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\dfrac{dy}{dx}=$[[0]] 

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n*a}x^{n-1}sin({b}x) + {a*b}x^{n}cos({b}x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD3 Integration - Substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculating the integral of a function of the form $\\frac{nx^{n-1}}{x^n+a}$ using integration by substitution.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate \\[ \\simplify[all]{int(({n}x^{n-1})/(x^{n}+{a}),x)}\\]

\n

by using the substitution \\[ \\simplify[all]{u=x^{n}+{a}}.\\]

", "advice": "

Since this integral is of the form \\[ \\int g'(x)f(g(x))\\,dx,\\] we can use the method of substitution to calculate the solution. 

\n

Firstly, we must make a change of variables from $x$ to $u$, where $u$ is equal to the 'inner' function $g(x)$.

\n

So, for \\[\\simplify[fractionNumbers]{int(({n}x^{n-1})/((x^{n}+{a})),x)}\\]

\n

let $\\color{red}{u=\\simplify[fractionNumbers]{x^{n}+{a}}}.$

\n

Now, we need to calculate the differential, $du$, where \\[ du = \\left(\\frac{du}{dx}\\right)dx. \\]

\n

Differentiating $u$ with respect to $x$:

\n

\\[ \\frac{du}{dx}= \\simplify[fractionNumbers]{{n}x^{n-1}}.\\]

\n

Therefore, \\[ \\color{blue}{du = \\simplify[fractionNumbers]{{n}x^{n-1}}\\, dx}.\\]

\n

We can now rewrite the original integral in terms of $u$:

\n

\\[ \\int \\frac{\\color{blue}{\\simplify{{n}x^{n-1}}}}{\\color{red}{\\simplify{x^{n}+{a}}}}\\color{blue}{\\text{d}x} = \\int \\frac{1}{\\color{red}{u}}\\color{blue}{\\text{d}u}.\\]

\n

(Note: It is important to see that both the function we are integrating, and the variable we are integrating with respect to, has changed.)

\n

\\[ \\simplify[fractionNumbers]{int(1/u,u) = ln(abs(u)) + c}.\\]

\n

Finally, we must rewrite our solution back in terms of the original variable $x$:

\n

\\[ \\simplify[fractionNumbers]{ln(abs(u)) + c = ln(abs(x^{n}+{a})) + c}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "n"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alternative using brackets", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".

", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a})) + k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using brackets and \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".

", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.

", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a}))", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "ln(abs(x^{n}+{a}))+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD4 Integration - Parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculating the integral of a function of the form $ax^2 \\cos(bx)$ using integration by parts.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the integral \\[ \\simplify{int({a}x^2 cos({b}x),x)}\\]

", "advice": "

If we have a function of $x$ which is the product of two functions of $x$, to integrate such a function it is often necessary to use Integration by Parts. The formula for Integration by Parts is:

\n

\\[ \\int u(x) \\frac{dv}{dx} dx = u(x)v(x) - \\int v(x) \\frac{du}{dx} dx.\\]

\n

Using this method can be broken down into steps:

\n
    \n
  1. Identify $u(x)$ and $\\tfrac{dv}{dx}$ (The function you pick for each is important, in general you want $u(x)$ to become simpler when differentiating it, and you must be able to integrate $\\tfrac{dv}{dx}$ to find $v(x)$);
  2. \n
  3. Calculate $\\tfrac{du}{dx}$ and $v(x)$;
  4. \n
  5. Put the functions $u(x)$, $v(x)$, and their derivatives into the Integration by Parts formula;
  6. \n
  7. Calculate the integral $\\int v(x) \\tfrac{du}{dx} dx$ (This may require you to use Integration by Parts again, this is OK!);
  8. \n
  9. Simplify your answer where possible and don't forget to add the constant of integration.
  10. \n
\n

\n

For the integral

\n

\\[ \\simplify{int({a}x^2 cos({b}x),x)},\\]

\n

we must first identify $u(x)$ and $\\tfrac{dv}{dx}$. In this case, let \\[ u(x)=\\simplify{{a}x^2},\\quad \\frac{dv}{dx}= \\simplify{cos({b}x)}. \\]

\n

Next, we need to calculate $\\tfrac{du}{dx}$ and $v(x)$:

\n

\\[ \\begin{split} u(x) = \\var{a}x^2 \\quad &\\implies \\frac{du}{dx} = \\simplify{{2a}x}; \\\\ \\frac{dv}{dx} = \\cos(\\var{b}x) &\\implies v(x) = \\simplify[fractionNumbers]{1/{b} sin({b}x)}. \\end{split} \\]

\n

Plugging these 4 terms into the integration by parts formula:

\n

\\[  \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) - int({2a/b}x sin({b}x),x)},  \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x sin({b}x),x)}.\\end{split} \\]

\n

Since the integral on the right-hand side is still the product of two functions of $x$, we need to use integration by parts again. 

\n

So, for 

\n

\\[ \\simplify{int(x sin({b}x),x)}, \\]

\n

 Let $u=x$ and $\\tfrac{dv}{dx} = \\sin(\\var{b}x)$. Therefore, $\\tfrac{du}{dx}=1$ and $v(x)=\\simplify{-1/{b} cos({b}x)}$.

