// Numbas version: finer_feedback_settings {"name": "Skills Audit for Maths and Stats - Chemistry (CHM1013)", "metadata": {"description": "
Skills Audit for Chemistry students.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], "questions": [{"name": "NU03 Convert Units - volume - l to ml", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Simple unit conversion with metric units.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Express {liquid} litres ($l$) in millilitres ($ml$).
", "advice": "There are $1000ml$ in $1l$. To work out the conversion: $\\var{liquid}*1000 = \\var{answer}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"liquid": {"name": "liquid", "group": "Ungrouped variables", "definition": "random(1 .. 6#0.01)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "liquid*1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["liquid", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]$ml$
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU04 Convert Units - volume - ml to l", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Metric Unit conversion - division by 1000.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Express {liquid} millilitres ($ml$) in litres ($l$). Give your answer to 3 decimal places.
", "advice": "There are $1000ml$ in $1l$. To work out the conversion: $\\frac{\\var{liquid}}{1000} = \\var{answer}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"liquid": {"name": "liquid", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "liquid/1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["liquid", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]$l$
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU05 Convert Units - metric prefixes - milligrams to grams", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Using prefixes (milli) in this case.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Express {x} milligrams ($mg$) in grams ($g$). Give your answer to 3 decimal places.
", "advice": "There are $1000mg$ in $1g$. To work out the conversion: $\\frac{\\var{x}}{1000} = \\var{answer}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x/1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]$g$
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU06 Convert Units - metric prefixes - milligrams to micrograms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Using prefixes - milli and micro.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Express {x} milligrams ($mg$) in micrograms ($\\mu g$).
", "advice": "There are $1000\\mu g$ in $1mg$. To work out the conversion: $\\var{x}*1000 = \\var{answer}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(0.1 .. 2#0.001)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x*1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]$\\mu g$
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU08 Convert Units - Volume - ml to cubic cm", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "\"Convert\" from millilitres to cubic centimeters.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Express {x} millilitres ($ml$) in cubic centimetres ($cm^3$).
", "advice": "$1 ml$ is the same measurement of volume as $1 cm^3$ so there is nothing to do to convert except change the units.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]$cm^3$
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA09 BIDMAS without a division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nAnd is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing teh same sum gets the same answer. In this case the first thing that is in the question is Multiplication.
\nFirst work through the expression from left to right, evaluating any multiplication as you come to them. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus:
\n\\[\\var{a}-\\var{b} \\times \\var{c}\\]
\n\\[=\\var{a}-\\var{b*c}\\]
\n\\[=\\var{a-b*c}\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..8 except [a,b])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..11 except a)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n$\\var{a}-\\var{b} \\times\\var{c}$
", "minValue": "{a-b*c}", "maxValue": "{a-b*c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA10 BIDMAS with a division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nAnd is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing teh same sum gets the same answer. In this case the first thing that is in the question is Division.
\nFirst work through the expression from left to right, evaluating any division as you come to it. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus:
\n\n\\[\\var{h}-\\var{a2*b2} \\div \\var{b2}\\]
\n\\[=\\var{h}-\\var{a2}\\]
\n\\[=\\var{h-a2}\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..9 except a2)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(7..15)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["h", "a2", "b2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{h}-\\var{a2*b2} \\div \\var{b2}$
", "minValue": "{h-a2}", "maxValue": "{h-a2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA11 BIDMAS with a division 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Applying the order of operators.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "To calculate the following expression you press a sequence of buttons on your calculator.
\n\\begin{align}\\frac{\\var{num}}{\\var{a}\\times\\var{b}}\\end{align}
\nWhich of the following would give the WRONG answer?
\n", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\nThis is the standardized order of operations that we carry out and is part of how the calculator is designed to work. The most effective way to use most modern calculators is to use either the fraction button (on scientific calculators) or as is hinted at in this question, use brackets.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "a*b*3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a<>b", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "num"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\var{num}\\div (\\var{a}\\times\\var{b})$", "$\\var{num} \\div \\var{a} \\times \\var{b}$", "$\\var{num} \\div \\var{a} \\div \\var{b}$"], "matrix": [0, "1", 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF01 Rounding DP", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "Round numbers to a given number of decimal places.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "We can approximate numbers by rounding.
\nRound $\\var{c1}$ to a given number of decimal places.
", "advice": "The first thing to do when we are rounding numbers is to identify the last digit we are keeping.
\nWhen you're asked to round your answer to a number of decimal places, you need to decide whether to keep the last digit the same (rounding down) or increase it by 1 (rounding up). If the following digit is less than 5 we round down and we round up when the next digit is 5 or more.
\nTo write it down in steps:
\nIt is important to keep in mind that if the digit we are increasing is 9, it becomes zero and we increase the previous digit instead. If this digit is 9 as well, we move along to the left side until we find a digit less than 9.
\nTo round a number to a given number $n$ of decimal places, we look at the $n$th digit after the decimal point.
\nWe have $\\var{c1}$.
\ni)
\nWe look at the first digit after the decimal point. This is $\\var{cdig[4]}$ and the following digit is $\\var{cdig[3]}$ so we round updown to get $\\var{precround(c1, 1)}$.
\nii)
\nThe second digit after the decimal point is $\\var{cdig[3]}$. It is followed by $\\var{cdig[2]}$ so we round updown to get $\\var{precround(c1, 2)}$.
\niii)
\nThe 3rd decimal place is $\\var{cdig[2]}$, followed by $\\var{cdig[1]}$. We get $\\var{precround(c1, 3)}$. The 4th decimal place is $\\var{cdig[1]}$, followed by $\\var{cdig[0]}$. We get $\\var{precround(c1, 4)}$.
\nUse this link to find some resources which will help you revise this topic
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "n_from_digits(cdig)*10^(-5) + random(1..5)", "description": "Random number with 5 decimal places.
", "templateType": "anything", "can_override": false}, "cdig": {"name": "cdig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 5)", "description": "", "templateType": "anything", "can_override": false}, "dp": {"name": "dp", "group": "Ungrouped variables", "definition": "random(3..4)", "description": "Number of decimal places to round.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["dp", "cdig", "c1"], "variable_groups": [], "functions": {"n_from_digits": {"parameters": [["digits", "list"]], "type": "number", "language": "jme", "definition": "if(\n len(digits)=0,\n 0,\n digits[0]+10*n_from_digits(digits[1..len(digits)])\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "i) $\\var{c1}$ rounded to 1 decimal place is: [[0]]
\nii) $\\var{c1}$ rounded to 2 decimal places is: [[1]]
\niii) $\\var{c1}$ rounded to {dp} decimal places is: [[2]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, 1)", "maxValue": "precround(c1, 1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, 2)", "maxValue": "precround(c1, 2)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, dp)", "maxValue": "precround(c1, dp)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF02 Rounding SF (integer)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["rounding"], "metadata": {"description": "Round numbers to a given number of significant figures.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "The first thing to do when we are rounding numbers is to identify the last digit we are keeping.
\nWhen you're asked to round your answer to a number of significant figures, you need to decide whether to keep the last digit same (rounding down) or increase it by 1 (rounding up). If the following digit is less than 5 we round down and we round up when the next digit is 5 or more.
\nTo write it down in steps:
\nIt is important to keep in mind that if the digit we are increasing is 9, it becomes zero and we increase the previous digit instead. If this digit is 9 as well, we move along to the left side until we find a digit less than 9.
\nThe last digit we need to keep will depend on how many zeros there are. We don't consider leading zeros to be significant,
i.e. 0.03 and 0.3 both have 1 significant figure (but 0.30 has two significant figures, since the second zero isn't a 'leading' zero).
i)
\nWe round $\\var{d1}$ to 1 significant figure. The first non-zero digit is $\\var{ddig[5]}$. The following digit is $\\var{ddig[4]}$ so we round updown to get $\\var{dpformat(siground(d1, 1), 0)}$.
\nii)
\nWe round $\\var{d1}$ to {sf} significant figures. The first non-zero digit is $\\var{ddig[5]}$. The second following digit is $\\var{ddig[4]}$, the third following digit is $\\var{ddig[3]}$ and the fourth following digit is $\\var{ddig[2]}$. The digit following the last digit we are keeping is $\\var{ddig[3]}$$\\var{ddig[2]}$$\\var{ddig[1]}$, so we round to get $\\var{sigformat(d1, sf)}$. These are our {sf} significant figures.
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"edig": {"name": "edig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 5)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "n_from_digits(ddig)", "description": "Random integer.
", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "n_from_digits(edig)*10^(random(-6,-7,-8))", "description": "Random number with 7 decimal places.
", "templateType": "anything", "can_override": false}, "ddig": {"name": "ddig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 6)", "description": "", "templateType": "anything", "can_override": false}, "sf": {"name": "sf", "group": "Ungrouped variables", "definition": "3", "description": "Number of significant figures to round.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["sf", "ddig", "edig", "d1", "e1"], "variable_groups": [], "functions": {"n_from_digits": {"parameters": [["digits", "list"]], "type": "number", "language": "jme", "definition": "if(\n len(digits)=0,\n 0,\n digits[0]+10*n_from_digits(digits[1..len(digits)])\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Round $\\var{d1}$
\ni) $\\var{d1}$ rounded to 1 significant figure is: [[0]]
\nii) $\\var{d1}$ rounded to {sf} significant figures is: [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(siground(d1, 1),0)", "maxValue": "precround(siground(d1, 1),0)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(d1, sf)", "maxValue": "siground(d1, sf)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF03 Rounding SF (decimal)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["rounding"], "metadata": {"description": "Round numbers to a given number of significant figures.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "The first thing to do when we are rounding numbers is to identify the last digit we are keeping.
\nWhen you're asked to round your answer to a number of significant figures, you need to decide whether to keep the last digit same (rounding down) or increase it by 1 (rounding up). If the following digit is less than 5 we round down and we round up when the next digit is 5 or more.
\nTo write it down in steps:
\nIt is important to keep in mind that if the digit we are increasing is 9, it becomes zero and we increase the previous digit instead. If this digit is 9 as well, we move along to the left side until we find a digit less than 9.
\nThe last digit we need to keep will depend on how many zeros there are. We don't consider leading zeros to be significant,
i.e. 0.03 and 0.3 both have 1 significant figure (but 0.30 has two significant figures, since the second zero isn't a 'leading' zero).
i)
\nWe round $\\var{e1}$ to 1 significant figure. The first non-zero digit is $\\var{edig[4]}$, followed by $\\var{edig[3]}$. This is lower than 5 so we round downmore than 5 so we round up to get $\\var{sigformat(e1,1)}$.
\nii)
\nWe round $\\var{e1}$ to {sf} significant figures. The first non-zero digit is $\\var{edig[4]}$. The second following digit is $\\var{edig[3]}$, the third following digit is $\\var{edig[2]}$ and the fourth following digit is $\\var{edig[1]}$. The digit following the last digit we are keeping is $\\var{edig[2]}$$\\var{edig[1]}$$\\var{edig[0]}$, so we round to get $\\var{sigformat(e1, sf)}$. These are our {sf} significant figures.
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"edig": {"name": "edig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 5)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "n_from_digits(ddig)", "description": "Random integer.
", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "n_from_digits(edig)*10^(random(-6,-7,-8))", "description": "Random number with 7 decimal places.
", "templateType": "anything", "can_override": false}, "ddig": {"name": "ddig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 6)", "description": "", "templateType": "anything", "can_override": false}, "sf": {"name": "sf", "group": "Ungrouped variables", "definition": "3", "description": "Number of significant figures to round.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["sf", "ddig", "edig", "d1", "e1"], "variable_groups": [], "functions": {"n_from_digits": {"parameters": [["digits", "list"]], "type": "number", "language": "jme", "definition": "if(\n len(digits)=0,\n 0,\n digits[0]+10*n_from_digits(digits[1..len(digits)])\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Round $\\var{e1}$
\niii) $\\var{e1}$ rounded to 1 significant figure is: [[0]]
\niv) $\\var{e1}$ rounded to {sf} significant figures is: [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(e1, 1)", "maxValue": "siground(e1, 1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(e1, sf)", "maxValue": "siground(e1, sf)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF14 Add Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["adding and subtracting fractions", "adding fractions", "converting between decimals and fractions", "converting integers to fractions", "Fractions", "fractions", "integers", "manipulation of fractions", "subtracting fractions", "taxonomy"], "metadata": {"description": "Manipulate fractions in order to add and subtract them. The difficulty escalates through the inclusion of a whole integer and a decimal, which both need to be converted into a fraction before the addition/subtraction can take place.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following addition, giving the fraction in its simplest form.
", "advice": "$\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}+\\frac{\\var{c_coprime}}{\\var{d_coprime}}$
\nTo add or subtract fractions, we need to have a common denominator on both fractions.
\nTo get a common denominator, we need to find the lowest common multiple of the two denominators.
\nThe lowest common multiple of $\\var{b_coprime}$ and $\\var{d_coprime}$ is $\\var{lcm}.$
\nThis will be the new denominator, and we need to multiply each fraction individually to ensure we get this denominator.
\nFor $\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}$, we need to multiply the fraction by $\\displaystyle\\frac{\\var{lcm_b}}{\\var{lcm_b}}$ to give $\\displaystyle\\frac{\\var{alcm_b}}{\\var{lcm}}.$
\nFor $\\displaystyle\\frac{\\var{c_coprime}}{\\var{d_coprime}}$, we need to multiply the fraction by $\\displaystyle\\frac{\\var{lcm_d}}{\\var{lcm_d}}$ to give $\\displaystyle\\frac{\\var{clcm_d}}{\\var{lcm}}.$
\nNow that we have each fraction in terms of a common denominator, we can now add the fractions together.
\n$\\displaystyle\\frac{\\var{alcm_b}}{\\var{lcm}}+\\frac{\\var{clcm_d}}{\\var{lcm}}=\\frac{(\\var{alcm_b}+\\var{clcm_d})}{\\var{lcm}}=\\frac{\\var{alcmclcm}}{\\var{lcm}}.$
\nFrom this, we can try to simplify the result down by finding the greatest common divisor of the numerator and denominator and dividing the whole fraction by this amount.
\nThe greatest common divisor of $\\var{alcmclcm}$ and $\\var{lcm}$ is $\\var{gcd}.$
\nSimplifying using this value gives a final answer of $\\displaystyle\\frac{\\var{num}}{\\var{denom}}.$
\nTherefore, the expression cannot be simplified further, and $\\displaystyle\\frac{\\var{num}}{\\var{denom}}$ is the final answer.
\n\nFind out more about this topic using our resource
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"d_coprime": {"name": "d_coprime", "group": "Part a", "definition": "d/gcd_cd", "description": "", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Part a", "definition": "lcm/gcd", "description": "PART A answer for the denominator of part a
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Part a", "definition": "random(1..5)", "description": "PART A variable a - random number between 1 and 5.
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Part a", "definition": "random(5..15)", "description": "PART A variable d - random number between 5 and 15.
", "templateType": "anything", "can_override": false}, "c_coprimeb_coprime": {"name": "c_coprimeb_coprime", "group": "Part a", "definition": "c_coprime*b_coprime", "description": "PART A variable c times variable b
", "templateType": "anything", "can_override": false}, "gcd_ab": {"name": "gcd_ab", "group": "Part a", "definition": "gcd(a,b)", "description": "PART A simplification of fractions in the question.
", "templateType": "anything", "can_override": false}, "lcm_b": {"name": "lcm_b", "group": "Part a", "definition": "lcm/b_coprime", "description": "PART A lcm of b and d, divided by b
", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Part a", "definition": "alcmclcm/gcd", "description": "PART A answer for the numerator input
", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part a", "definition": "random(5..10 except d)", "description": "PART A variable b - random number between 5 and 10 and not the same value as d.
", "templateType": "anything", "can_override": false}, "a_coprimed_coprime": {"name": "a_coprimed_coprime", "group": "Part a", "definition": "a_coprime*d_coprime", "description": "PART A variable a times variable d
", "templateType": "anything", "can_override": false}, "lcm_d": {"name": "lcm_d", "group": "Part a", "definition": "lcm/d_coprime", "description": "PART A lcm of b and d, divided by d
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Part a", "definition": "random(1..5)", "description": "PART A variable c - random number between 1 and 5.