\n

Hence,

\n

\\[ \\begin{split} \\simplify{int(x sin({b}x),x)} &\\,= \\simplify{-1/{b}x cos({b}x)- int(-1/{b} cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify{-1/{b}x cos({b}x)+1/{b^2}sin({b}x)}. \\end{split}\\]

\n

Plugging this back into the original calculation:

\n

\\[  \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}[-1/{b}x cos({b}x)+1/{b^2}sin({b}x)]} \\\\ \\\\ &\\,=\\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) +{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)} + c.\\end{split} \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..7)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(a,b)=1 and b>a", "maxRuns": 100}, "ungrouped_variables": ["a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct Answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alt constant +k", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.

", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+c", "answerSimplification": "fractionNumbers, basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA1 Types of data", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["continuous data", "discrete data", "taxonomy"], "metadata": {"description": "

Decide whether each of the described sets of data is drawn from a discrete or continuous distribution.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Decide whether the following data sets are discrete or continuous.

", "advice": "

Data can either be discrete or continuous.

\n\n

\n

a)

\n

Height is a continuous variable. For example, 180.3cm and 180.4cm have a valid midpoint 180.35cm.Weight is a continuous variable. For example, 54.5kg and 54.6kg have a valid midpoint 54.55kg.Time is a continuous variable. For example, 54.2s and 54.3s have a valid midpoint 54.25s.Temperature is a continuous variable, it can take any value between -273.15°C (absolute zero) and positive infinity. For example, 25°C and 26°C have a valid midpoint 25.5°C. Hence, this data is continuous.

\n

b)

\n

The number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not.The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy a half of a bar. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5. The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.

\n

c)

\n

The number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not..The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy a half of a bar. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5.The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.

\n

d)

\n

Height is a continuous variable. For example, 180.3cm and 180.4cm have a valid midpoint 180.35cm.Weight is a continuous variable. For example, 54.5kg and 54.6kg have a valid midpoint 54.55kg.Time is a continuous variable. For example, 54.2s and 54.3s have a valid midpoint 54.25s.Temperature is a continuous variable, it can take any value between -273.15°C (absolute zero) and positive infinity. For example, 25°C and 26°C have a valid midpoint 25.5°C. Hence, this data is continuous.

\n

e)

\n

When we round continuous variables to the nearest integer, this data becomes discrete, as there are no valid middle measurements between the integers. Therefore, the weight of a dog to the nearest kgthe height of Olympic medalists to the nearest cmthe time taken to run 10km to the nearest min is discrete and not continuous.

\n

f)

\n

The number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not.The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy half of a bar of chocolate. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5.The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.

\n

Use this link to find some resources which will help you revise this topic

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"rand3": {"name": "rand3", "group": "Ungrouped variables", "definition": "random(0..5 except rand except rand2)", "description": "", "templateType": "anything", "can_override": false}, "cont": {"name": "cont", "group": "Ungrouped variables", "definition": "[\"The height of Newcastle University students.\", \"The weight of Olympic medalists.\", \"The time taken to brush teeth.\", \"The maximum daily temperature.\"]", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "[\"The number of Stage 1 students.\", \"The result of rolling 3 dice.\", \"Shoe sizes.\", \"The number of chocolate bars sold on Monday.\", \"The number of movies downloaded.\", \"The number of cinema tickets sold.\"]", "description": "", "templateType": "anything", "can_override": false}, "trick": {"name": "trick", "group": "Ungrouped variables", "definition": "[\"The weight of a dog to the nearest kg.\", \"The height of Olympic medalists to the nearest cm.\", \"The time taken to run 10km to the nearest min.\"]", "description": "", "templateType": "anything", "can_override": false}, "ranc2": {"name": "ranc2", "group": "Ungrouped variables", "definition": "random(0..3 except ranc)", "description": "", "templateType": "anything", "can_override": false}, "rant": {"name": "rant", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "rand": {"name": "rand", "group": "Ungrouped variables", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "rand2": {"name": "rand2", "group": "Ungrouped variables", "definition": "random(0..5 except rand)", "description": "", "templateType": "anything", "can_override": false}, "ranc": {"name": "ranc", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["disc", "cont", "trick", "ranc", "rant", "ranc2", "rand2", "rand3", "rand"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{cont[ranc]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{disc[rand]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{disc[rand2]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{cont[ranc2]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{trick[rant]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{disc[rand3]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA5 Interpret a Box Plot", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "

Interpreting the elements of a box plot

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The diagram below shows a box plot of some data.

\n

{geogebra_applet{\"https://www.geogebra.org/m/aj2hcbhg\",[lv: lv,lq: lq,m: m,uq: uq,hv: hv]}}

\n

", "advice": "

A boxplot (also known as a box-and-whisker diagram or plot) is a convenient way of graphically depicting groups of numerical data through their five-number summaries: the smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation (sample maximum). A boxplot may also indicate which observations, if any, might be considered outliers.

\n

For more information on box plots follow this link.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"lv": {"name": "lv", "group": "Ungrouped variables", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "lq": {"name": "lq", "group": "Ungrouped variables", "definition": "random(7 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(11 .. 14#1)", "description": "", "templateType": "randrange", "can_override": false}, "uq": {"name": "uq", "group": "Ungrouped variables", "definition": "random(15 .. 22#1)", "description": "", "templateType": "randrange", "can_override": false}, "hv": {"name": "hv", "group": "Ungrouped variables", "definition": "random(23 .. 30#1)", "description": "", "templateType": "randrange", "can_override": false}, "IQR": {"name": "IQR", "group": "Ungrouped variables", "definition": "uq-lq", "description": "", "templateType": "anything", "can_override": false}, "range": {"name": "range", "group": "Ungrouped variables", "definition": "hv-lv", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["lv", "lq", "m", "uq", "hv", "IQR", "range"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of these statements are true and which are false?

", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": false, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["The range of the data is $\\var{range}$.", "The Interquarttile range of the data is larger than the range of the data.", "You can calculate the mean of the data from this Box plot.", "

The median of the data is $\\var{m}$.

", "The mode of the data is $\\var{lv-3}$."], "matrix": [["1", 0], [0, "1"], [0, "1"], ["1", 0], [0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["True.", "False."]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA6 Calculate Range", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["mean", "measures of average and spread", "median", "mode", "range", "taxonomy"], "metadata": {"description": "

This question provides a list of data to the student. They are asked to find the \"range\".

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

A random sample of 20 residents from Newcastle were asked about the number of times they went to see a play at the theatre last year.

\n

Here is the list of their answers:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\var{a[0]}$$\\var{a[1]}$$\\var{a[2]}$$\\var{a[3]}$$\\var{a[4]}$$\\var{a[5]}$$\\var{a[6]}$$\\var{a[7]}$$\\var{a[8]}$$\\var{a[9]}$
$\\var{a[10]}$$\\var{a[11]}$$\\var{a[12]}$$\\var{a[13]}$$\\var{a[14]}$$\\var{a[15]}$$\\var{a[16]}$$\\var{a[17]}$$\\var{a[18]}$$\\var{a[19]}$
\n

", "advice": "

Range is the difference between the highest and the lowest value in the data.

\n

To find this, we subtract the lowest value from the highest value:

\n

\\[ \\var{max(a)} - \\var{min(a)} = \\var{range} \\text{.}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a2": {"name": "a2", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 20)", "description": "

Option 2 for the list. Only used if there is only one mode and option 1 was not used.

", "templateType": "anything", "can_override": false}, "modea1": {"name": "modea1", "group": "Ungrouped variables", "definition": "mode(a1)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 20)", "description": "

Option 1 for the list. Only used if there is only one mode.

", "templateType": "anything", "can_override": false}, "a_s": {"name": "a_s", "group": "final list", "definition": "sort(a)", "description": "

Sorted list.

", "templateType": "anything", "can_override": false}, "modea2": {"name": "modea2", "group": "Ungrouped variables", "definition": "mode(a2)", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "shuffle([ random(0..1),\n 2, \n random(4..6),\n random(0..3 except 2), \n random(0..3 except 2),\n random(4..6),\n 2,\n 2,\n random(4..6),\n random(7..8),\n random(0..3 except 2 except 1), \n random(4..6),\n 2,\n random(1..3 except 2), \n random(7..8),\n 2,\n random(7..8),\n random(4..6), \n random(0..3 except 2), \n 2\n])", "description": "

Option 3 for the list. Ensures there is only one mode (2) while still randomising the data.

", "templateType": "anything", "can_override": false}, "modetimes": {"name": "modetimes", "group": "final list", "definition": "map(\nlen(filter(x=j,x,a)),\nj, 0..8)", "description": "

The vector of number of times of each value in the data.

", "templateType": "anything", "can_override": false}, "range": {"name": "range", "group": "final list", "definition": "max(a) - min(a)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "final list", "definition": "if(len(modea1) = 1, a1, if(len(modea2) = 1, a2, a3))", "description": "

The final list.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["modea1", "modea2", "a1", "a2", "a3"], "variable_groups": [{"name": "final list", "variables": ["a", "a_s", "range", "modetimes"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the range.

", "minValue": "range", "maxValue": "range", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA10 Choosing the appropriate average", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "

This question asks the student to choose the appropriate measure of average and spread for a data with outliers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Which of the following measures would you choose if you were dealing with data which includes outliers? Select one measure of average and one measure of spread.

", "advice": "

The median is a more appropriate measure of average when your data contains outliers because outliers do not affect the median.

\n

The interquartile range is the best measure of variability for skewed distributions or data sets with outliers. Because it’s based on values that come from the middle half of the distribution, it’s unlikely to be influenced by outliers.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Mean", "Median", "Standard deviation", "P-value", "Range", "Inter-quartile range"], "matrix": [0, "1", 0, 0, 0, "1"], "distractors": ["", "", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA11 Identify measures of spread/location", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Gareth Woods", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/978/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "

Identifying measures of spread or location (average)

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Match each of the following with what they measure.

", "advice": "

The mean is a measure of location or central tendancy. It is calcuated by summing all of the data values and dividing by the number of values.

\n

The median is a measure of location or central tendancy. It is the middle value of an ordered data set.

\n

The inter-quartile range is a measure of spread. The interquartile range is the difference between upper and lower quartiles.The lower quartile, or first quartile (Q1), is the value under which 25% of data points are found when they are arranged in increasing order. The upper quartile, or third quartile (Q3), is the value under which 75% of data points are found when arranged in increasing order. The inter-quartile range therefore gives us an idea of the middle 50% of the ordered data set.

\n

The standard deviation is a measure of spread. It measures the dispersion of a data set relative to its mean. 

\n

The variance is a measure spread because it is the square of the standard deviation.