", "templateType": "anything", "can_override": false}, "clcm_d": {"name": "clcm_d", "group": "Part a", "definition": "c_coprime*lcm_d", "description": "PART A variable c times the lcm of b and d, divided by d
", "templateType": "anything", "can_override": false}, "gcd": {"name": "gcd", "group": "Part a", "definition": "gcd(alcmclcm,lcm)", "description": "PART A greatest common divisor of the variables alcmclcm and lcm
", "templateType": "anything", "can_override": false}, "alcm_b": {"name": "alcm_b", "group": "Part a", "definition": "a_coprime*lcm_b", "description": "PART A variable a times the lcm of b and d, divided by b
", "templateType": "anything", "can_override": false}, "a_coprime": {"name": "a_coprime", "group": "Part a", "definition": "a/gcd_ab", "description": "PART A
", "templateType": "anything", "can_override": false}, "b_coprime": {"name": "b_coprime", "group": "Part a", "definition": "b/gcd_ab", "description": "PART A
", "templateType": "anything", "can_override": false}, "gcd_cd": {"name": "gcd_cd", "group": "Part a", "definition": "gcd(c,d)", "description": "PART A
", "templateType": "anything", "can_override": false}, "lcm": {"name": "lcm", "group": "Part a", "definition": "lcm(b_coprime,d_coprime)", "description": "PART A lowest common multiple of variable b_coprime and variable d_coprime.
", "templateType": "anything", "can_override": false}, "alcmclcm": {"name": "alcmclcm", "group": "Part a", "definition": "alcm_b+clcm_d", "description": "PART A
", "templateType": "anything", "can_override": false}, "c_coprime": {"name": "c_coprime", "group": "Part a", "definition": "c/gcd_cd", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["a", "a_coprime", "b", "b_coprime", "gcd_ab", "c", "c_coprime", "d", "d_coprime", "gcd_cd", "lcm", "a_coprimed_coprime", "c_coprimeb_coprime", "lcm_b", "lcm_d", "alcm_b", "clcm_d", "alcmclcm", "gcd", "num", "denom"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}+\\frac{\\var{c_coprime}}{\\var{d_coprime}}=$
Dividing amounts in ratios
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "The ratio of ethanol to water is {a}:{b} for an experiment. If I have {volWater}ml of water, how much ethanol do I need?
", "advice": "If there is a ratio of {a}:{b} for ethanol:water then that means for every {b}ml of water we need {a}ml of ethanol.
\nIn our experiment there is {volwater}ml of water so to find the amount of ethanol we divide by {b} and then multiply by {a}.
\n\\[\\var{volwater}\\text{ml}\\times\\frac{\\var{a}}{\\var{b}}=\\var{volwater*a/b}\\text{ml}\\]
Use this link to find some resources which will help you revise this topic.
[[0]]ml
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "volwater/b*a", "maxValue": "volwater/b*a", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF15 Subtract fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["adding and subtracting fractions", "adding fractions", "converting between decimals and fractions", "converting integers to fractions", "Fractions", "fractions", "integers", "manipulation of fractions", "subtracting fractions", "taxonomy"], "metadata": {"description": "Manipulate fractions in order to add and subtract them. The difficulty escalates through the inclusion of a whole integer and a decimal, which both need to be converted into a fraction before the addition/subtraction can take place.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following additions and subtractions, giving each fraction in its simplest form. Write the numerator (the top number) as negative if the fraction is negative.
", "advice": "$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}-\\frac{\\var{h_coprime}}{\\var{j_coprime}}+2.$
\n\nThe two fractions can be individually multiplied to achieve a common denominator of the lowest common multiple, $\\var{lcm2}.$
\n$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}$ becomes $\\displaystyle\\frac{\\var{flcm2_g}}{\\var{lcm2}}$ and $\\displaystyle\\frac{\\var{h_coprime}}{\\var{j_coprime}}$ becomes $\\displaystyle\\frac{\\var{hlcm2_j}}{\\var{lcm2}}.$
\nWe can now subtract the second fraction from the first.
\n$\\displaystyle\\frac{\\var{flcm2_g}}{\\var{lcm2}}-\\frac{\\var{hlcm2_j}}{\\var{lcm2}}=\\frac{\\var{flcmhlcm}}{\\var{lcm2}}.$
\n\nFind out more about this topic using our resource.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"hlcm2_j": {"name": "hlcm2_j", "group": "Part b", "definition": "h_coprime*lcm2_j", "description": "PART B
", "templateType": "anything", "can_override": false}, "lcm2": {"name": "lcm2", "group": "Part b", "definition": "lcm(g_coprime,j_coprime)", "description": "PART B
", "templateType": "anything", "can_override": false}, "gcd_fg": {"name": "gcd_fg", "group": "Part b", "definition": "gcd(f,g)", "description": "PART B gcd of first fraction num and denom
", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Part b", "definition": "random(2..10 except h)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Part b", "definition": "random(1..10)", "description": "PART B
", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Part b", "definition": "random(1..10)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "Part b", "definition": "h/gcd_hj", "description": "PART B
", "templateType": "anything", "can_override": false}, "lcm2_j": {"name": "lcm2_j", "group": "Part b", "definition": "lcm2/j_coprime", "description": "PART B
", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "Part b", "definition": "j/gcd_hj", "description": "PART B
", "templateType": "anything", "can_override": false}, "flcmhlcm": {"name": "flcmhlcm", "group": "Part b", "definition": "flcm2_g-hlcm2_j", "description": "PART B
", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "Part b", "definition": "g/gcd_fg", "description": "PART B g_coprime
", "templateType": "anything", "can_override": false}, "gcd_hj": {"name": "gcd_hj", "group": "Part b", "definition": "gcd(h,j)", "description": "PART B
", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Part b", "definition": "random(2..10 except f except j)", "description": "PART B
", "templateType": "anything", "can_override": false}, "flcm2_g": {"name": "flcm2_g", "group": "Part b", "definition": "f_coprime*lcm2_g", "description": "PART B
", "templateType": "anything", "can_override": false}, "lcm2_g": {"name": "lcm2_g", "group": "Part b", "definition": "lcm2/g_coprime", "description": "PART B
", "templateType": "anything", "can_override": false}, "f_coprime": {"name": "f_coprime", "group": "Part b", "definition": "f/gcd_fg", "description": "PART B
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part b", "variables": ["f", "f_coprime", "g", "g_coprime", "gcd_fg", "h", "h_coprime", "j", "j_coprime", "gcd_hj", "lcm2", "lcm2_g", "flcm2_g", "lcm2_j", "hlcm2_j", "flcmhlcm"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}-\\frac{\\var{h_coprime}}{\\var{j_coprime}}=$
Several problems involving the multiplication of fractions, with increasingly difficult examples, including a mixed fraction and a squared fraction. The final part is a word problem.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following multiplication, giving the answer in its simplest form.
", "advice": "\nTo multiply $\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$, address the numerators and denominators separately.
\nMultiply the numerators across both fractions.
\n$\\var{a_coprime}\\times\\var{b_coprime}=\\var{ab}$,
\nand then multiply the denominators across both fractions.
\n$\\var{c_coprime}\\times\\var{d_coprime}=\\var{cd}$.
\nThe values of the multiplied numerators and denominators will be the numerator and denominator of the new fraction: $\\displaystyle\\frac{\\var{ab}}{\\var{cd}}$.
\nThis answer may need simplifying down, and to do this, find the greatest common divisor in both the numerator and denominator and divide by this number.
\nThe greatest common divisor of $\\var{ab}$ and $\\var{cd}$ is $\\var{gcd}$.
\nBy using $\\var{gcd}$ to cancel down the fraction, the final answer is $\\displaystyle\\simplify{{ab}/{cd}}$.
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"k": {"name": "k", "group": "Part b", "definition": "random(1..7 except j)", "description": "Random number between 1 and 20
", "templateType": "anything", "can_override": false}, "bb": {"name": "bb", "group": "Part d", "definition": "28*aa", "description": "", "templateType": "anything", "can_override": false}, "cc": {"name": "cc", "group": "Part d", "definition": "bb/7", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Part b", "definition": "random(1 .. 7#1)", "description": "Random number between 1 and 20.
", "templateType": "randrange", "can_override": false}, "cd": {"name": "cd", "group": "Part a", "definition": "c_coprime*d_coprime", "description": "Variable c times variable d.
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Part a", "definition": "random(2..12 except c)", "description": "Random number from 1 to 12.
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Part a", "definition": "random(2 .. 12#1)", "description": "Random number from 1 to 12.
", "templateType": "randrange", "can_override": false}, "l": {"name": "l", "group": "Part c", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "numif": {"name": "numif", "group": "Part b", "definition": "(f*h_coprime)+g_coprime", "description": "Numerator of the improper fraction converted from a mixed number.
", "templateType": "anything", "can_override": false}, "gcd_gh": {"name": "gcd_gh", "group": "Part b", "definition": "gcd(g,h)", "description": "", "templateType": "anything", "can_override": false}, "fh": {"name": "fh", "group": "Part b", "definition": "f*h_coprime", "description": "Variable f times variable h
", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "Part b", "definition": "g/gcd_gh", "description": "", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "Part b", "definition": "j/gcd_kj", "description": "", "templateType": "anything", "can_override": false}, "gcd_kj": {"name": "gcd_kj", "group": "Part b", "definition": "gcd(k,j)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Part b", "definition": "random(1 .. 4#1)", "description": "Random number between 1 and 4 - integer part of the mixed number.
", "templateType": "randrange", "can_override": false}, "c_coprime": {"name": "c_coprime", "group": "Part a", "definition": "c/gcd_ac", "description": "", "templateType": "anything", "can_override": false}, "gcd": {"name": "gcd", "group": "Part a", "definition": "gcd(ab,cd)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part a", "definition": "random(2 .. 12#1)", "description": "Random number from 1 to 12.
", "templateType": "randrange", "can_override": false}, "d_coprime": {"name": "d_coprime", "group": "Part a", "definition": "d/gcd_bd", "description": "", "templateType": "anything", "can_override": false}, "ddcc": {"name": "ddcc", "group": "Part d", "definition": "dd*cc", "description": "", "templateType": "anything", "can_override": false}, "gcdb": {"name": "gcdb", "group": "Part b", "definition": "gcd(num,denom)", "description": "", "templateType": "anything", "can_override": false}, "gcd_ac": {"name": "gcd_ac", "group": "Part a", "definition": "gcd(a,c)", "description": "PART A
", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Part b", "definition": "j_coprime*(h_coprime/gcda)", "description": "Denominator of new fraction.
", "templateType": "anything", "can_override": false}, "l_coprime": {"name": "l_coprime", "group": "Part c", "definition": "l/gcd_lm", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Part c", "definition": "random(1..12 except l)", "description": "", "templateType": "anything", "can_override": false}, "a_coprime": {"name": "a_coprime", "group": "Part a", "definition": "a/gcd_ac", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Part b", "definition": "random(7 .. 10#1)", "description": "Random number between 1 and 20.
", "templateType": "randrange", "can_override": false}, "num": {"name": "num", "group": "Part b", "definition": "k_coprime*{numif/gcda}", "description": "Numerator of gap 0
", "templateType": "anything", "can_override": false}, "m_coprime": {"name": "m_coprime", "group": "Part c", "definition": "m/gcd_lm", "description": "", "templateType": "anything", "can_override": false}, "aa": {"name": "aa", "group": "Part d", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "gcda": {"name": "gcda", "group": "Part b", "definition": "gcd({numif},{h_coprime})", "description": "gcd of the numerator of the improper fraction
", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "Part b", "definition": "h/gcd_gh", "description": "", "templateType": "anything", "can_override": false}, "ee": {"name": "ee", "group": "Part d", "definition": "ddcc/4", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Part a", "definition": "random(3,5,7,11)", "description": "Random number from 1 to 12.
", "templateType": "anything", "can_override": false}, "b_coprime": {"name": "b_coprime", "group": "Part a", "definition": "b/gcd_bd", "description": "", "templateType": "anything", "can_override": false}, "l_coprime2": {"name": "l_coprime2", "group": "Part c", "definition": "l_coprime^2/gcd_lcmc", "description": "", "templateType": "anything", "can_override": false}, "k_coprime": {"name": "k_coprime", "group": "Part b", "definition": "k/gcd_kj", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Part b", "definition": "Random(3,5,7,11,13,17)", "description": "Random number between 1 and 20
", "templateType": "anything", "can_override": false}, "dd": {"name": "dd", "group": "Part d", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "gcd_lcmc": {"name": "gcd_lcmc", "group": "Part c", "definition": "gcd((l_coprime)^2,(m_coprime)^2)", "description": "", "templateType": "anything", "can_override": false}, "m_coprime2": {"name": "m_coprime2", "group": "Part c", "definition": "m_coprime^2/gcd_lcmc", "description": "", "templateType": "anything", "can_override": false}, "gcd_lm": {"name": "gcd_lm", "group": "Part c", "definition": "gcd(l,m)", "description": "", "templateType": "anything", "can_override": false}, "ab": {"name": "ab", "group": "Part a", "definition": "a_coprime*b_coprime", "description": "Variable a times variable b
", "templateType": "anything", "can_override": false}, "gcd_bd": {"name": "gcd_bd", "group": "Part a", "definition": "gcd(b,d)", "description": "", "templateType": "anything", "can_override": false}, "gcd2": {"name": "gcd2", "group": "Part b", "definition": "gcd(num,denom)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["a", "b", "c", "d", "a_coprime", "b_coprime", "c_coprime", "d_coprime", "gcd_ac", "gcd_bd", "ab", "cd", "gcd"]}, {"name": "Part b", "variables": ["f", "g", "g_coprime", "h", "h_coprime", "gcd_gh", "k", "k_coprime", "j", "j_coprime", "gcd_kj", "fh", "numif", "num", "denom", "gcda", "gcdb", "gcd2"]}, {"name": "Part d", "variables": ["aa", "bb", "cc", "dd", "ddcc", "ee"]}, {"name": "Part c", "variables": ["l", "m", "gcd_lm", "l_coprime", "m_coprime", "gcd_lcmc", "l_coprime2", "m_coprime2"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$ =
Several problems involving dividing fractions, with increasingly difficult examples, including mixed numbers and complex fractions.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following sums involving division of fractions. Simplify your answers where possible.
", "advice": "When faced with dividing fractions, it much easier to switch one of the fractions around and multiply them together instead of divide them.
\n\\[ \\left( \\frac{\\var{f_coprime}}{\\var{g_coprime}}\\div\\frac{\\var{h_coprime}}{\\var{j_coprime}} \\right) \\equiv \\left( \\frac{\\var{f_coprime}}{\\var{g_coprime}}\\times\\frac{\\var{j_coprime}}{\\var{h_coprime}} \\right) = \\frac{\\var{fj}}{\\var{gh}} \\]
\nThen, simplify by finding the highest common divisor in the numerator and denominator which in this case is $\\var{gcd1}$.
\nThis gives a final answer of $\\displaystyle\\simplify{{fj}/{gh}}$.
\n\n\nUse this link to find some resources which will help you revise this topic
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"f4h4": {"name": "f4h4", "group": "Ungrouped variables", "definition": "f4*h4_coprime", "description": "variable f4 times h4.
\nUsed in part c)
", "templateType": "anything", "can_override": false}, "g4_coprime": {"name": "g4_coprime", "group": "Ungrouped variables", "definition": "g4/gcd(g4,h4)", "description": "PART C
", "templateType": "anything", "can_override": false}, "h4": {"name": "h4", "group": "Ungrouped variables", "definition": "random(5..8 except g4)", "description": "Random number but not the same number as variable g4.
\nUsed in part c.