\n

A p-value the probability that a particular statistical measure, such as the mean or standard deviation, of an assumed probability distribution will be greater than or equal to (or less than or equal to in some instances) observed results. A p-value is used to determine statistical significance, not measures of spread or location.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {"std": ["all", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "function dragpoint_board() {\n var scope = question.scope;\n\n JXG.Options.text.display = 'internal';\n \n var yo0 = scope.variables.yo0.value;\n var yo1 = scope.variables.yo1.value;\n var yo2 = scope.variables.yo2.value;\n var yo3 = scope.variables.yo3.value;\n var yo4 = scope.variables.yo4.value;\n var yo5 = scope.variables.yo5.value;\n var yo6 = scope.variables.yo6.value;\n var yo7 = scope.variables.yo7.value; \n var yo8 = scope.variables.yo8.value;\n var yo9 = scope.variables.yo9.value; \n \n var div = Numbas.extensions.jsxgraph.makeBoard('550px','550px',{boundingBox:[-0.8,82,16,-8], axis:false, grid:true});\n \n $(question.display.html).find('#dragpoint').append(div);\n \n var board = div.board;\n \nboard.suspendUpdate(); \n\n \n var dataArr = [yo0,yo5,0,yo1,yo6,0,yo2,yo7,0,yo3,yo8,0,yo4,yo9]; \n \n var xaxis = board.create('axis', [[0, 0], [12, 0]], {withLabel: true, name: \"Bank\", label: {offset: [250,-30]}});\n \n xaxis.removeAllTicks(); \n \n board.create('axis', [[0, 0], [0, 10]], {hideTicks:true, withLabel: false, name: \"\", label: {offset: [-110,300]}});\n \n var pop0 = board.create('point', [1.5,0],{name:'Morgan',fixed:true,size:0,color:'black',face:'diamond', label:{offset:[-20,-8]}});\n var pop1 = board.create('point',[4.5,0],{name:'Strome',fixed:true,size:0,color:'black',face:'diamond', label:{offset:[-20,-8]}});\n var pop2 = board.create('point',[7.5,0],{name:'Bentley',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n var pop3 = board.create('point',[10.5,0],{name:'Sand',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n var pop4 = board.create('point',[13.5,0],{name:'Karchen',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n\n var leg1 = board.create('point',[12,75],{name:'last year',fixed:true,size:6,color:'#DA2228', face:'square', label:{offset:[9,0]}});\n var leg2 = board.create('point',[12,72],{name:'this year',fixed:true,size:6,color:'#6F1B75', face:'square', label:{offset:[9,0]}});\n \n \n// var chart = board.createElement('chart', dataArr, \n // {chartStyle:'bar', fillOpacity:1, width:1,\n // colorArray:['#8E1B77','#8E1B77','Red','Red','blue','red','blue','red','red','blue', 'red','blue','red','red'], shadow:false});\n \n//var chart = board.createElement('chart', dataArr, \n // {chartStyle:'bar', width:1,fillOpacity:1, fillColor:'red', shadow:false}); \n \n \n var a = board.create('chart', [[1,2,3],[yo0,yo5,0]], {chartStyle:'bar',colors:['#DA2228','#6F1B75','#6F1B75'],width:1,fillOpacity:1});\n var b = board.create('chart', [[4,5,6],[yo1,yo6,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var c = board.create('chart', [[7,8,9],[yo2,yo7,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var d = board.create('chart', [[10,11,12],[yo3,yo8,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var e = board.create('chart', [[13,14],[yo4,yo9]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75'],fillOpacity:1});\n \n board.unsuspendUpdate();\n \n var txt1 = board.create('text',[-0.3,30, 'Investment \u00a3(m)'], {fontColor:'black', fontSize:14, rotate:90});\n \n // var txt = board.create('text',[0.5,75, 'Investment (m)'], {fontSize:14, rotate:90});\n \n // var txt1 = board.create('text',[8,76, 'red bars represent 2010'], {fontColor:'red', fontSize:14, rotate:90});\n \n // var txt2 = board.create('text',[8,73, 'blue bars represents 2011'], {fontSize:14, rotate:90});\n\n // var myColors = new Array('red', 'blue', 'white','red', 'blue', 'white','red', 'blue', 'white','red', 'blue', 'white','red', 'blue');\n \n \n \n //board.unsuspendUpdate();\n\n // Rotate text around the lower left corner (-2,-1) by 30 degrees.\n // var tRot = board.create('transform', [90.0*Math.PI/180.0, -1,40], {type:'rotate'}); \n // tRot.bindTo(txt);\n // board.update();\n\n \n//var chart2 = board.createElement('chart', dataArr, {chartStyle:'line,point'});\n//chart2[0].setProperty('strokeColor:black','strokeWidth:2','shadow:true');\n//for(var i=0; i<11;i++) {\n // chart2[1][i].setProperty({strokeColor:'black',fillColor:'white',face:'[]', size:4, strokeWidth:2});\n//}\n//board.unsuspendUpdate(); \n \n //board.unsuspendUpdate();\n\n}\n\nquestion.signals.on('HTMLAttached',function() {\n dragpoint_board();\n});", "css": "table#values th {\n background: none;\n text-align: center;\n}"}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Variance", "Mean", "Median", "Inter-quartile range", "P-value", "Standard deviation"], "matrix": [["1", 0, 0], [0, "1", 0], [0, "1", 0], ["1", 0, 0], [0, 0, "1"], ["1", 0, 0]], "layout": {"type": "all", "expression": ""}, "answers": ["Measure of Spread", "Measure of location (average)", "Neither measure of location nor measure of spread"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA12 Interpret contingency table", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}], "tags": [], "metadata": {"description": "

Calculate an intersection probability given a two way table.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

a) Each row and column must sum to the 'total'.

\n

b) Look for the column containing '$\\var{q1a}$' and the row containing '$\\var{q1b}$'.  The entry where they intersect, $\\var{q1*total}$, is the value we are interested in.  

Since we require a probability, this is $\\var{q1*total}$ out of $\\var{total}$, i.e.

\n

\\[ \\frac{\\var{q1*total}}{\\var{total}} \\]

\n

\n

Use this link to find some resources which will help you revise this topic

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"nA": {"name": "nA", "group": "Final data", "definition": "pairs[0]", "description": "", "templateType": "anything", "can_override": false}, "pairs": {"name": "pairs", "group": "Final data", "definition": "random(['red','shiny'],['Phenotype A','Phenotype B'],['dairy', 'wheat'],['F','G'],['child','dog owner'],['X','Y'],['hat', 'glasses'])", "description": "", "templateType": "anything", "can_override": false}, "nB": {"name": "nB", "group": "Final data", "definition": "pairs[1]", "description": "", "templateType": "anything", "can_override": false}, "AnB": {"name": "AnB", "group": "Final data", "definition": "random(10..20)", "description": "", "templateType": "anything", "can_override": false}, "AnB'": {"name": "AnB'", "group": "Final data", "definition": "random(1..20)", "description": "", "templateType": "anything", "can_override": false}, "notAnB'": {"name": "notAnB'", "group": "Final data", "definition": "random(1..20)", "description": "", "templateType": "anything", "can_override": false}, "notAnB": {"name": "notAnB", "group": "Final data", "definition": "random(1..20)", "description": "", "templateType": "anything", "can_override": false}, "total": {"name": "total", "group": "Final data", "definition": "AnB+AnB' + notAnB' + notAnB\n", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Final data", "definition": "AnB+AnB'", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Final data", "definition": "notAnB + AnB", "description": "", "templateType": "anything", "can_override": false}, "q1a": {"name": "q1a", "group": "Final data", "definition": "if(isornot1=0,\"not {pairs[0]}\",pairs[0])", "description": "", "templateType": "anything", "can_override": false}, "q2a": {"name": "q2a", "group": "Final data", "definition": "if(isornot3=0,\"not {pairs[0]}\",pairs[0])", "description": "", "templateType": "anything", "can_override": false}, "q1b": {"name": "q1b", "group": "Final data", "definition": "if(isornot2=0,\"not {pairs[1]}\",pairs[1])", "description": "", "templateType": "anything", "can_override": false}, "q2b": {"name": "q2b", "group": "Final data", "definition": "if(isornot4=0,\"not {pairs[1]}\",pairs[1])", "description": "", "templateType": "anything", "can_override": false}, "q1": {"name": "q1", "group": "Final data", "definition": "if(isornot1=0,if(isornot2=0,notAnB',notAnB),if(isornot2=0,AnB',AnB))/total", "description": "", "templateType": "anything", "can_override": false}, "q2": {"name": "q2", "group": "Final data", "definition": "if(isornot3=0,if(isornot4=0,notAnB'/(total-A),notAnB/(total-A)),if(isornot4=0,AnB'/A,AnB/A))", "description": "", "templateType": "anything", "can_override": false}, "isornot1": {"name": "isornot1", "group": "Final data", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "isornot2": {"name": "isornot2", "group": "Final data", "definition": "random(1,0)", "description": "", "templateType": "anything", "can_override": false}, "isornot3": {"name": "isornot3", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "isornot4": {"name": "isornot4", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "1000"}, "ungrouped_variables": ["isornot3", "isornot4"], "variable_groups": [{"name": "Final data", "variables": ["nA", "pairs", "nB", "AnB", "AnB'", "notAnB'", "notAnB", "total", "A", "B", "q1a", "q2a", "q1b", "q2b", "q1", "q2", "isornot1", "isornot2"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{total}$ items are sampled.  Complete the table.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
   $\\var{nB}$    not $\\var{nB}$   TOTAL  
   $\\var{nA}$    [[0]] $\\var{AnB'}$  $\\var{A}$ 
 not $\\var{nA}$  $\\var{notAnB}$ [[1]] [[2]]
 TOTAL [[3]]  [[4]]$\\var{total}$
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "AnB", "maxValue": "AnB", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{notAnB'}", "maxValue": "{notAnB'}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{total-A}", "maxValue": "{total-A}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{B}", "maxValue": "{B}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{total-B}", "maxValue": "{total-B}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If one item is picked at random, use the table to calculate the probability that the item is '{q1a}' and '{q1b}'.

Give your answer as a fraction, or a decimal correct to 2dp.

", "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "precround(q1,2)", "maxValue": "precround(q1,2)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "{q1}", "maxValue": "{q1}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA13 Correlation", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Richard Miles", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/882/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}], "tags": [], "metadata": {"description": "

Tests understanding of scatter plots and related concepts.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

The scatter plot below shows the relationship between an employee’s height in centimetres and how long it takes them to walk to work in minutes.