", "templateType": "anything", "can_override": false}, "h3_coprime": {"name": "h3_coprime", "group": "Ungrouped variables", "definition": "h3/gcd(g3,h3)", "description": "PART C
", "templateType": "anything", "can_override": false}, "f_coprime": {"name": "f_coprime", "group": "part a", "definition": "f/gcd(f,g)", "description": "PART A
", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "part a", "definition": "g/gcd(f,g)", "description": "PART A
", "templateType": "anything", "can_override": false}, "j1_coprime": {"name": "j1_coprime", "group": "Ungrouped variables", "definition": "j1/gcd(h1,j1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "gcd2": {"name": "gcd2", "group": "Ungrouped variables", "definition": "gcd(f1j1,g1h1)", "description": "greatest common divisor of variables f1j1 and g1h1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "g1_coprime": {"name": "g1_coprime", "group": "Ungrouped variables", "definition": "g1/gcd(f1,g1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h1_coprime": {"name": "h1_coprime", "group": "Ungrouped variables", "definition": "h1/gcd(h1,j1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "gcd3": {"name": "gcd3", "group": "Ungrouped variables", "definition": "gcd(num,denom)", "description": "greatest common denominator for part c.
", "templateType": "anything", "can_override": false}, "j1": {"name": "j1", "group": "Ungrouped variables", "definition": "random(h1..11 except h1)", "description": "Random number between 2 and 20 and not the same value as variable h1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "g1h1": {"name": "g1h1", "group": "Ungrouped variables", "definition": "g1_coprime*h1_coprime", "description": "variable g1 times h1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "part a", "definition": "random(2..10)", "description": "Random number between 2 and 10.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "f4": {"name": "f4", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "Random number.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "Random number between 2 and 20.
\nUsed in part b)
", "templateType": "anything", "can_override": false}, "g3": {"name": "g3", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "Random number.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "f3h3": {"name": "f3h3", "group": "Ungrouped variables", "definition": "f3*h3_coprime", "description": "variable f3 times h3.
", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "part a", "definition": "random(2..10)", "description": "Random number from 2 to 10.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "gh": {"name": "gh", "group": "part a", "definition": "g_coprime*h_coprime", "description": "variable g times variable h.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "part a", "definition": "j/gcd(h,j)", "description": "PART A
", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Ungrouped variables", "definition": "h3_coprime*(f4h4+g4_coprime)", "description": "Unsimplified denominator of part c.
", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "part a", "definition": "random(h..12 except h)", "description": "Random number between 2 and 10 and not the same value as h.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "f1j1": {"name": "f1j1", "group": "Ungrouped variables", "definition": "f1_coprime*j1_coprime", "description": "variable f1 times j1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "h4_coprime": {"name": "h4_coprime", "group": "Ungrouped variables", "definition": "h4/gcd(g4,h4)", "description": "PART C
", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Ungrouped variables", "definition": "random(f1..11 except f1) ", "description": "Random number between 2 and 30 and not the same value as variable f1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "fj": {"name": "fj", "group": "part a", "definition": "f_coprime*j_coprime", "description": "variable f times variable j.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "f3": {"name": "f3", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "Random number between 2 and 6.
\nUsed in part c).
", "templateType": "randrange", "can_override": false}, "f1_coprime": {"name": "f1_coprime", "group": "Ungrouped variables", "definition": "f1/gcd(f1,g1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h3": {"name": "h3", "group": "Ungrouped variables", "definition": "random(5..8)", "description": "Random number and not the same value as variable g3.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "gcd1": {"name": "gcd1", "group": "part a", "definition": "gcd(fj,gh)", "description": "greatest common divisor of variable fj and gh.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "g3_coprime": {"name": "g3_coprime", "group": "Ungrouped variables", "definition": "g3/gcd(g3,h3)", "description": "PART C
", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "part a", "definition": "h/gcd(h,j)", "description": "PART A
", "templateType": "anything", "can_override": false}, "g4": {"name": "g4", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "Random number.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "Random number between 2 and 20.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "h4_coprime*(f3h3+g3_coprime)", "description": "numerator of the improper fraction in part c. Unsimplified.
", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "part a", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["f1", "g1", "f1_coprime", "g1_coprime", "h1", "j1", "h1_coprime", "j1_coprime", "f1j1", "g1h1", "gcd2", "f3", "g3", "h3", "g3_coprime", "h3_coprime", "f4", "g4", "h4", "g4_coprime", "h4_coprime", "f3h3", "f4h4", "num", "denom", "gcd3"], "variable_groups": [{"name": "part a", "variables": ["g", "f", "f_coprime", "g_coprime", "h", "j", "h_coprime", "j_coprime", "fj", "gh", "gcd1"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}\\div\\frac{\\var{h_coprime}}{\\var{j_coprime}}=$
Convert numbers greater than 1 into standard form/scientific notation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Write the following numbers in scientific notation.
", "advice": "Suppose we have the number $\\var{q2}$. In scientific notation, this number would start with $\\var{dec2}$ since we only want one digit in front of the decimal point. The decimal point is currently to the right of the last digit in $\\var{q2}$ and needs to be between the first and second digits, i.e $\\var{dec2}$. Count the places that the digits must move and you get $\\var{pow2}$ places. That is,
\n\n\\[\\var{q2}=\\var{dec2}\\times 10^{\\var{pow2}}\\]
\n\nWe have a positive $\\var{pow2}$ as the power because we need to make the number $\\var{dec2}$ bigger to get to $\\var{q2}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"pow2": {"name": "pow2", "group": "Ungrouped variables", "definition": "random(4..8)", "description": "", "templateType": "anything", "can_override": false}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "precround(dec2*10^pow2,0)", "description": "", "templateType": "anything", "can_override": false}, "dec2": {"name": "dec2", "group": "Ungrouped variables", "definition": "random(1.1..9.9#0.001)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec2", "pow2", "q2"], "variable_groups": [], "functions": {"spacenumber": {"parameters": [["n", "number"]], "type": "string", "language": "javascript", "definition": "var parts=n.toString().split(\".\");\n if(parts[1] && parts[1].length<2) {\n parts[1]+='0';\n }\n return parts[0].replace(/\\B(?=(\\d{3})+(?!\\d))/g, \" \") + (parts[1] ? \", \" + parts[1] : \"\");"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{q2} =$ [[0]]$\\times 10$ [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{dec2}", "maxValue": "{dec2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{pow2}", "maxValue": "{pow2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NS02 standard form (small)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": ["converting", "scientific notation", "standard form"], "metadata": {"description": "Convert numbers between 0 and 1 intro standard form/scientific notation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Write the following numbers in scientific notation.
", "advice": "Suppose we have the number $\\var{q2}$. In scientific notation, this number would start with $\\var{dec2}$ since we only want one digit in front of the decimal point. Count the places that the digits must move and you get $\\var{-pow2}$ places to the right. That is,
\n\\[\\var{q2}=\\var{dec2}\\times 10^{\\var{pow2}}\\]
\n\nWe have a negative $\\var{-pow2}$ as the power because we need to make the number $\\var{dec2}$ smaller to get to $\\var{q2}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"pow2": {"name": "pow2", "group": "Ungrouped variables", "definition": "random(list(-6..-1))", "description": "", "templateType": "anything", "can_override": false}, "dec2": {"name": "dec2", "group": "Ungrouped variables", "definition": "random(1.1..9.9#0.001)", "description": "", "templateType": "anything", "can_override": false}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "precround(dec2*10^pow2,adjpow)", "description": "", "templateType": "anything", "can_override": false}, "adjpow": {"name": "adjpow", "group": "Ungrouped variables", "definition": "If(round(mod(dec2*1000,10))<>0,3-pow2,If(round(mod(dec2*1000,100))<>0,2-pow2,If(round(mod(dec2*1000,1000))<>0,1-pow2,0-pow2)))", "description": "", "templateType": "anything", "can_override": false}, "test": {"name": "test", "group": "Ungrouped variables", "definition": "mod(1000*dec2,10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec2", "pow2", "q2", "adjpow", "test"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{q2}$ = [[0]]$\\times 10$ [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{dec2}", "maxValue": "{dec2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{pow2}", "maxValue": "{pow2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NS03 Standard Form (Calculations)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculations involving Standard form.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "To divide two numbers in standard form we can calculate the division of each part of the standard form number separately. In general we have,
\n\\[\\frac{x\\times10^j}{y\\times10^k}=\\frac xy\\times\\frac{10^j}{10^k}=\\frac xy\\times 10^{j-k}\\]
\n\nIn this question we therefore have,
\n\\[\\frac{\\var{a}\\times10^{\\var{n}}}{\\var{b}\\times10^{\\var{m}}}=\\frac{\\var{a}}{\\var{b}}\\times\\frac{10^{\\var{n}}}{10^{\\var{m}}}=\\var{aDivBRound}\\times10^\\var{n-m}.\\]
Since {aDivBRound} is less than 1 then our answer isn't in standard form. In this case we need to reduce the exponent by 1 so the final answer is
\n\\[\\var{MantAnsRound}\\times10^{\\var{ExponentAns}}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9.9 # 0.1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9.9 # 0.1)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "IsADivBLessOne": {"name": "IsADivBLessOne", "group": "Ungrouped variables", "definition": "a/b<1", "description": "", "templateType": "anything", "can_override": false}, "ExponentAns": {"name": "ExponentAns", "group": "Ungrouped variables", "definition": "if(IsADivBLessOne,n-m-1,n-m)", "description": "", "templateType": "anything", "can_override": false}, "MantAns": {"name": "MantAns", "group": "Ungrouped variables", "definition": "if(IsADivBLessOne, a/b*10, a/b)", "description": "", "templateType": "anything", "can_override": false}, "aDivBRound": {"name": "aDivBRound", "group": "Ungrouped variables", "definition": "precround(a/b,2)", "description": "", "templateType": "anything", "can_override": false}, "MantAnsRound": {"name": "MantAnsRound", "group": "Ungrouped variables", "definition": "precround(MantAns,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n", "m", "IsADivBLessOne", "ExponentAns", "MantAns", "aDivBRound", "MantAnsRound"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "For the equation
\n\\[\\frac{\\var{a}\\times10^{\\var{n}}}{\\var{b}\\times10^{\\var{m}}}=a\\times10^n\\]
\nfind the values of $a$ and $n$ which keep the answer in standard form.
\nGive $a$ to two decimal places.
\n$a=$[[0]]
$n=$[[1]]
Simplifying expressions from $\\frac{x^mx^n}{x^p}$ to $x^{m+n-p}$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Simplify the following expression:
\n\\[x^{\\var{m}}x^{\\var{n}}\\]
", "advice": "To simplify $x^{\\var{m}}x^{\\var{n}}$, we want to make use of the following rule:
\n\\[a^n \\times a^m = a^{n+m}\\]
\nApplying this rule,
\n\\[\\begin{split}x^{\\var{m}}x^{\\var{n}} &\\,=x^{\\simplify[!collectNumbers]{{m}+{n}}}\\\\ \\\\&\\,=x^{\\var{m+n}}. \\end{split}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^{m+n}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "x^`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC02 Indices - divide", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Find the missing whole number power in an equation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "What is the value of $n$ if
\n\\[\\frac{x^n}{x^\\var{p}}=x^\\var{m}\\]
", "advice": "To find $n$ we need to re-write the expression such that we have $x^n$ on the left. We can multiply through by $x^\\var{p}$ to get
\n\\[x^n=x^\\var{m}{x^\\var{p}}\\]
\nThen applying the rule $x^p \\times x^q = x^{p+q}$ we get
\n\\[x^n=x^{\\var{m}+\\var{p}}=x^\\var{m+p}\\]
\nHence, $n =\\var{m+p}$
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{m+p}", "maxValue": "{m+p}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC07 Collect terms (including squares)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Simple exercise in collecting terms in different powers of \\(x\\)
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "The idea is to collect together and combine any terms that are the same kind of term so:
\n$\\var{b}$ and $\\var{f}$ are ordinary numbers. We can combine them to get $\\var{b+f}$
\nWe can combine $\\var{a}x$ and $\\var{d}x$ to get $\\var{a+d}x$.
\nThere are also $\\var{c}$ times $x^2$. So our answer is:
\n$\\simplify{{c}x^2+{a+d}x+{b+f}}$
\nUse this link to find some resources that will help you revise how to collect like terms.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(-5..10 except 0 except -b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "f"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[!collectNumbers]{{a}x+{b}+{c}x^2+{d}x+{f}}$
", "answer": "{c}x^2+({a}+{d})x+({b}+{f})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n`?*x^2+`+-$n`?*x+`+-$n`?", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC08 Collecting terms (higher powers)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Simple exercise in collecting terms in different powers of \\(x\\)
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Simplify the following expression by combining \"like\" terms.
", "advice": "First we expand the minus sign in the bracket.
\n\\[\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4-({f}x+{e}x^3)}=\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4+{-f}x+{-e}x^3}\\]
\nThe idea is to collect together and combine any terms that are the same kind of term so:
\n$\\var{b}x$ and $\\var{-f}x$ both have an $x$ term. We can combine them to get $\\var{b-f}x$
\nWe can combine $\\var{a}x^4$ and $\\var{d}x^4$ to get $\\var{a+d}x^4$.
\nWe combine $\\var{c}x^3$ and $\\var{-e}x^3$ to get $\\var{c-e}x^3$. So our answer is:
\n$\\simplify{{a+d}x^4+{c+e}x^3+{b+f}}$
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(-5..10 except 0 except b)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "random(-5..10 except 0 except c)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "f", "e"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4-({f}x+{e}x^3)}$
", "answer": "({a}+{d})x^4+({c}-{e})x^3+({b}-{f})x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n`?*x^4+`+-$n`?*x^3+`+-$n`?*x", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC10 Expand single brackets", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Bradley Bush", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1521/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": ["brackets", "expanding brackets", "expansion of brackets", "simplifying algebraic expressions", "simplifying expressions", "taxonomy"], "metadata": {"description": "This question is made up of 10 exercises to practice the multiplication of brackets by a single term.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Expand the expression below by multiplying each of the terms inside the brackets by the term outside. Give the answer in its simplest form.
", "advice": "Expand brackets using the general formula $\\displaystyle a(x+c)=ax+ac$. This means we multiply each term inside the brackets by the term outside the brackets.
\nIt is easy to forget that the sign outside the brackets also needs to be involved in the multiplication so remember that when two of the same sign are multiplied, the resultant term is positive and when opposite signs are multiplied, the result is negative.
\n\\[
\\begin{align}
\\simplify[terms]{{a[7]}x({a[8]}x^2+{a[9]}x)}&=
\\simplify[!collectNumbers]{{a[7]}x{a[8]}x^2+{a[7]}x{a[9]}x}\\\\&=
\\simplify{{a[7]}*{a[8]}x^3+{a[7]}*{a[9]}x^2}\\text{.}
\\end{align}
\\]
Use this link to find resources to help you revise how to expand single brackets
", "rulesets": {"terms": ["all", "!collectNumbers", "!unitFactor", "!noLeadingMinus"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(-10..10 except [-1,0,1] ),50)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a[7]}x({a[8]}x^2+{a[9]}x)}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a[7]*a[8]}x^3+{a[7]*a[9]}x^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n*x^3 + `+-$n*x^2", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC11 Factorise by taking out a factor", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Factorise an expression of 2 or 3 terms where the gcd is a letter times a number. Part of HELM Book 1.3.4
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Factorise $\\var{q2expr}$
\n", "advice": "The two terms share a common factor of $\\var{q2gcd}\\var{latex(q2v[0])}$ which can be factored out.