\n\n\n\n\n\n\n\n\n\n\n\n
time (mins){drawgraph()}
height (cm)
\n

\n

\n

\n

", "advice": "

The graph shows that there is a positive correlation between a person's height and how long it takes them to walk to work.

\n

A postive correlation is a relationship between two variables where both variables move in the same diection.

\n

This tells us that as a person's height increases, the time it takes to walk to work increases.

\n

Use this link to find some resources which will help you revise this topic

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"slope": {"name": "slope", "group": "Regression variables", "definition": "(6*sumxy-sumx*sumy)/(6*sumxx-(sumx)^2)", "description": "

s

", "templateType": "anything", "can_override": false}, "timemax": {"name": "timemax", "group": "Calculation variables", "definition": "max([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "minx": {"name": "minx", "group": "Graph Limits", "definition": "140", "description": "", "templateType": "anything", "can_override": false}, "miny": {"name": "miny", "group": "Graph Limits", "definition": "-10", "description": "", "templateType": "anything", "can_override": false}, "p3x": {"name": "p3x", "group": "Points", "definition": "random(166..175)", "description": "", "templateType": "anything", "can_override": false}, "p3y": {"name": "p3y", "group": "Points", "definition": "random(26..35)", "description": "", "templateType": "anything", "can_override": false}, "p5x": {"name": "p5x", "group": "Points", "definition": "random(146..155 except p1x)", "description": "", "templateType": "anything", "can_override": false}, "p5y": {"name": "p5y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "p1x": {"name": "p1x", "group": "Points", "definition": "random(146..155)", "description": "", "templateType": "anything", "can_override": false}, "p1y": {"name": "p1y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "timediff": {"name": "timediff", "group": "Calculation variables", "definition": "timemax-timemin", "description": "", "templateType": "anything", "can_override": false}, "maxx": {"name": "maxx", "group": "Graph Limits", "definition": "188", "description": "", "templateType": "anything", "can_override": false}, "maxy": {"name": "maxy", "group": "Graph Limits", "definition": "63", "description": "", "templateType": "anything", "can_override": false}, "roundedslope": {"name": "roundedslope", "group": "Regression variables", "definition": "precround(slope,2)", "description": "", "templateType": "anything", "can_override": false}, "yintercept": {"name": "yintercept", "group": "Regression variables", "definition": "(sumy-slope*sumx)/6", "description": "", "templateType": "anything", "can_override": false}, "timemin": {"name": "timemin", "group": "Calculation variables", "definition": "min([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "tallest": {"name": "tallest", "group": "Calculation variables", "definition": "max([p1x,p2x,p3x,p4x,p5x,p6x])", "description": "", "templateType": "anything", "can_override": false}, "regy1": {"name": "regy1", "group": "Regression variables", "definition": "slope*minx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "regy2": {"name": "regy2", "group": "Regression variables", "definition": "slope*maxx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "sumy": {"name": "sumy", "group": "Regression variables", "definition": "p1y+p2y+p3y+p4y+p5y+p6y", "description": "", "templateType": "anything", "can_override": false}, "sumx": {"name": "sumx", "group": "Regression variables", "definition": "p1x+p2x+p3x+p4x+p5x+p6x", "description": "", "templateType": "anything", "can_override": false}, "p6y": {"name": "p6y", "group": "Points", "definition": "random(46..55)", "description": "