\nSo $\\var{q2expr} = \\var{q2ans}$
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"alphabet": {"name": "alphabet", "group": "Ungrouped variables", "definition": "shuffle(['a','b','c','d','f','g','h','k','m','n','p','q','r','s','t','u','v','w','x','y','z'])", "description": "", "templateType": "anything", "can_override": false}, "q2c": {"name": "q2c", "group": "question part c", "definition": "[random(-9..9 except 0), random(-9..9 except 0), random(2..9)]", "description": "", "templateType": "anything", "can_override": false}, "q2v": {"name": "q2v", "group": "question part c", "definition": "alphabet[2..4]", "description": "", "templateType": "anything", "can_override": false}, "q2expr": {"name": "q2expr", "group": "question part c", "definition": "simplify(expression(\n q2terms[0] + \"+\" + q2terms[1]\n ),[\"basic\",\"cancelFactors\",\"unitFactor\"])", "description": "", "templateType": "anything", "can_override": false}, "q2terms": {"name": "q2terms", "group": "question part c", "definition": "[q2coeffs[0] +\"*\"+ q2v[0],q2coeffs[1] +\"*\"+ q2v[0]+\"^2\"]", "description": "", "templateType": "anything", "can_override": false}, "q2gcd": {"name": "q2gcd", "group": "question part c", "definition": "if( (q2c[0] < 0 & q2c[1] < 0),\n-1*gcd(q2c[0],q2c[1])*q2c[2],\ngcd(q2c[0],q2c[1])*q2c[2]\n)", "description": "", "templateType": "anything", "can_override": false}, "q2ans": {"name": "q2ans", "group": "question part c", "definition": "simplify(expression(\n q2gcd + \"*\" + q2v[0] + \"*(\" + q2c[0]*q2c[2]/q2gcd + \"+\" + q2c[1]*q2c[2]/q2gcd + q2v[0] + \")\" ),[\"basic\",\"unitFactor\"])", "description": "", "templateType": "anything", "can_override": false}, "q2coeffs": {"name": "q2coeffs", "group": "question part c", "definition": "[q2c[0]*q2c[2],q2c[1]*q2c[2]]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["alphabet"], "variable_groups": [{"name": "question part c", "variables": ["q2c", "q2v", "q2coeffs", "q2terms", "q2expr", "q2gcd", "q2ans"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{q2ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": ""}, "mustmatchpattern": {"pattern": "// a number and a letter times...\n`+-$n`? * $v *\n(\n // either a number 'a' times x,\n // or x on its own, and 'a' is implicitly 1\n `+-($n;a * $v`? `| $v;a:1) \n \n + `+-\n \n // either a number 'b' times x,\n // or x on its own, and 'b' is implicitly 1\n ($n;b * $v`? `| $v;b:1)\n)\n\n// a and b must be coprime\n`where\n\n(gcd(a,b)=1)", "partialCredit": 0, "message": "You have not fully factorised the expression.", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC12 Expand Double Brackets", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Poppy Jeffries", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21275/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Expanding two linear brackets multiplied together.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Expand the brackets and simplify
", "advice": "To expand the brackets $\\simplify{({a[1]}x+{a[2]})({a[3]}x+{a[4]})}$ We first multiply all the terms in the left bracket by all the terms in the right bracket. This gives us
\n\\[\\var{a[1]}\\times\\var{a[3]}x^2+\\var{a[1]}x\\times\\var{a[4]}+\\var{a[2]}\\times\\var{a[3]}x+\\var{a[2]}\\times\\var{a[4]}=\\var{a[1]*a[3]}x^2+\\var{a[1]*a[4]}x+\\var{a[2]*a[3]}x+\\var{a[2]*a[4]}.\\]
\nWe can then collect the terms to give us the final answer of
\n\\[\\var{a[1]*a[3]}x^2+\\var{a[1]*a[4]+a[2]*a[3]}x+\\var{a[2]*a[4]}.\\]
Use this link to find some resources which will help you revise this topic.
$\\simplify{({a[1]}x+{a[2]})({a[3]}x+{a[4]})}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a[1]*a[3]}x^2+{a[1]*a[4]+a[2]*a[3]}x+{a[2]*a[4]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n`?*x^2+`+-$n`?*x+`+-$n`?", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC13 Expand Double Brackets (Hard)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Poppy Jeffries", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21275/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Expand two brackets involving powers of $x$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Expand the brackets and simplify
", "advice": "To expand the brackets $\\simplify{({a[1]}x^{b[1]}+{a[2]}x^{b[2]})({a[3]}x^{b[3]}+{c[1]}x^{b[4]})}$ We first multiply all the terms in the left bracket by all the terms in the right bracket. This gives us
\n\\[\\var{a[1]}x^\\var{b[1]}\\times\\var{a[3]}x^\\var{b[3]}+\\var{a[1]}x^\\var{b[1]}\\times\\var{c[1]}x^\\var{b[4]}+\\var{a[2]}x^\\var{b[2]}\\times\\var{a[3]}x^\\var{b[3]}+\\var{a[2]}x^\\var{b[2]}\\times\\var{c[1]}x^\\var{b[4]}\\]
\nWe can then simplify to give us the final answer of
\n$\\simplify{{a[1]*a[3]}*x^{b[1]+b[3]}+{a[1]*c[1]}*x^{b[1]+b[4]}+{a[2]*a[3]}*x^{b[2]+b[3]}+{a[2]*c[1]}*x^{b[2]+b[4]}}.$
\n
Use this link to find some resources which will help you revise this topic.
$\\simplify{({a[1]}x^{b[1]}+{a[2]}x^{b[2]})({a[3]}x^{b[3]}+{c[1]}x^{b[4]})}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a[1]*a[3]}*x^{b[1]+b[3]}+{a[1]*c[1]}*x^{b[1]+b[4]}+{a[2]*a[3]}*x^{b[2]+b[3]}+{a[2]*c[1]}*x^{b[2]+b[4]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS01 Solve linear equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Solve linear equations with unkowns on both sides. Including brackets and fractions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "Given $\\simplify{{m}w-{n} = {p}w+{q}}$, we can get all the $w$'s on the left hand side and all the numbers on the right hand side, and then divide both sides by the coefficient of $w$ to get $w$ by itself.
\n\n| \n | \n | \n |
| \n | \n | \n |
| $\\simplify{{m}w+{n}}$ | \n$=$ | \n$\\simplify{{p}w+{q}}$ | \n
| \n | \n | \n |
| $\\simplify[!cancelTerms,unitFactor]{{m}w-{n}-{p}w}$ | \n$=$ | \n$\\simplify[!cancelTerms,unitFactor]{{p}w+{q}-{p}w}$ | \n
| \n | \n | \n |
| $\\simplify{{m-p}w-{n}}$ | \n$=$ | \n$\\var{q}$ | \n
| \n | \n | \n |
| $\\var{m-p}w-\\var{n}+\\var{n}$ | \n$=$ | \n$\\var{q}+\\var{n}$ | \n
| \n | \n | \n |
| $\\var{m-p}w$ | \n$=$ | \n$\\var{q+n}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{m-p}w}{\\var{m-p}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{q+n}}{\\var{m-p}}}$ | \n
| \n | \n | \n |
| $w$ | \n$=$ | \n$\\displaystyle{\\simplify{{q+n}/{m-p}}} = \\var{precround(ansA,1)} \\text{ to 1 dp}$ | \n
Use this link to find resources to help you revise how to solve linear equations
Solve $\\simplify{({m}w-{n}) = {p}w+{q}}$
\n$w=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansA", "maxValue": "ansA", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS03 Simultaneous Equations (2 linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["Category: Simultaneous equations"], "metadata": {"description": "Solving a pair of linear simultaneous equations, giving answers as integers or fractions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the simultaneous equations for x and y, giving your answers as integers or fractions, but not decimals.
\n\\[ \\begin{split} \\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y} &\\,=\\var{c1} \\end{split}\\]
", "advice": "\\[\\begin{split}\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\qquad\\qquad&(1)\\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y} &\\,=\\var{c1} \\qquad\\qquad&(2)\\end{split}\\]
\n{advice1}
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-8..8 except [0,1,a])", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-5..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(2..10 except [round(a1*b/a),b,0,1])", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-7..7 except 0)", "description": "", "templateType": "anything", "can_override": false}, "aorsb": {"name": "aorsb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfb": {"name": "torfb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgn": {"name": "sgn", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),-1,1)", "description": "", "templateType": "anything", "can_override": false}, "xn": {"name": "xn", "group": "Ungrouped variables", "definition": "c*abs(b1)+sgn*c1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xd": {"name": "xd", "group": "Ungrouped variables", "definition": "a*abs(b1)+sgn*a1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xsimp": {"name": "xsimp", "group": "Ungrouped variables", "definition": "xn/xd", "description": "", "templateType": "anything", "can_override": false}, "samex": {"name": "samex", "group": "Ungrouped variables", "definition": "\"For these equations, it is easiest to get a solution for $y$ first, due to the $x$-terms having {eqoroppa} coefficients.
\\nIf we {aorsa} equation (2) {torfa} equation (1) this eliminates the $x$-terms leaving us with one equation in terms of $y$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1)})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgna*(c1)}}\\\\\\\\ \\\\simplify{{b+sgna*(b1)}y} &\\\\,= \\\\simplify{{c+sgna*(c1)}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a}x + \\\\var{b} \\\\times \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{a}x &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c} - {c*b+b*sgna*(c1)}/{b+sgna*(b1)}} \\\\\\\\ x &\\\\,= \\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "eqoroppb": {"name": "eqoroppb", "group": "Ungrouped variables", "definition": "if(abs(b)*b1=abs(b1)*b,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "eqoroppa": {"name": "eqoroppa", "group": "Ungrouped variables", "definition": "if(abs(a)*a1=abs(a1)*a,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "samey": {"name": "samey", "group": "Ungrouped variables", "definition": "\"For these equations, it is easiest to get a solution for $x$ first, due to the $y$-terms having {eqoroppb} coefficients.
\\nIf we {aorsb} equation (2) {torfb} equation (1) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1)})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgn*(c1)}}\\\\\\\\ \\\\simplify{{a+sgn*(a1)}x} &\\\\,= \\\\simplify{{c+sgn*(c1)}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a} \\\\times\\\\simplify[fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} + \\\\var{b}y &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c} - {c*a+a*sgn*(c1)}/{a+sgn*(a1)}} \\\\\\\\ y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb": {"name": "lcmb", "group": "Ungrouped variables", "definition": "\"To get a solution for $x$, if we multiply equation (2) by $\\\\simplify{{abs(b/b1)}}$ we will have two equations with {eqoroppb} $y$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b/b1)}x +{b1*abs(b/b1)}y} &\\\\,=\\\\var{c1*abs(b/b1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]
\\nIf we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1*abs(b/b1))})x} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgn*(c1*abs(b/b1))}}\\\\\\\\ \\\\simplify{{a+sgn*(a1*abs(b/b1))}x} &\\\\,= \\\\simplify{{c+sgn*(c1*abs(b/b1))}} \\\\\\\\ x &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgn*(c1*abs(b/b1))}/{a+sgn*(a1*abs(b/b1))}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c)+a*sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c+a*sgn*c1*abs(b/b1))/(a+sgn*a1*abs(b/b1))}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb1": {"name": "lcmb1", "group": "Ungrouped variables", "definition": "\"To get a solution for $x$, if we multiply equation (1) by $\\\\simplify{{abs(b1/b)}}$ we will have two equations with {eqoroppb} $y$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1/b)}x +{b*abs(b1/b)}y} &\\\\,=\\\\var{c*abs(b1/b)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4)\\\\\\\\ \\\\end{split} \\\\]
\\nIf we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(a*abs(b1/b))}+{sgn*a1})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(b1/b))}+{sgn*c1}}\\\\\\\\ \\\\simplify{{(a*abs(b1/b))+sgn*a1}x} &\\\\,= \\\\simplify{{(c*abs(b1/b))+sgn*c1}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c*abs(b1/b))+a*sgn*c1}/{(a*abs(b1/b))+sgn*a1})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c*abs(b1/b)+a*sgn*c1)/(a*abs(b1/b)+sgn*a1)}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "full": {"name": "full", "group": "Ungrouped variables", "definition": "\"To get a solution for $x$, if we multiply equation (1) by $\\\\var{abs(b1)}$ and equation (2) by $\\\\var{abs(b)}$, we will have two equations with {eqoroppb} $y$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1)}x+{b*abs(b1)}y} &\\\\,=\\\\var{c*abs(b1)} \\\\qquad\\\\qquad&(3)\\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b)}x +{b1*abs(b)}y} &\\\\,=\\\\var{c1*abs(b)} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]
\\nNow, {aorsb} equation (4) {torfb} equation (3) to eliminate the $y$ terms:
\\n\\\\[ \\\\begin{split} (\\\\simplify[!collectNumbers]{{a*abs(b1)} +{sgn*a1*abs(b)}}) x &\\\\,= \\\\simplify[!collectNumbers]{{c*abs(b1)}+{sgn*c1*abs(b)}} \\\\\\\\ \\\\simplify{{a*abs(b1)+sgn*a1*abs(b)}} x &\\\\,= \\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}} .\\\\end{split} \\\\]
\\nSo the solution for $x$ is \\\\[ x=\\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}/{a*abs(b1)+sgn*a1*abs(b)}}.\\\\]
\\nTo obtain a solution for $y$ we can substitute this value of $x$ into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\simplify[noLeadingminus,fractionNumbers,unitFactor]{{a} {xsimp} + {b}y} &\\\\,=\\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers,fractionNumbers]{{c}-{a*xsimp}} \\\\\\\\\\\\var{b}y &\\\\,= \\\\simplify[fractionNumbers]{{c-a*xsimp}} \\\\\\\\y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}} \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "aorsa": {"name": "aorsa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfa": {"name": "torfa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgna": {"name": "sgna", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,-1,1)", "description": "", "templateType": "anything", "can_override": false}, "lcma": {"name": "lcma", "group": "Ungrouped variables", "definition": "\"To get a solution for $y$, if we multiply equation (2) by $\\\\simplify{{abs(a/a1)}}$ we will have two equations with {eqoroppa} $x$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(a/a1)}x +{b1*abs(a/a1)}y} &\\\\,=\\\\var{c1*abs(a/a1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]
\\nIf we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1*abs(a/a1))})y} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgna*(c1*abs(a/a1))}}\\\\\\\\ \\\\simplify{{b+sgna*(b1*abs(a/a1))}y} &\\\\,= \\\\simplify{{c+sgna*(c1*abs(a/a1))}} \\\\\\\\ y &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgna*(c1*abs(a/a1))}/{b+sgna*(b1*abs(a/a1))}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c)+b*sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c+b*sgna*c1*abs(a/a1))/(b+sgna*b1*abs(a/a1))}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "lcma1": {"name": "lcma1", "group": "Ungrouped variables", "definition": "\"To get a solution for $y$, if we multiply equation (1) by $\\\\simplify{{abs(a1/a)}}$ we will have two equations with {eqoroppa} $x$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(a1/a)}x +{b*abs(a1/a)}y} &\\\\,=\\\\var{c*abs(a1/a)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]
\\nIf we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(b*abs(a1/a))}+{sgna*b1})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(a1/a))}+{sgna*c1}}\\\\\\\\ \\\\simplify{{(b*abs(a1/a))+sgna*b1}y} &\\\\,= \\\\simplify{{(c*abs(a1/a))+sgna*c1}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(a1/a))+sgna*c1}/{(b*abs(a1/a))+sgna*b1}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c*abs(a1/a)+sgna*c1}/{(b*abs(a1/a))+sgna*b1})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c*abs(a1/a))+b*sgna*c1}/{(b*abs(a1/a))+sgna*b1})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c*abs(a1/a)+b*sgna*c1)/(b*abs(a1/a)+sgna*b1)}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "advice1": {"name": "advice1", "group": "Ungrouped variables", "definition": "if(abs(b)=abs(b1), {samey},if(abs(a)=abs(a1),{samex},if(lcm(abs(b),abs(b1))=abs(b),{lcmb},if(lcm(abs(b),abs(b1))=abs(b1),{lcmb1},if(lcm(abs(a),abs(a1))=abs(a),{lcma},if(lcm(abs(a),abs(a1))=abs(a1),{lcma1},{full}))))))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(b-b1)>1 and\nabs(a-a1)>1 and\ngcd(a,c)=1 and\ngcd(a1,c1)=1", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "a1", "b1", "c", "c1", "aorsa", "torfa", "aorsb", "torfb", "sgna", "sgn", "xn", "xd", "xsimp", "eqoroppa", "eqoroppb", "advice1", "samey", "samex", "lcmb", "lcmb1", "lcma", "lcma1", "full"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]]
\n$y=$ [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c-a*xsimp)/b}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS06 Factorising a Quadratic (a=1)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["factorisation", "Factorisation", "factorising quadratic equations", "Factorising quadratic equations", "taxonomy"], "metadata": {"description": "Factorise three quadratic equations of the form $x^2+bx+c$.