p6y

", "templateType": "anything", "can_override": false}, "p6x": {"name": "p6x", "group": "Points", "definition": "random(176..185 except p4x)", "description": "", "templateType": "anything", "can_override": false}, "p4y": {"name": "p4y", "group": "Points", "definition": "random(36..45)", "description": "", "templateType": "anything", "can_override": false}, "p4x": {"name": "p4x", "group": "Points", "definition": "random(176..185)", "description": "", "templateType": "anything", "can_override": false}, "p2y": {"name": "p2y", "group": "Points", "definition": "random(16..25)", "description": "", "templateType": "anything", "can_override": false}, "p2x": {"name": "p2x", "group": "Points", "definition": "random(156..165)", "description": "", "templateType": "anything", "can_override": false}, "sumxx": {"name": "sumxx", "group": "Regression variables", "definition": "p1x^2+p2x^2+p3x^2+p4x^2+p5x^2+p6x^2", "description": "", "templateType": "anything", "can_override": false}, "sumxy": {"name": "sumxy", "group": "Regression variables", "definition": "p1x*p1y+p2x*p2y+p3x*p3y+p4x*p4y+p5x*p5y+p6x*p6y", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Graph Limits", "variables": ["minx", "maxx", "miny", "maxy"]}, {"name": "Points", "variables": ["p1x", "p1y", "p2x", "p2y", "p3x", "p3y", "p4x", "p4y", "p5x", "p5y", "p6x", "p6y"]}, {"name": "Calculation variables", "variables": ["tallest", "timemax", "timemin", "timediff"]}, {"name": "Regression variables", "variables": ["sumx", "sumy", "sumxy", "sumxx", "slope", "yintercept", "regy1", "regy2", "roundedslope"]}], "functions": {"drawgraph": {"parameters": [], "type": "html", "language": "javascript", "definition": " var miny = Numbas.jme.unwrapValue(scope.variables.miny);\n var maxy = Numbas.jme.unwrapValue(scope.variables.maxy);\n var minx = Numbas.jme.unwrapValue(scope.variables.minx);\n var maxx = Numbas.jme.unwrapValue(scope.variables.maxx);\n var regy1 = Numbas.jme.unwrapValue(scope.variables.regy1);\n var regy2 = Numbas.jme.unwrapValue(scope.variables.regy2);\n\n var p1x = Numbas.jme.unwrapValue(scope.variables.p1x);\n var p1y = Numbas.jme.unwrapValue(scope.variables.p1y);\n var p2x = Numbas.jme.unwrapValue(scope.variables.p2x);\n var p2y= Numbas.jme.unwrapValue(scope.variables.p2y);\n var p3x = Numbas.jme.unwrapValue(scope.variables.p3x);\n var p3y= Numbas.jme.unwrapValue(scope.variables.p3y);\n var p4x = Numbas.jme.unwrapValue(scope.variables.p4x);\n var p4y= Numbas.jme.unwrapValue(scope.variables.p4y);\n var p5x = Numbas.jme.unwrapValue(scope.variables.p5x);\n var p5y= Numbas.jme.unwrapValue(scope.variables.p5y);\n var p6x = Numbas.jme.unwrapValue(scope.variables.p6x);\n var p6y= Numbas.jme.unwrapValue(scope.variables.p6y);\n \n var div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox:[minx,maxy,maxx,miny],\n axis:false,\n showNavigation:false,\n grid:true});\n var brd = div.board; \n var xaxis=brd.createElement('axis', [[minx,0],[maxx,0]]);\n var yaxis=brd.createElement('axis', [[minx+5,miny],[minx+5,maxy]]);\n var li1=brd.create('line',[[minx,regy1],[maxx,regy2]],{fixed:true,withLabel:false});\n var pt1=brd.create('point',[p1x,p1y],{visible:true,withLabel:false}); \n var pt2=brd.create('point',[p2x,p2y],{visible:true,withLabel:false}); \n var pt3=brd.create('point',[p3x,p3y],{visible:true,withLabel:false}); \n var pt4=brd.create('point',[p4x,p4y],{visible:true,withLabel:false}); \n var pt5=brd.create('point',[p5x,p5y],{visible:true,withLabel:false}); \n var pt6=brd.create('point',[p6x,p6y],{visible:true,withLabel:false}); \nreturn div;\n "}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Mark the statement that best describes what this scatter plot shows.

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

In general, there is a positive correlation between a person's height and how long it takes them to walk to work.

", "

In general, there is a negative correlation between a person's height and how long it takes them to walk to work.

", "

In general, there is a no correlation between a person's height and how long it takes them to walk to work.

"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA14 Probability - \"sample space\"", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}], "tags": [], "metadata": {"description": "

Calculate probability of selecting coloured counters from a bag.

", "licence": "None specified"}, "statement": "

A bag contains:

$\\var{srn}$ small, red tokens, 
$\\var{sbn}$ small, blue tokens, 
$\\var{brn}$ large, red tokens, and 
$\\var{bbn}$ large, blue tokens.

", "advice": "

part a)

\n

A probability is a fraction.  You can give your answer as a fraction, decimal or percentage as these are all equivalent.

The formula for probability is:

\n

\\[ P(A) = \\frac{\\text{number of possibilities for A}}{\\text{number of total possible outcomes}} \\]

\n

For this question the total possible outcomes are $\\var{srn}+\\var{sbn}+\\var{brn}+\\var{bbn} = \\var{total}$.

Therefore

\n

\\[ P(\\text{A large red token}) = \\frac{\\var{brn}}{\\var{total}} = \\var[fractionnumbers]{brn/total}\\]

\n

part b)

\n

For this question we need to know the total number of small tokens, i.e. $\\var{srn}+\\var{sbn} = \\var{srn+sbn}$.

Therefore

\n

\\[ P(\\text{A small token}) = \\frac{\\var{srn+sbn}}{\\var{total}} = \\var[fractionnumbers]{(srn+sbn)/total}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"srn": {"name": "srn", "group": "Ungrouped variables", "definition": "random(1..20)", "description": "", "templateType": "anything", "can_override": false}, "brn": {"name": "brn", "group": "Ungrouped variables", "definition": "random(1..20)", "description": "", "templateType": "anything", "can_override": false}, "sbn": {"name": "sbn", "group": "Ungrouped variables", "definition": "random(1..20)", "description": "", "templateType": "anything", "can_override": false}, "bbn": {"name": "bbn", "group": "Ungrouped variables", "definition": "random(1..20)", "description": "", "templateType": "anything", "can_override": false}, "total": {"name": "total", "group": "Ungrouped variables", "definition": "brn+bbn+srn+sbn", "description": "", "templateType": "anything", "can_override": false}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "precround(brn/total,2)", "description": "", "templateType": "anything", "can_override": false}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "precround((srn+sbn)/total,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["srn", "brn", "sbn", "bbn", "total", "ans1", "ans2"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You take a token at random.

What is the probability that it is a large, red token?

Give your answer as a fraction, or a decimal correct to 2dp.

", "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "ans1", "maxValue": "ans1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "{brn}/{total}", "maxValue": "{brn}/{total}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You take a token at random.

What is the probability that it is a small token?

Give your answer as a fraction, or a decimal correct to 2dp.

", "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "ans2", "maxValue": "ans2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "{{srn}+{sbn}}/{total}", "maxValue": "{{srn}+{sbn}}/{total}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SA15 Intuitive Probability", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["taxonomy"], "metadata": {"description": "

Predicting the probability of an unbiased coin landing on heads based on the results of previous throws.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

When we flip an unbiased coin there are two possible events that we could measure: the coin lands on heads or the coin lands on tails.

\n

Each toss of the coin is independent; if we flip a coin once and it lands on heads then the next time we flip the coin it is still equally likely to land on either heads or tails.

\n

It doesn't matter what the coin landed on previously as this outcome does not affect the outcome of the next flip of the coin.

\n

Even when we flip an unbiased coin $\\var{no_flips}$ times and it lands on heads each time; the next time we flip the coin, it is still equally likely to land on either heads or tails.

\n

So the probability that the coin lands on heads the next time that the coin is flipped is still $\\displaystyle\\frac{1}{2}$.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"no_flips": {"name": "no_flips", "group": "Ungrouped variables", "definition": "random(6..9)", "description": "

Number of flips of the coin

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["no_flips"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

An unbiased coin is flipped $\\var{no_flips}$ times. Given that the coin landed on heads each time, what is the probability of the coin landing on heads the next time it is flipped?

", "minValue": "1/2", "maxValue": "1/2", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": true, "startpassword": "", "allowAttemptDownload": true, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "

This is a tool for you! It is here to help you diagnose whether there are any maths or statistics pre-requisites for your course that you may want to brush up on. If at any point you are struggling with any question you should find a link at the end of the \"reveal answer\" section that will take you to some recommended online resources on that subject area. You can also always contact the Maths and Stats Help team (MaSH) to arrange a one to one appointment or check out our workshop timetable to see if you can access the support you need that way. Find all this information via our website here!

", "end_message": "

Thanks for completing the Skills Audit. You can attempt this as many times as you need. Remember the score is not what matters - this is in no way assessed work - this is simply a tool for working out whether you may need to brush up on anything to ensure that you can access all the material on your course and get off to the best possible start.

\n

Don't forget to look up what support is available to you through our web pages here!

", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "extensions": ["geogebra", "jsxgraph", "stats"], "custom_part_types": [{"source": {"pk": 2, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/2/edit"}, "name": "List of numbers", "short_name": "list-of-numbers", "description": "

The answer is a comma-separated list of numbers.

\n

The list is marked correct if each number occurs the same number of times as in the expected answer, and no extra numbers are present.

\n

You can optionally treat the answer as a set, so the number of occurrences doesn't matter, only whether each number is included or not.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "join(\n if(settings[\"correctAnswerFractions\"],\n map(let([a,b],rational_approximation(x), string(a/b)),x,settings[\"correctAnswer\"])\n ,\n settings[\"correctAnswer\"]\n ),\n settings[\"separator\"] + \" \"\n)", "hint": {"static": false, "value": "if(settings[\"show_input_hint\"],\n \"Enter a list of numbers separated by {settings['separator']}.\",\n \"\"\n)"}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "bits:\nlet(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)\n\nexpected_numbers:\nlet(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)\n\nvalid_numbers:\nif(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )\n\nis_sorted:\nassert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )\n\nincluded:\nmap(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentThe separate items in the student's answer

", "definition": "let(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)"}, {"name": "expected_numbers", "description": "", "definition": "let(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)"}, {"name": "valid_numbers", "description": "

Is every number in the student's list valid?

", "definition": "if(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )"}, {"name": "is_sorted", "description": "

Are the student's answers in ascending order?

", "definition": "assert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )"}, {"name": "included", "description": "

Is each number in the expected answer present in the student's list the correct number of times?

", "definition": "map(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentHas every number been included the right number of times?

", "definition": "all(included)"}, {"name": "no_extras", "description": "

True if the student's list doesn't contain any numbers that aren't in the expected answer.

", "definition": "if(all(map(x in expected_numbers, x, interpreted_answer)),\n true\n ,\n incorrect(\"Your answer contains \"+extra_numbers[0]+\" but should not.\");\n false\n )"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "if(lower(studentAnswer) in [\"empty\",\"\u2205\"],[],\n map(\n if(settings[\"allowFractions\"],parsenumber_or_fraction(x,notationStyles), parsenumber(x,notationStyles))\n ,x\n ,bits\n )\n)"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=\"\",fail(\"You have not entered an answer\"),false);\napply(valid_numbers);\napply(included);\napply(no_extras);\ncorrectif(all_included and no_extras)"}, {"name": "notationStyles", "description": "", "definition": "[\"en\"]"}, {"name": "isSet", "description": "

Should the answer be considered as a set, so the number of times an element occurs doesn't matter?

", "definition": "settings[\"isSet\"]"}, {"name": "extra_numbers", "description": "

Numbers included in the student's answer that are not in the expected list.

", "definition": "filter(not (x in expected_numbers),x,interpreted_answer)"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The list of numbers that the student should enter. The order does not matter.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "allowFractions", "label": "Allow the student to enter fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "correctAnswerFractions", "label": "Display the correct answers as fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "isSet", "label": "Is the answer a set?", "help_url": "", "hint": "If ticked, the number of times an element occurs doesn't matter, only whether it's included at all.", "input_type": "checkbox", "default_value": false}, {"name": "show_input_hint", "label": "Show the input hint?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": true}, {"name": "separator", "label": "Separator", "help_url": "", "hint": "The substring that should separate items in the student's list", "input_type": "string", "default_value": ",", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": []}