\nThe first has two negative roots, the second has one negative and one positive, and the third is the difference of two squares.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Factorise the following quadratic equation.
", "advice": "Quadratic equations of the form
\n\\[x^2+bx+c=0\\]
\ncan be factorised to create an equation of the form
\n\\[(x+m)(x+n)=0\\text{.}\\]
\nWhen we expand a factorised quadratic expression we obtain
\n\\[(x+m)(x+n)=x^2+(m+n)x+(m \\times n)\\text{.}\\]
\nTo factorise an equation of the form $x^2+bx+c$, we need to find two numbers which add together to make $b$, and multiply together to make $c$.
\n\nWe need to find two values that add together to make $\\var{v3+v4}$ and multiply together to make $\\var{v3*v4}$.
\n\\[\\begin{align}
\\var{v3} \\times \\var{v4}&=\\var{v3*v4}\\\\
\\var{v3}+\\var{v4}&=\\var{v3+v4}\\\\
\\end{align} \\]
So the factorised form of the equation is
\n\\[\\simplify{(x+{v3})(x+{v4})}=0\\text{.}\\]
\n\nUse this link to find some resources which will help you revise this topic
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"v1": {"name": "v1", "group": "Part A ", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "v2": {"name": "v2", "group": "Part A ", "definition": "random(2..6 except v1)", "description": "", "templateType": "anything", "can_override": false}, "v4": {"name": "v4", "group": "Part A ", "definition": "random(1..10 except -v3)", "description": "", "templateType": "anything", "can_override": false}, "v5": {"name": "v5", "group": "Part A ", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "v3": {"name": "v3", "group": "Part A ", "definition": "random(-8..-1)", "description": "", "templateType": "anything", "can_override": false}, "v6": {"name": "v6", "group": "Part A ", "definition": "-v5", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part A ", "variables": ["v1", "v2", "v3", "v4", "v5", "v6"]}], "functions": {}, "preamble": {"js": "question.is_factorised = function(part,penalty) {\n penalty = penalty || 0;\n if(part.credit>0) {\n // Parse the student's answer as a syntax tree\n var studentTree = Numbas.jme.compile(part.studentAnswer,Numbas.jme.builtinScope);\n\n // Create the pattern to match against \n // we just want two sets of brackets, each containing two terms\n // or one of the brackets might not have a constant term\n // or for repeated roots, you might write (x+a)^2\n var rule = Numbas.jme.compile('m_all(m_any(x,x+m_pm(m_number),x^m_number,(x+m_pm(m_number))^m_number))*m_nothing');\n\n // Check the student's answer matches the pattern. \n var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n // If not, take away marks\n if(!m) {\n part.multCredit(penalty,'Your answer is not fully factorised.');\n }\n }\n}", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{x^2+{v3+v4}x+{v3*v4}}=0$
\n[[0]] $=0$
\n", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x+{v3})(x+{v4})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "(`+-x^$n`? + `+- $n)`* * $z", "partialCredit": 0, "message": "Your answer is not fully factorised.", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS07 Quadratics - solve", "extensions": [], "custom_part_types": [{"source": {"pk": 2, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/2/edit"}, "name": "List of numbers", "short_name": "list-of-numbers", "description": "
The answer is a comma-separated list of numbers.
\nThe list is marked correct if each number occurs the same number of times as in the expected answer, and no extra numbers are present.
\nYou can optionally treat the answer as a set, so the number of occurrences doesn't matter, only whether each number is included or not.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "join(\n if(settings[\"correctAnswerFractions\"],\n map(let([a,b],rational_approximation(x), string(a/b)),x,settings[\"correctAnswer\"])\n ,\n settings[\"correctAnswer\"]\n ),\n settings[\"separator\"] + \" \"\n)", "hint": {"static": false, "value": "if(settings[\"show_input_hint\"],\n \"Enter a list of numbers separated by{settings['separator']}.\",\n \"\"\n)"}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "bits:\nlet(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)\n\nexpected_numbers:\nlet(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)\n\nvalid_numbers:\nif(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )\n\nis_sorted:\nassert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )\n\nincluded:\nmap(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentIs every number in the student's list valid?
", "definition": "if(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )"}, {"name": "is_sorted", "description": "Are the student's answers in ascending order?
", "definition": "assert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )"}, {"name": "included", "description": "Is each number in the expected answer present in the student's list the correct number of times?
", "definition": "map(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentTrue if the student's list doesn't contain any numbers that aren't in the expected answer.
", "definition": "if(all(map(x in expected_numbers, x, interpreted_answer)),\n true\n ,\n incorrect(\"Your answer contains \"+extra_numbers[0]+\" but should not.\");\n false\n )"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "if(lower(studentAnswer) in [\"empty\",\"\u2205\"],[],\n map(\n if(settings[\"allowFractions\"],parsenumber_or_fraction(x,notationStyles), parsenumber(x,notationStyles))\n ,x\n ,bits\n )\n)"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=\"\",fail(\"You have not entered an answer\"),false);\napply(valid_numbers);\napply(included);\napply(no_extras);\ncorrectif(all_included and no_extras)"}, {"name": "notationStyles", "description": "", "definition": "[\"en\"]"}, {"name": "isSet", "description": "Should the answer be considered as a set, so the number of times an element occurs doesn't matter?
", "definition": "settings[\"isSet\"]"}, {"name": "extra_numbers", "description": "Numbers included in the student's answer that are not in the expected list.
", "definition": "filter(not (x in expected_numbers),x,interpreted_answer)"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The list of numbers that the student should enter. The order does not matter.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "allowFractions", "label": "Allow the student to enter fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "correctAnswerFractions", "label": "Display the correct answers as fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "isSet", "label": "Is the answer a set?", "help_url": "", "hint": "If ticked, the number of times an element occurs doesn't matter, only whether it's included at all.", "input_type": "checkbox", "default_value": false}, {"name": "show_input_hint", "label": "Show the input hint?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": true}, {"name": "separator", "label": "Separator", "help_url": "", "hint": "The substring that should separate items in the student's list", "input_type": "string", "default_value": ",", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Solving a quadratic equation via factorisation (or otherwise) with the $x^2$-term having a coefficient of 1.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the following quadratic equation by factorisation or otherwise:
\n\\[ \\simplify[unitFactor]{x^2+{b}x+{c}=0} \\]
", "advice": "To solve a quadratic equation of the form \\[ x^2+bx+c=0\\] by factorisation, we want to factorise the equation into the form \\[(x+p)(x+q)=0,\\] where $p+q=b$ and $p \\times q = c$.
\nHence, for the equation \\[\\simplify{x^2+{b}x+{c}=0}, \\]
\nthis can be factorised to \\[\\simplify{(x+{p})(x+{q})=0}.\\] This equation is satisfied when either \\[\\simplify{x+{p}=0} \\quad \\text{or} \\quad \\simplify{x+{q}=0}, \\] which implies the solutions to this quadratic equation are \\[ \\simplify{x={-p}} \\quad \\text{and} \\quad \\simplify{x={-q}} .\\]
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "{p+q}", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "{p*q}", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(-10..10 except [0,p])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "[-p,-q]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(p+q)>0", "maxRuns": 100}, "ungrouped_variables": ["b", "c", "p", "q", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x= $[[0]]
", "gaps": [{"type": "list-of-numbers", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "{sol}", "allowFractions": false, "correctAnswerFractions": false, "isSet": false, "show_input_hint": true, "separator": ","}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS09 Quadratics - factorise (a not 1)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["coefficient of x^2 greater than 1", "factorisation", "Factorisation", "factorising", "factorising quadratic equations", "Factorising quadratic equations", "factorising quadratic equations with x^2 coefficients greater than 1", "taxonomy"], "metadata": {"description": "Factorise a quadratic equation where the coefficient of the $x^2$ term is greater than 1 and then write down the roots of the equation
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "As this question involves a number greater than $1$ before the $x^2$ value it has a factorised form $(ax+b)(cx+d)$.
\nTo find $a$ and $c$, we need to consider the factors of $\\var{a*c}$.
\nYou may have to test a a few different options before you find one that works. In this case $a$ and $c$ are $\\var{a}$ and $\\var{c}$.
\nThis means our factorised equation must take the form
\n\\[(\\var{a}x+b)(\\var{c}x+d)=0\\text{.}\\]
\nThis expands to
\n\\[ \\simplify{ {a*c}x^2 + ({a}*d+{c}*b)x + a*b} \\]
\nSo we must find two numbers which add together to make $\\var{a*d+b*c}$, and multiply together to make $\\var{b*d}$.
\nTherefore $b$ and $d$ must satisfy
\n\\begin{align}
b \\times d &=\\var{b*d}\\\\
\\simplify{{a}d+{c}b} &= \\var{a*d+b*c}\\text{.}
\\end{align}
$b = \\var{b}$ and $d = \\var{d}$ satisfy these equations:
\n\\begin{align}
\\var{b} \\times \\var{d} &=\\var{b*d}\\\\
\\simplify[]{ {a}*{d} + {b}*{c} } &= \\var{a*d+b*c}
\\end{align}
So the factorised form of the equation is
\n\\[ \\simplify{({a}x+{b})({c}x+{d}) = 0} \\text{.}\\]
\n$\\simplify{({a}x+{b})({c}x+{d}) = 0}$ when either $\\var{a}x+\\var{b} = 0$ or $\\var{c}x+ \\var{d} = 0$.
\nSo the roots of the equation are $\\var[fractionnumbers]{-b/a}$ and $\\var[fractionnumbers]{-d/c}$.
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "last q", "definition": "random(-5..5 except 0)", "description": "$b$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "last q", "definition": "random(2..8 except a)", "description": "$c$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "last q", "definition": "random(2..3)", "description": "$a$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}, "roots": {"name": "roots", "group": "last q", "definition": "sort([-b/a,-d/c])", "description": "The roots of the equation
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "last q", "definition": "random(-8..8 except 0)", "description": "$d$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "last q", "variables": ["a", "b", "c", "d", "roots"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve the following equation by factorisation to find $x$.
\n$\\simplify{{a*c}x^2+{a*d+b*c}x+{b*d}=0}\\text{.}$
\nInput your answers in ascending order.
\n$x=$ [[0]]
\n$x=$ [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "roots[0]", "maxValue": "roots[0]", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "roots[1]", "maxValue": "roots[1]", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC17 Algebraic fractions - addition", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Simplify (qx+a)/(rx+b) +/- (sx+c)/(tx+d)
\nx is a randomised variable. a,b,c,d,q,r,s,t are randomised integers. a,b,c,d run from -5 to 5, including 0. q,r,s,t run from -3 to 3, and can be 0 if the constant term is nonzero, but are mostly 1.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Express $\\displaystyle{\\var{te[0]}\\var{sgnl}\\var{te[1]}}$ as a single fraction.
", "advice": "\\[\\begin{align*} \\var{te[0]}\\var{sgnl}\\var{te[1]} &= \\frac{\\var{ndnde[3]}}{\\var{ndnde[3]}}\\times\\var{te[0]}\\var{sgnl}\\frac{\\var{ndnde[1]}}{\\var{ndnde[1]}}\\times\\var{te[1]}\\\\&=\\frac{\\var{cnd[0]}\\var{sgnl}\\var{cnd[1]}}{(\\var{ndnde[1]})(\\var{ndnde[3]})}\\\\&=\\frac{(\\var{cnd[2]})\\var{sgnl}(\\var{cnd[3]})}{(\\var{ndnde[1]})(\\var{ndnde[3]})}\\\\&=\\frac{\\var{cnd[4]}}{(\\var{ndnde[1]})(\\var{ndnde[3]})}\\\\&=\\var{ans} \\end{align*}\\]
\nThere is no benefit in expanding the denominator. In fact, it is best to leave the denominator factorised, because then it is easier to see if the fraction can be simplified.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"te": {"name": "te", "group": "Ungrouped variables", "definition": "[simplify(expression(\"(\"+ndnd[0]+\")/(\"+ndnd[1]+\")\"),\"all\"),\n simplify(expression(\"(\"+ndnd[2]+\")/(\"+ndnd[3]+\")\"),\"all\")\n]", "description": "", "templateType": "anything", "can_override": false}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "random(\"a\",\"b\",\"c\",\"d\",\"f\",\"g\",\"h\",\"k\",\"m\",\"n\",\"p\",\"q\",\"r\",\"s\",\"t\",\"u\",\"v\",\"w\",\"x\",\"y\",\"z\")", "description": "the variable to use
", "templateType": "anything", "can_override": false}, "xc": {"name": "xc", "group": "Ungrouped variables", "definition": "repeat(weighted_random([ [1,0.7] , [random(1..3),0.3] ])\n ,4)", "description": "the x-coefficients
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "map(\nswitch(xc[i]=0, random(2..5),\n xc[i]=1, random(-5..5 except 0),\n xc[i]=2, random(-5..5 except [-4,-2,2,4]),\n random(-5..5 except [-xc[i],xc[i]])\n),i,[0,1,2,3])", "description": "the constants. Make sure that the constants are coprime with their x-coefficient, and if their x-coefficient is 0, that they are positive. There is a condition in variable testing to ensure that no fraction = 1.
", "templateType": "anything", "can_override": false}, "ndnd": {"name": "ndnd", "group": "Ungrouped variables", "definition": "[\"+\"+c[0],\n xc[1]+\"*\"+v+\"+\"+c[1],\n \"+\"+c[2],\n xc[3]+\"*\"+v+\"+\"+c[3]\n ]", "description": "numerator 1, denominator 1, numerator 2, denominator 2, as strings.
", "templateType": "anything", "can_override": false}, "sgn": {"name": "sgn", "group": "Ungrouped variables", "definition": "random(\"+\",\"-\")", "description": "", "templateType": "anything", "can_override": false}, "sgnl": {"name": "sgnl", "group": "Ungrouped variables", "definition": "latex(sgn)", "description": "for display purposes
", "templateType": "anything", "can_override": false}, "ndnde": {"name": "ndnde", "group": "Ungrouped variables", "definition": "map(simplify(expression(x),\"all\"),x,ndnd)", "description": "", "templateType": "anything", "can_override": false}, "cnd": {"name": "cnd", "group": "Ungrouped variables", "definition": "[simplify(expression(\"(\"+ndnd[3]+\")*(\"+ndnd[0]+\")\"),\"all\"),\nsimplify(expression(\"(\"+ndnd[1]+\")*(\"+ndnd[2]+\")\"),\"all\"),\nsimplify(expression(\"(\"+ndnd[3]+\")*(\"+ndnd[0]+\")\"),[\"expandBrackets\",\"all\"]),\nsimplify(expression(\"(\"+ndnd[1]+\")*(\"+ndnd[2]+\")\"),[\"expandBrackets\",\"all\"]),\nsimplify(expression(\n string(simplify(\n expression(\"(\"+ndnd[3]+\")*(\"+ndnd[0]+\")\"),\n [\"expandBrackets\",\"all\",\"!noLeadingMinus\"])\n )+\"+\"+\n string(simplify(\n expression(sgn+\"(\"+ndnd[1]+\")*(\"+ndnd[2]+\")\"),\n [\"expandBrackets\",\"all\",\"!noLeadingMinus\"])\n )\n),[\"expandBrackets\",\"basic\"]),\n \nsimplify(expression(\n string(simplify(expression(\"(\"+ndnd[3]+\")*(\"+ndnd[0]+\")\"),\n [\"expandBrackets\",\"all\",\"!noLeadingMinus\"]))+ \"+\" +\n string(simplify(expression(sgn+\"(\"+ndnd[1]+\")*(\"+ndnd[2]+\")\"),\n [\"expandBrackets\",\"all\",\"!noLeadingMinus\"]))\n ),[\"all\",\"!noLeadingMinus\"])\n ]", "description": "The combined numerator and denominator terms:
\n0) numerator term 1, 1) numerator term 2,
\n2) brackets expanded num t1, 3) brackets expanded num t2
\n4) numerator, no brackets
\n5) numerator simplified
\n", "templateType": "anything", "can_override": false}, "ansnum": {"name": "ansnum", "group": "Ungrouped variables", "definition": "simplify(expression(\n string(simplify(expression(\"(\"+ndnd[3]+\")*(\"+ndnd[0]+\")\"),\n [\"expandBrackets\",\"all\",\"!noLeadingMinus\"]))+ \"+\" +\n string(simplify(expression(sgn+\"(\"+ndnd[1]+\")*(\"+ndnd[2]+\")\"),\n [\"expandBrackets\",\"all\",\"!noLeadingMinus\"]))\n ),[\"all\",\"!noLeadingMinus\"])", "description": "", "templateType": "anything", "can_override": false}, "ansden": {"name": "ansden", "group": "Ungrouped variables", "definition": "simplify(expression(\"(\"+ndnd[1]+\")*(\"+ndnd[3]+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "expression(\"(\"+string(ansnum)+\")/(\"+string(ansden)+\")\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "(xc[0]<>xc[1] or c[0]<>c[1]) and (xc[2]<>xc[3] or c[2]<>c[3])", "maxRuns": "76"}, "ungrouped_variables": ["v", "xc", "c", "ndnd", "te", "sgn", "sgnl", "ndnde", "cnd", "ansnum", "ansden", "ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "?`+/?`+", "partialCredit": 0, "message": "You need to give your answer as just one fraction", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC18 Algebraic Fractions - addition (harder)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Simplify the sum of two algebraic fractions where spotting factorising of both numerators and denominators can reduce the work massively.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ simplifying as much as possible. Your answer should be in the form $\\frac{\\alpha\\var{v}+\\beta}{\\delta\\var{v}^2-\\gamma}.$
", "advice": "To write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ first factorise as much as possible and look for any cancellations:
\n\\[\\begin{split}
&\\frac{\\var{a}\\times\\var{b}}{\\var{den1fact}} + \\frac{\\var{num2}}{\\var{den2fact}}\\\\
& = \\frac{\\var{b}}{\\var{den1simp}} + \\frac{1}{\\var{f1c}}.
\\end{split}\\]
Then get a common denominator for the two fractions and combine into a single fraction:
\n\\[\\begin{split}
&\\frac{\\var{b}}{\\var{den1simp}} + \\frac{\\var{f1}}{\\var{den1simp}}\\\\
& = \\frac{\\var{b}+\\var{f1}}{\\var{den1simp}}\\\\
& = \\var{ans}.
\\end{split}\\]
Use this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Set up", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Set up", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "v": {"name": "v", "group": "Set up", "definition": "random(\"a\",\"b\",\"c\",\"d\",\"f\",\"g\",\"h\",\"k\",\"m\",\"n\",\"p\",\"q\",\"r\",\"s\",\"t\",\"u\",\"v\",\"w\",\"x\",\"y\",\"z\")", "description": "", "templateType": "anything", "can_override": false}, "cf1": {"name": "cf1", "group": "Set up", "definition": "repeat(random(2..4),2)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"+\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "f1c": {"name": "f1c", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"-\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "cf2": {"name": "cf2", "group": "Set up", "definition": "repeat(random(2..5),2)", "description": "", "templateType": "anything", "can_override": false}, "f2": {"name": "f2", "group": "Set up", "definition": "simplify(cf2[0]+\"*\"+v+\"+\"+cf2[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1fact": {"name": "den1fact", "group": "Advice", "definition": "simplify(a+\"*\"+\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}, "num1": {"name": "num1", "group": "Question", "definition": "a*b", "description": "", "templateType": "anything", "can_override": false}, "den2": {"name": "den2", "group": "Question", "definition": "simplify(den2fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Question", "definition": "simplify(f2,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1": {"name": "den1", "group": "Question", "definition": "simplify(den1fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "den2fact": {"name": "den2fact", "group": "Advice", "definition": "simplify(expression(\"(\"+string(f1c)+\")*(\"+string(f2)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansn": {"name": "ansn", "group": "Question", "definition": "simplify(string(f1) + \"+\" + b,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansd": {"name": "ansd", "group": "Question", "definition": "simplify(expression(\"(\"+string(f1)+\")\"+\"*\"+ \"(\"+string(f1c)+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Question", "definition": "simplify(expression(\"(\"+string(ansn)+\")\"+\"/\"+\"(\"+string(ansd)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1simp": {"name": "den1simp", "group": "Advice", "definition": "simplify(\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "f1<>f2 AND f1c<>f2 AND cf1[0]<>cf1[1] AND cf2[0]<>cf2[1]", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Set up", "variables": ["a", "b", "v", "cf1", "f1", "f1c", "cf2", "f2"]}, {"name": "Question", "variables": ["num1", "den1", "num2", "den2", "ansn", "ansd", "ans"]}, {"name": "Advice", "variables": ["den1fact", "den2fact", "den1simp"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "?`+/?`+", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC19 Cancelling algebraic fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Luke Park", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/826/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "A question to practice simplifying fractions with the use of factorisation (for binomial and quadratic expressions).
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Simplify the following algebraic expression.
", "advice": "\\[\\frac{{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}}{{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}}\\]
\nIn this question there is a quadratic expression which needs to be factorised into the products of binomials in both the numerator and denominator.
\n\\[\\frac{({\\simplify{n+{e1}}})({\\simplify{n+{e2}}})}{({\\simplify{n+{e1}}})({\\simplify{n+{e3}}})}\\]
\nThe repeated binomials in the numerator and denominator cancel, leaving:
\n\\[\\frac{({\\simplify{n+{e2}}})}{({\\simplify{n+{e3}}})}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "e3": {"name": "e3", "group": "Ungrouped variables", "definition": "random(-5..5 except 0 except e2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["e1", "e2", "e3"], "variable_groups": [], "functions": {"": {"parameters": [], "type": "number", "language": "jme", "definition": ""}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\[\\frac{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}\\]
", "answer": "(n+{e2})/(n+{e3})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["^2", "^"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "n", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC21 Multiplication of algebraic fractions 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Simplifying first is essential in terms of managing expressions that might need factorising.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Expand and simplify $\\displaystyle{\\var{LeftMul}\\times\\var{RightMul}}.$
", "advice": "Before we multiply the fractions together first lets check if we can do any cancellation. Notice that $\\var{RightMulBottom}$ has a factor of $\\var{Num}$ so we can cancel this straight away.
\nWe also have a factor of $x$ in both $\\var{QuadCoeff[0]}x^2+\\var{QuadCoeff[1]}x$ and $\\var{RightMulTop}$ so we're now left with multiplying
\n\\[\\frac1{\\var{QuadCoeff[0]}x+\\var{QuadCoeff[1]}}\\times\\frac{\\simplify[all,expandBrackets]{(x+{Lin1Coeff})*({QuadCoeff[0]}x+{QuadCoeff[1]})}}{\\var{Lin2Coeff[0]}x+\\var{Lin2Coeff[1]}}.\\]
\nWe're not necesserily done with cancellation though! To make sure that a fraction with a quadratic is simplified we have to factorise it to make sure there are no linear factors we can cancel. In this case we have
\\[\\simplify[all,expandBrackets]{(x+{Lin1Coeff})*({QuadCoeff[0]}x+{QuadCoeff[1]})}={(x+\\var{Lin1Coeff})(\\var{QuadCoeff[0]}x+\\var{QuadCoeff[1]})}.\\]
This gives us one last factor to cancel and then we can finally multiply whats left of each fraction to give us a final answer of
\n\\[\\var{ans}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"QuadCoeff": {"name": "QuadCoeff", "group": "Ungrouped variables", "definition": "[random(1..6),random(1..6)]", "description": "", "templateType": "anything", "can_override": false}, "Num": {"name": "Num", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "Lin2Coeff": {"name": "Lin2Coeff", "group": "Ungrouped variables", "definition": "[random(1..6),random(1..6)]", "description": "", "templateType": "anything", "can_override": false}, "Lin1Coeff": {"name": "Lin1Coeff", "group": "Ungrouped variables", "definition": "random(1..6 except Lin2Coeff[1]/Lin2Coeff[0])", "description": "", "templateType": "anything", "can_override": false}, "Lin1": {"name": "Lin1", "group": "Ungrouped variables", "definition": "\"x\"+\"+\"+Lin1Coeff", "description": "", "templateType": "anything", "can_override": false}, "Lin2": {"name": "Lin2", "group": "Ungrouped variables", "definition": "Lin2Coeff[0]+\"x\"+\"+\"+Lin2Coeff[1]", "description": "", "templateType": "anything", "can_override": false}, "Quad": {"name": "Quad", "group": "Ungrouped variables", "definition": "QuadCoeff[0]+\"x^2+\"+QuadCoeff[1]+\"x\"", "description": "", "templateType": "anything", "can_override": false}, "LeftMul": {"name": "LeftMul", "group": "Ungrouped variables", "definition": "expression(Num+\"/(\"+Quad+\")\")", "description": "", "templateType": "anything", "can_override": false}, "RightMulTop": {"name": "RightMulTop", "group": "Ungrouped variables", "definition": "simplify(expression(\"(\"+Quad+\")*(\"+Lin1+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "RightMulBottom": {"name": "RightMulBottom", "group": "Ungrouped variables", "definition": "simplify(expression(Num+\"*(\"+Lin2+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "RightMul": {"name": "RightMul", "group": "Ungrouped variables", "definition": "expression(\"(\"+string(RightMulTop)+\")\"+\"/\"+\"(\"+string(RightMulBottom)+\")\")", "description": "", "templateType": "anything", "can_override": false}, "Ans": {"name": "Ans", "group": "Ungrouped variables", "definition": "expression(\"(\"+Lin1+\")/(\"+Lin2+\")\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["QuadCoeff", "Num", "Lin2Coeff", "Lin1Coeff", "Lin1", "Lin2", "Quad", "LeftMul", "RightMulTop", "RightMulBottom", "RightMul", "Ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "(`+-$n`?*x+`+-$n`?)/(`+-$n`?*x+`+-$n`?)", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA01 Angles in triangles", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Find the missing angle in a triangle using the fact that the angles add to 180 degrees.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "What is the size of the missing angle $C$? All angles are measured in degrees.
\n{geogebra_applet('https://www.geogebra.org/m/akwnfkfr',[a: a, b: b])}
", "advice": "Recall that the angles in a triangle add up to $180^{\\circ}$.
\nWe can add together two angles we know and subtract the result from $180$ to find the size of our missing angle,
\n\\[ \\begin{split} 180 - (\\var{a} + \\var{b}) &\\, = 180 - (\\var{a+b}) \\\\ &\\, = \\var{180-(a+b)}^{\\circ}. \\end{split} \\]
\nUse this link to find resources to help you revise properties of triangles.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(20 .. 120#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(10 .. 50#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The size of the missing angle is [[0]]$^{\\circ}$.
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "180-{{a}+{b}}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA02 Pythagoras - triangle", "extensions": ["geogebra"], "custom_part_types": [], "resources": ["question-resources/Picture1_caMIdF1.png", "question-resources/Picture2_6KE4ZpW.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "David Wishart", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1461/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Draws a triangle based on 3 side lengths and randomises asking for hypotenuse or not.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "{statement}
\nFind $x$.
", "advice": "Only round your final answer to 1 decimal place.
\n{advice}
\nUse this link to find some resources to help you revise how to use pythagoras' theorem.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"setup": {"name": "setup", "group": "Varying q and advice", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "answerside": {"name": "answerside", "group": "Varying q and advice", "definition": "sh1", "description": "", "templateType": "anything", "can_override": false}, "answerhyp": {"name": "answerhyp", "group": "Varying q and advice", "definition": "hyp", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Varying q and advice", "definition": "if(setup=1,answerside,answerhyp)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Varying q and advice", "definition": "if(setup=1,advice1,advice2)", "description": "", "templateType": "anything", "can_override": false}, "advice2": {"name": "advice2", "group": "Varying q and advice", "definition": "\"Avoid using rounded values in calculations and just round for the final answer.
Pythagoras Theorem states that, in a right angled triangle, with hypotenuse $c$:
\\\\[a^2 + b^2 = c^2\\\\]
\\nLet\\'s call the unknown value $x$, therefore we can write:
\\n$a = \\\\var{sh1}$, $b =\\\\var{sh2}$ and $c = x$
\\nSo
\\\\[\\\\var{sh1}^2 + \\\\var{sh2}^2 = x^2\\\\]
and therefore
\\n\\\\[x^2 = \\\\var{sh1^2} + \\\\var{sh2^2}\\\\]
\\\\[x = \\\\sqrt{\\\\var{sh1^2} + \\\\var{sh2^2}}\\\\]
\\\\[x = \\\\sqrt{\\\\var{sh1^2+sh2^2}}\\\\]
$x = \\\\var{hyp}$ to 1 d.p.
Avoid using rounded values in calculations and just round for the final answer.
Pythagoras Theorem states that, in a right angled triangle, with hypotenuse $c$:
\\\\[a^2 + b^2 = c^2\\\\]
\\nLet\\'s call the unknown value $x$, therefore we can write:
\\n$a = x$, $b =\\\\var{sh2}$ and $c = \\\\var{hyp}$
\\nSo
\\n\\\\[x^2 + \\\\var{sh2}^2 = \\\\var{hyp}^2\\\\]
\\nand therefore
\\n\\\\[x^2 = \\\\var{hyp^2} - \\\\var{sh2^2}\\\\]
\\n\\\\[x = \\\\sqrt{\\\\var{hyp^2-sh2^2}}\\\\]
$x = \\\\var{sh1}$ to 1 d.p.
one of two shortest sides for calculations.
", "templateType": "randrange", "can_override": false}, "sh1": {"name": "sh1", "group": "Unnamed group", "definition": "precround(sh1_gen,1)", "description": "", "templateType": "anything", "can_override": false}, "sh2_gen": {"name": "sh2_gen", "group": "Unnamed group", "definition": "random(4 .. 9#0.1)", "description": "", "templateType": "randrange", "can_override": true}, "sh2": {"name": "sh2", "group": "Unnamed group", "definition": "precround(sh2_gen,1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "10"}, "ungrouped_variables": [], "variable_groups": [{"name": "Unnamed group", "variables": ["hyp", "sh1_gen", "sh1", "sh2_gen", "sh2"]}, {"name": "Varying q and advice", "variables": ["setup", "answerside", "answerhyp", "ans", "advice", "advice2", "advice1", "statement1", "statement2", "statement"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$[[0]] to 1 d.p.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GM01 Area of a circle", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Finding the area of a circle when given the diameter of the circle.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the area of a circle with diameter $\\var{d}$ cm giving your answer to 1 decimal place.
\n{geogebra_applet('https://www.geogebra.org/m/ngcchpcj',[d: d])}
", "advice": "To calculate the area of a circle we want to use the formula \\[ A = \\pi r^2, \\]
\nwhere $r$ is the radius of the circle.
\nSo, if the diameter, d, is $\\var{d}$ cm, then the radius is, $r=\\frac{d}{2}=\\var{{d}/2}$ cm, then
\n\\[ \\begin{split} Area &\\,=\\var{{d}/2}^2 \\times \\pi \\text{ cm}^2 \\\\ &\\,= \\simplify[all, fractionNumbers]{{{{d}^2/4}}pi} \\text{ cm}^2 \\\\ &\\,= \\var{precround({d}^2/4*pi,1)} \\text{ cm}^2. \\end{split} \\]
\nUse this link to find some resources to help you revise how to calculate the area of a circle.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(6,8,10,12,14,16,18,20)", "description": "", "templateType": "anything", "can_override": true}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["d", "t"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$Area=$ [[0]] $\\text{ cm}^2$
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "precround({{d/2}}^2*pi,1)", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "answer": "precround({{d/2}}^2*pi,1)", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GM03 Volume of cylinder", "extensions": [], "custom_part_types": [], "resources": ["question-resources/sqbasedpyramid_sEpkGzO.svg", "question-resources/triangularprism.svg", "question-resources/cylinder.svg", "question-resources/cuboid.svg"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Aiden McCall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1592/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": ["3D shapes", "cuboid", "Cylinder", "cylinder", "pyramid", "taxonomy", "triangular prism", "volume", "Volume", "volume of a cuboid", "volume of a cylinder", "volume of a pyramid", "volume of a triangular prism"], "metadata": {"description": "Calculate the volume of different 3D shapes, given the units and measurements required. The formulae for the volume of each shape are available as steps if required.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "For a cylinder, we first need to find the area of the circular face then multiply this area by the depth of the cylinder.
In this example the radius of the circular face is $\\mathrm{radius} = \\var{r7}m$ which can be used to calculate the area of the circular face.
\\begin{align}
\\mathrm{Area\\thinspace_\\bigcirc} &= \\pi \\times \\mathrm{radius}^2 \\\\
&= \\pi \\times \\var{r7}^2 \\\\
&= \\var{pi * (r7)^2}\\, \\mathrm{m}^2 \\,.
\\end{align}
Now that we have the area of the circular face ($\\mathrm{Area\\thinspace_\\bigcirc}$) we can multiply this by the $\\mathrm{depth} =\\var{w7}m\\thinspace$.
\n\\begin{align}
\\mathrm{Volume} &= \\mathrm{Area\\thinspace_\\bigcirc} \\times \\mathrm{depth} \\\\
&= \\var{pi*(r7)^2} \\times \\var{w7} \\\\
&= \\var{dpformat(pi*w7*(r7)^2, 5)} \\\\
&= \\var{dpformat(pi*w7*(r7)^2, 1)}\\, \\mathrm{m}^2\\,. \\quad \\text{1 d.p.}
\\end{align}
Use this link to find resources to help you revise how to calculate the volume of a cylinder.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"d4": {"name": "d4", "group": "Cuboid ", "definition": "random(2..5#1)", "description": "Side of square in cuboid.
", "templateType": "anything", "can_override": false}, "w6": {"name": "w6", "group": "Triangular prism", "definition": "random(5..9#1)", "description": "Creates base of triangle.
", "templateType": "anything", "can_override": false}, "d8": {"name": "d8", "group": "Square based pyramid", "definition": "random(3..6#0.1)", "description": "One side of square base.
", "templateType": "anything", "can_override": false}, "h8": {"name": "h8", "group": "Square based pyramid", "definition": "random(3..7#1)", "description": "Height of pyramid.
", "templateType": "anything", "can_override": false}, "w7": {"name": "w7", "group": "Cylinder", "definition": "random(7..15#0.1)", "description": "Depth of cylinder.
", "templateType": "anything", "can_override": false}, "d6": {"name": "d6", "group": "Triangular prism", "definition": "random(9..15#0.1)", "description": "Depth of triangular prism.
", "templateType": "anything", "can_override": false}, "r7": {"name": "r7", "group": "Cylinder", "definition": "random(2..6#1)", "description": "Radius of the cylinder.
", "templateType": "anything", "can_override": false}, "h4": {"name": "h4", "group": "Cuboid ", "definition": "random(2..5#1 except d4)", "description": "Side of square in cuboid.
", "templateType": "anything", "can_override": false}, "w4": {"name": "w4", "group": "Cuboid ", "definition": "random(5.5..8#0.1)", "description": "Width of cuboid.
", "templateType": "anything", "can_override": false}, "w8": {"name": "w8", "group": "Square based pyramid", "definition": "random(3..7#1)", "description": "One side of square base.
", "templateType": "anything", "can_override": false}, "h6": {"name": "h6", "group": "Triangular prism", "definition": "random(2..5#1)", "description": "Height of traingle.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Cuboid ", "variables": ["w4", "d4", "h4"]}, {"name": "Triangular prism", "variables": ["w6", "h6", "d6"]}, {"name": "Cylinder", "variables": ["r7", "w7"]}, {"name": "Square based pyramid", "variables": ["h8", "w8", "d8"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the $\\mathrm{Volume}$ of the following cylinder.
\n\n$\\mathrm{Volume} =$[[0]] $\\mathrm{m}^3$. Round your answer to 1 decimal place.
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Volume of a cylinder:
\n\\begin{align}
\\mathrm{Volume} &= \\mathrm{Area\\thinspace_\\bigcirc} \\times \\mathrm{depth} \\\\
&= \\pi \\times \\mathrm{r}^2 \\times \\mathrm{depth}
\\end{align}
Find the volume of a prism with a trapezium as a cross section from a diagram.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate the volume of this (all lengths are in $cm$):
\n{geogebra_applet('https://www.geogebra.org/m/qvcktek2',[basew: basew, topw: topw, h: h, l: l])}
", "advice": "In order to work out the volume of a prism you need to work out the cross sectional area first. In this question the cross section is a trapezium. Find the area of a trapezium,
\n\\begin{align} \\frac{\\var{basew}+\\var{topw}}{2}\\times \\var{h} = \\var{traparea} cm^2 \\end{align}
\nThen to calculate the volume you times the cross-sectional area by the length,
\n\\begin{align} \\var{traparea} \\times \\var{l} = \\var{answer}cm^3\\end{align}.
\n\nUse this link to find resources to help you revise how to calculate the volume of a prism.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"basew": {"name": "basew", "group": "Ungrouped variables", "definition": "random(12 .. 20#2)", "description": "", "templateType": "randrange", "can_override": false}, "topw": {"name": "topw", "group": "Ungrouped variables", "definition": "random(4 .. 10#2)", "description": "", "templateType": "randrange", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(4 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(8 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "((topw+basew)/2)*h*l", "description": "", "templateType": "anything", "can_override": false}, "traparea": {"name": "traparea", "group": "Ungrouped variables", "definition": "(basew+topw)/2*h", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["basew", "topw", "h", "l", "answer", "traparea"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]$cm^3$
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Volume", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA04 Trigonometry - missing side", "extensions": ["eukleides"], "custom_part_types": [], "resources": ["question-resources/Picture1_caMIdF1.png", "question-resources/Picture2_6KE4ZpW.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "David Wishart", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1461/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Draws a triangle based on 3 side lengths. Randomises asking angle or side.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "{max_height(25,diagram)}
", "advice": "Avoid using rounded values in calculations and just round for the final answer.
{advice}
In this situation $x$ is an angle. We label the known sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we are interested in:
\\n$\\\\text{Opposite} = \\\\var{bc}$
$\\\\text{Hypotenuse} = \\\\var{ab}$
We have \\'O\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $\\\\sin$ formula:
\\\\[ \\\\sin(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\sin(x) = \\\\frac{\\\\var{bc}}{\\\\var{ab}}\\\\]
We need to use the \\'inverse $\\\\sin$\\' button on the calculator (also called $\\\\arcsin$ or notated $\\\\sin^{-1}$) in order to isolate $x$:
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\sin^{-1}(\\\\var{bc}/\\\\var{ab})\\\\]
\\n\\\\[ x = \\\\var{precround(180*(arcsin(bc/(ab)))/pi,4)}\\\\]
\\nRound as required:
\\n\\\\[x = \\\\var{precround(180*(arcsin(bc/(ab)))/pi,2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "cos_a": {"name": "cos_a", "group": "advice", "definition": "\"In this situation $x$ is an angle. We label the known sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we are interested in:
\\n$\\\\text{Adjacent} = \\\\var{ac}$
$\\\\text{Hypotenuse} = \\\\var{ab}$
We have \\'A\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $\\\\cos$ formula:
\\\\[ \\\\cos(\\\\text{Angle}) = \\\\frac{\\\\text{Adjacent}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\cos(x) = \\\\frac{\\\\var{ac}}{\\\\var{ab}}\\\\]
We need to use the \\'inverse $\\\\cos$\\' button on the calculator (also called $\\\\arccos$ or notated $\\\\cos^{-1}$) in order to isolate $x$:
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\cos^{-1}(\\\\var{ac}/\\\\var{ab})\\\\]
\\n\\\\[ x = \\\\var{precround(180*(arccos(ac/(ab)))/pi,4)}\\\\]
\\nRound as required:
\\n\\\\[x = \\\\var{precround(180*(arccos(ac/(ab)))/pi,2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "tan_a": {"name": "tan_a", "group": "advice", "definition": "\"In this situation $x$ is an angle. We label the known sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we are interested in:
\\n$\\\\text{Opposite} = \\\\var{bc}$
$\\\\text{Adjacent} = \\\\var{ac}$
We have \\'O\\' and \\'A\\' in SOHCAHTOA, so we know we need to use the $\\\\tan$ formula:
\\\\[ \\\\tan(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Adjacent}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\tan(x) = \\\\frac{\\\\var{bc}}{\\\\var{ac}}\\\\]
We need to use the \\'inverse $\\\\tan$\\' button on the calculator (also called $\\\\arctan$ or notated $\\\\tan^{-1}$) in order to isolate $x$:
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\tan^{-1}(\\\\var{bc}/\\\\var{ac})\\\\]
\\n\\\\[ x = \\\\var{precround(180*(arctan(bc/(ac)))/pi,4)}\\\\]
\\nRound as required:
\\n\\\\[x = \\\\var{precround(180*(arctan(bc/(ac)))/pi,2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "sin_bc": {"name": "sin_bc", "group": "advice", "definition": "\"In this situation $x$ is a side. We label the relevant sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we know:
\\n$\\\\text{Opposite} = x$
$\\\\text{Hypotenuse} = \\\\var{ab}$
We have \\'O\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $\\\\sin$ formula:
\\\\[ \\\\sin(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\sin(\\\\var{angle}) = \\\\frac{x}{\\\\var{ab}}\\\\]
and rearrange to give:
\\\\[ x = \\\\var{ab} \\\\times \\\\sin(\\\\var{angle}) \\\\]
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\var{precround(ab*sin(pi*angle/180),4)}\\\\]
\\nRound as required:
\\n\\\\[ x = \\\\var{precround(ab*sin(pi*angle/180),2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "cos_ac": {"name": "cos_ac", "group": "advice", "definition": "\"In this situation $x$ is a side. We label the relevant sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we know:
\\n$\\\\text{Hypotenuse} = \\\\var{ab}$
$\\\\text{Adjacent} = x$
We have \\'A\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $\\\\cos$ formula:
\\\\[ \\\\cos(\\\\text{Angle}) = \\\\frac{\\\\text{Adjacent}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\cos(\\\\var{angle}) = \\\\frac{x}{\\\\var{ab}}\\\\]
and rearrange to give:
\\\\[ x = \\\\var{ab} \\\\times \\\\cos(\\\\var{angle}) \\\\]
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\var{precround(ab*cos(pi*angle/180),4)}\\\\]
\\nRound as required:
\\n\\\\[ x = \\\\var{precround(ab*cos(pi*angle/180),2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "tan_ac": {"name": "tan_ac", "group": "advice", "definition": "\"In this situation $x$ is a side. We label the relevant sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we know:
\\n$\\\\text{Opposite} = \\\\var{bc}$
$\\\\text{Adjacent} = x$
We have \\'O\\' and \\'A\\' in SOHCAHTOA, so we know we need to use the $\\\\tan$ formula:
\\\\[ \\\\tan(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Adjacent}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\tan(\\\\var{angle}) = \\\\frac{\\\\var{bc}}{x}\\\\]
and rearrange to give:
\\\\[ x = \\\\frac{\\\\var{bc}}{\\\\tan(\\\\var{angle})} \\\\]
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\var{precround(bc/tan(pi*angle/180),4)}\\\\]
\\nRound as required:
\\n\\\\[ x = \\\\var{precround(bc/tan(pi*angle/180),2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}}, "variablesTest": {"condition": "precround(180*(arcsin(bc/(ab)))/pi,1) = precround(angle,1)", "maxRuns": "6"}, "ungrouped_variables": [], "variable_groups": [{"name": "Unnamed group", "variables": ["ab", "ac", "bc", "diagram", "angle", "SCT", "AngORside", "answer"]}, {"name": "triangle types", "variables": ["d_t_a_2", "d_t_s_1", "d_s_a_1", "d_c_a_1", "d_c_s_1", "d_s_s_1", "d_c_s_2", "d_t_a_1", "d_t_s_2", "d_s_a_2", "d_s_s_2", "d_c_a_2"]}, {"name": "advice", "variables": ["advice", "tan_a", "sin_a", "cos_a", "sin_bc", "cos_ac", "tan_ac"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given a right angled triangle as shown calculate the value of x.
\nAngles are given in degrees (make sure you calculator is in the right mode)
Give your answer correct to 2 decimal place.
Draws a triangle based on 3 side lengths. Randomises asking angle or side.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "{max_height(25,diagram)}
", "advice": "Avoid using rounded values in calculations and just round for the final answer.
{advice}
In this situation $x$ is an angle. We label the known sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we are interested in:
\\n$\\\\text{Opposite} = \\\\var{bc}$
$\\\\text{Hypotenuse} = \\\\var{ab}$
We have \\'O\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $\\\\sin$ formula:
\\\\[ \\\\sin(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\sin(x) = \\\\frac{\\\\var{bc}}{\\\\var{ab}}\\\\]
We need to use the \\'inverse sin\\' button on the calculator (also called $\\\\arcsin$ or notated $\\\\sin^{-1}$) in order to isolate $x$:
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\arcsin(\\\\var{bc}/\\\\var{ab})\\\\]
\\n\\\\[ x = \\\\var{precround(180*(arcsin(bc/(ab)))/pi,4)}\\\\]
\\nRound as required:
\\n\\\\[x = \\\\var{precround(180*(arcsin(bc/(ab)))/pi,2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "cos_a": {"name": "cos_a", "group": "advice", "definition": "\"In this situation $x$ is an angle. We label the known sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we are interested in:
\\n$\\\\text{Adjacent} = \\\\var{ac}$
$\\\\text{Hypotenuse} = \\\\var{ab}$
We have \\'A\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $cos$ formula:
\\\\[ \\\\cos(\\\\text{Angle}) = \\\\frac{\\\\text{Adjacent}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\cos(x) = \\\\frac{\\\\var{ac}}{\\\\var{ab}}\\\\]
We need to use the \\'inverse cos\\' button on the calculator (also called $\\\\arccos$ or notated $\\\\cos^{-1}$) in order to isolate $x$:
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\arccos(\\\\var{ac}/\\\\var{ab})\\\\]
\\n\\\\[ x = \\\\var{precround(180*(arccos(ac/(ab)))/pi,4)}\\\\]
\\nRound as required:
\\n\\\\[x = \\\\var{precround(180*(arccos(ac/(ab)))/pi,2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "tan_a": {"name": "tan_a", "group": "advice", "definition": "\"In this situation $x$ is an angle. We label the known sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we are interested in:
\\n$\\\\text{Opposite} = \\\\var{bc}$
$\\\\text{Adjacent} = \\\\var{ac}$
We have \\'O\\' and \\'A\\' in SOHCAHTOA, so we know we need to use the $\\\\tan$ formula:
\\\\[ \\\\tan(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Adjacent}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\tan(x) = \\\\frac{\\\\var{bc}}{\\\\var{ac}}\\\\]
We need to use the \\'inverse sin\\' button on the calculator (also called $\\\\arctan$ or notated $\\\\tan^{-1}$) in order to isolate $x$:
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\arctan(\\\\var{bc}/\\\\var{ac})\\\\]
\\n\\\\[ x = \\\\var{precround(180*(arctan(bc/(ac)))/pi,4)}\\\\]
\\nRound as required:
\\n\\\\[x = \\\\var{precround(180*(arctan(bc/(ac)))/pi,2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "sin_bc": {"name": "sin_bc", "group": "advice", "definition": "\"In this situation $x$ is a side. We label the relevant sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we know:
\\n$\\\\text{Opposite} = x$
$\\\\text{Hypotenuse} = \\\\var{ab}$
We have \\'O\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $\\\\sin$ formula:
\\\\[ \\\\sin(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\sin(\\\\var{angle}) = \\\\frac{x}{\\\\var{ab}}\\\\]
and rearrange to give:
\\\\[ x = \\\\var{ab} \\\\times \\\\sin(\\\\var{angle}) \\\\]
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\var{precround(ab*sin(pi*angle/180),4)}\\\\]
\\nRound as required:
\\n\\\\[ x = \\\\var{precround(ab*sin(pi*angle/180),2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "cos_ac": {"name": "cos_ac", "group": "advice", "definition": "\"In this situation $x$ is a side. We label the relevant sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we know:
\\n$\\\\text{Hypotenuse} = \\\\var{ab}$
$\\\\text{Adjacent} = x$
We have \\'A\\' and \\'H\\' in SOHCAHTOA, so we know we need to use the $\\\\cos$ formula:
\\\\[ \\\\cos(\\\\text{Angle}) = \\\\frac{\\\\text{Adjacent}}{\\\\text{Hypotenuse}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\cos(\\\\var{angle}) = \\\\frac{x}{\\\\var{ab}}\\\\]
and rearrange to give:
\\\\[ x = \\\\var{ab} \\\\times \\\\cos(\\\\var{angle}) \\\\]
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\var{precround(ab*cos(pi*angle/180),4)}\\\\]
\\nRound as required:
\\n\\\\[ x = \\\\var{precround(ab*cos(pi*angle/180),2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "tan_ac": {"name": "tan_ac", "group": "advice", "definition": "\"In this situation $x$ is a side. We label the relevant sides of the triangle \\'opposite\\', \\'adjacent\\' and \\'hypotenuse\\' in relation to the angle we know:
\\n$\\\\text{Opposite} = \\\\var{bc}$
$\\\\text{Adjacent} = x$
We have \\'O\\' and \\'A\\' in SOHCAHTOA, so we know we need to use the $\\\\tan$ formula:
\\\\[ \\\\tan(\\\\text{Angle}) = \\\\frac{\\\\text{Opposite}}{\\\\text{Adjacent}}\\\\]
\\nNow we subsitute the values we have in this particular question
\\n\\\\[ \\\\tan(\\\\var{angle}) = \\\\frac{\\\\var{bc}}{x}\\\\]
and rearrange to give:
\\\\[ x = \\\\frac{\\\\var{bc}}{\\\\tan(\\\\var{angle})} \\\\]
Make sure your calculator is set to \\'degree\\' mode, if you get an odd answer you are likely in the wrong mode!
\\\\[ x = \\\\var{precround(bc/tan(pi*angle/180),4)}\\\\]
\\nRound as required:
\\n\\\\[ x = \\\\var{precround(bc/tan(pi*angle/180),2)}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "angle": {"name": "angle", "group": "Unnamed group", "definition": "If(SCT='c',arccos(ac/ab),if(SCT = 's',arcsin(bc/ab),arctan(bc/ac)))", "description": "", "templateType": "anything", "can_override": false}, "gen_ac": {"name": "gen_ac", "group": "Unnamed group", "definition": "random(3 .. 12#0.1)", "description": "", "templateType": "randrange", "can_override": false}, "gen_bc": {"name": "gen_bc", "group": "Unnamed group", "definition": "random(5 .. 15#0.1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "300"}, "ungrouped_variables": [], "variable_groups": [{"name": "Unnamed group", "variables": ["ab", "ac", "bc", "diagram", "SCT", "AngORside", "answer", "angle", "gen_ac", "gen_bc"]}, {"name": "triangle types", "variables": ["d_t_a_2", "d_t_s_1", "d_s_a_1", "d_c_a_1", "d_c_s_1", "d_s_s_1", "d_c_s_2", "d_t_a_1", "d_t_s_2", "d_s_a_2", "d_s_s_2", "d_c_a_2"]}, {"name": "advice", "variables": ["advice", "tan_a", "sin_a", "cos_a", "sin_bc", "cos_ac", "tan_ac"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given a right angled triangle as shown calculate the value of x.
\n
Give your answer in degrees (make sure you calculator is in the right mode), correct to 2 decimal place.
Draws a triangle based on 3 side lengths. Randomises asking angle or side.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "{diagram}
\nFind x.
", "advice": "{Advice}
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Ruleuse": {"name": "Ruleuse", "group": "Question structure", "definition": "random('s','c','s','c')", "description": "", "templateType": "anything", "can_override": false}, "ANGorSIDE": {"name": "ANGorSIDE", "group": "Question structure", "definition": "random('ang','side')", "description": "", "templateType": "anything", "can_override": false}, "cosSIDEadvice": {"name": "cosSIDEadvice", "group": "Question structure", "definition": "\"First recognise that the diagram is a non-right angled triangle and that there are the lengths of two sides given and the angle specifically between those two sides. Further to this, the instruction is to find the other missing side. These are the conditions for when to use the $\\\\textit{cosine rule}$.
\\nThe formula for a missing side using the cosine rule is:
\\n\\\\[ a^2 = b^2 + c^2 - 2bc \\\\cos(A)\\\\]
\\nThe labels of $a$, $b$ and $c$ can be misleading. The critical thing is that regardless of the letters used in the diagram, the $a$ (side) and $A$ (angle) labels are applied to the angle given and it\\'s opposite side.
\\nIn this case:
\\n\\\\[ a=x, \\\\quad b=\\\\var{a}, \\\\quad c=\\\\var{b}, \\\\text{and} \\\\quad A=\\\\var{Cang},\\\\]
\\nwhere the choice of which way round $b$ and $c$ are assigned doesn\\'t matter.
\\nSo, we now have:
\\n\\\\[x^2 = \\\\var{a}^2 +\\\\var{b}^2-2\\\\times\\\\var{a}\\\\times\\\\var{b}\\\\times\\\\cos{(\\\\var{Cang})},\\\\]
\\nhence,
\\n\\\\[x=\\\\sqrt{\\\\var{a^2 +b^2-2*a*b*(cos(Cang))}}\\\\]
\\n\\\\[x=\\\\var{c}\\\\]
\\n\\\\[x=\\\\var{ans}\\\\text{ to 1 decimal place.}\\\\]
\"", "description": "case 1: missing side in the cosine rule.
", "templateType": "long string", "can_override": false}, "cosANGadvice": {"name": "cosANGadvice", "group": "Question structure", "definition": "\"First recognise that the diagram is a non-right angled triangle and that there are the lengths of all three sides given. Further to this, the instruction is to find the a missing angle. These are the conditions for when to use the $\\\\textit{cosine rule}$ but in its rearranged form to find an angle. You need to identify which side is \\\"$a$\\\" as being the one opposite the angle you are asked to find.
\\nThe formula for a missing angle using the cosine rule is:
\\n\\\\[ A = \\\\arccos\\\\left(\\\\frac{b^2+c^2-a^2}{2bc}\\\\right)\\\\]
\\nThe labels of $a$, $b$ and $c$ can be misleading. The critical thing is that regardless of the letters used in the diagram, the $a$ (side) and $A$ (angle) labels are applied to the side opposite the angle that is asked for and the angle that is asked for.
\\nIn this case:
\\n\\\\[ a=\\\\var{c_round}, \\\\quad b=\\\\var{a}, \\\\quad c=\\\\var{b}, \\\\text{and} \\\\quad A= x,\\\\]
\\nwhere the choice of which way round $b$ and $c$ are assigned doesn\\'t matter.
\\nSo, we now have:
\\n\\\\[x = \\\\arccos\\\\left(\\\\frac{\\\\var{a}^2+\\\\var{b}^2-\\\\var{c_round}^2}{2\\\\times\\\\var{a}\\\\times\\\\var{b}}\\\\right),\\\\]
\\nhence,
\\n\\\\[x=\\\\var{(180/pi)*arccos((a^2 +b^2-c_round^2)/(2*a*b))}\\\\]
\\n\\\\[x=\\\\var{ans}\\\\text{ to 1 decimal place.}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "sinSIDEadvice": {"name": "sinSIDEadvice", "group": "Question structure", "definition": "\"First recognise that the diagram is a non-right angled triangle and that a single length is provided, along with two angles, crucially including the angle opposite the given side. Further to this, the instruction is to find the a missing angle. These are the conditions for when to use the $\\\\textit{sine rule}$. The sine rule uses the sides and angles in pairs and uses two pairs for any given calculation
\\nThe formula for finding a side using the sine rule can be written as:
\\n\\\\[ \\\\frac{a}{\\\\sin(A)}=\\\\frac{b}{\\\\sin(B)}\\\\]
\\nThe labels of $a$, $b$ and $c$ can be misleading. The critical thing is that regardless of the letters used in the diagram, the side being asked for is in the above notation $a$.
\\nIn this case:
\\n\\\\[ a=x, \\\\quad b=\\\\var{a}, \\\\quad A=\\\\var{Cang}, \\\\text{and} \\\\quad B= \\\\var{Aang_round}.\\\\]
\\nSo, we now have:
\\n\\\\[\\\\frac{x}{\\\\sin{(\\\\var{Cang})}}=\\\\frac{\\\\var{a}}{\\\\sin{(\\\\var{Aang_round})}},\\\\]
\\nhence,
\\n\\\\[x=\\\\frac{\\\\var{a}}{\\\\sin{(\\\\var{Aang_round})}}\\\\times\\\\sin{(\\\\var{Cang})},\\\\]
\\n\\\\[x=\\\\var{ans}\\\\text{ to 1 decimal place.}\\\\]
\"", "description": "case 3
", "templateType": "long string", "can_override": false}, "sinANGadvice": {"name": "sinANGadvice", "group": "Question structure", "definition": "safe(\"First recognise that the diagram is a non-right angled triangle and that two lengths are provided, along with an angle, crucially including an angle opposite a given side. Further to this, the instruction is to find the a missing side. These are the conditions for when to use the $\\\\textit{sine rule}$. The sine rule uses the sides and angles in pairs and uses two pairs for any given calculation
\\nThe formula for finding an angle using the sine rule can be written as:
\\n\\\\[ \\\\frac{\\\\sin(A)}{a}=\\\\frac{\\\\sin(B)}{b}\\\\]
\\nThe labels of $a$, $b$ and $c$ can be misleading. The critical thing is that regardless of the letters used in the diagram, the angle being asked for is in the above notation $A$.
\\nIn this case:
\\n\\\\[ a=\\\\var{c_round}, \\\\quad b=\\\\var{a}, \\\\quad A= x, \\\\text{and} \\\\quad B= \\\\var{Aang_round}.\\\\]
\\nSo, we now have:
\\n\\\\[\\\\frac{\\\\sin{(x)}}{\\\\var{c_round}}=\\\\frac{\\\\sin{(\\\\var{Aang_round})}}{\\\\var{a}},\\\\]
\\nhence,
\\n\\\\[x=\\\\arcsin\\\\left(\\\\var{c_round}\\\\times\\\\frac{\\\\sin{(\\\\var{Aang_round})}}{\\\\var{a}}\\\\right),\\\\]
\\n\\\\[x=\\\\var{ans}\\\\text{ to 1 decimal place.}\\\\]
\")", "description": "case 4
", "templateType": "long string", "can_override": false}, "advice": {"name": "advice", "group": "Question structure", "definition": "If(Ruleuse='c',IF(ANGorSIDE='ang',cosANGadvice,cosSIDEadvice),IF(ANGorSIDE='ang',sinANGadvice,sinSIDEadvice))", "description": "", "templateType": "anything", "can_override": false}, "cosSIDEdiagram": {"name": "cosSIDEdiagram", "group": "Diagrams", "definition": "geogebra_applet('https://www.geogebra.org/m/czffcqgn',[ac: a,bc: b,Cang: Cang])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Quantities", "definition": "random(5 .. 10#0.1)", "description": "side length a
", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Quantities", "definition": "random(5 .. 10#0.1)", "description": "side length b
", "templateType": "randrange", "can_override": false}, "Cang": {"name": "Cang", "group": "Quantities", "definition": "random(40..140 except 85..95)", "description": "C angle in degrees
", "templateType": "anything", "can_override": false}, "cosANGdiagram": {"name": "cosANGdiagram", "group": "Diagrams", "definition": "geogebra_applet('https://www.geogebra.org/m/rn8p6hk9',[ac: a,bc: b,Cang: Cang])", "description": "", "templateType": "anything", "can_override": false}, "sinSIDEdiagram": {"name": "sinSIDEdiagram", "group": "Diagrams", "definition": "geogebra_applet('https://www.geogebra.org/m/qayf6ejk',[ac: a,bc: b,Cang: Cang])", "description": "", "templateType": "anything", "can_override": false}, "sinANGdiagram": {"name": "sinANGdiagram", "group": "Diagrams", "definition": "geogebra_applet('https://www.geogebra.org/m/ghb43tsn',[ac: a,bc: b,Cang: Cang])", "description": "", "templateType": "anything", "can_override": false}, "diagram": {"name": "diagram", "group": "Diagrams", "definition": "If(Ruleuse='c',IF(ANGorSIDE='ang',cosANGdiagram,cosSIDEdiagram),IF(ANGorSIDE='ang',sinANGdiagram,sinSIDEdiagram))", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Quantities", "definition": "sqrt(a^2+b^2-2*a*b*cos(Cang*Pi/180))", "description": "", "templateType": "anything", "can_override": false}, "Aang": {"name": "Aang", "group": "Quantities", "definition": "arcsin(a*sin(Cang*Pi/180)/c)*180/pi", "description": "angle A in degrees
", "templateType": "anything", "can_override": false}, "Bang": {"name": "Bang", "group": "Quantities", "definition": "180-(Aang+Cang)", "description": "", "templateType": "anything", "can_override": false}, "cosSIDEans": {"name": "cosSIDEans", "group": "Quantities", "definition": "c", "description": "", "templateType": "anything", "can_override": false}, "cosANGans": {"name": "cosANGans", "group": "Quantities", "definition": "arccos((a^2+b^2-c_round^2)/(2*a*b))*180/pi", "description": "Calculated answer for c from rounded values - as these will be seen information by student.
", "templateType": "anything", "can_override": false}, "c_round": {"name": "c_round", "group": "Quantities", "definition": "precround(c,1)", "description": "", "templateType": "anything", "can_override": false}, "Aang_round": {"name": "Aang_round", "group": "Quantities", "definition": "precround(Aang,1)", "description": "", "templateType": "anything", "can_override": false}, "Bang_round": {"name": "Bang_round", "group": "Quantities", "definition": "precround(Bang,1)", "description": "", "templateType": "anything", "can_override": false}, "Cang_roundcos": {"name": "Cang_roundcos", "group": "Quantities", "definition": "Precround((180/pi)*arccos((a^2+b^2-c_round^2)/(2*a*b)),1)", "description": "", "templateType": "anything", "can_override": false}, "sinANGans": {"name": "sinANGans", "group": "Quantities", "definition": "If(Cang<90,arcsin(c_round*(sin(Aang_round*pi/180)/a))*180/pi,180 - arcsin(c_round*(sin(Aang_round*pi/180)/a))*180/pi)", "description": "", "templateType": "anything", "can_override": false}, "sinSIDEans": {"name": "sinSIDEans", "group": "Quantities", "definition": "(a/sin(aang_round*pi/180))*sin(cang*pi/180)", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Quantities", "definition": "precround(If(Ruleuse='c',IF(ANGorSIDE='ang',cosANGans,cosSIDEans),IF(ANGorSIDE='ang',sinANGans,sinSIDEans)),1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a+b>c and b+c>a and a+c>b", "maxRuns": "200"}, "ungrouped_variables": [], "variable_groups": [{"name": "Question structure", "variables": ["Ruleuse", "ANGorSIDE", "cosSIDEadvice", "cosANGadvice", "sinSIDEadvice", "sinANGadvice", "advice"]}, {"name": "Diagrams", "variables": ["cosSIDEdiagram", "cosANGdiagram", "sinSIDEdiagram", "sinANGdiagram", "diagram"]}, {"name": "Quantities", "variables": ["a", "b", "Cang", "c", "Aang", "Bang", "cosSIDEans", "cosANGans", "sinANGans", "sinSIDEans", "c_round", "Aang_round", "Bang_round", "Cang_roundcos", "ans"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Answer", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x =$[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "100", "precisionMessage": "", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF02 Straight Line Graphs", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Calculating gradient and finding intercept from a geogebra graph.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "{app}
Find the gradient of the line.
Firstly draw a right angled 'step' from left to right. This triangle can be anywhere, but it is more helpful for it to have corners on the vertices (whole number points) of the graph and it is easier to calculate with postive numbers.
\n{app_advice}
\nBefore we start to calculate, notice that the line is {uod}, so the gradient will be {pon} and the line is {sos}, so the absolute value of the number will be {mol}.
Now find the coordinates of the places your triangle meets the line
$(x_1,y_1)=(\\var{ax},\\var{ay})$ and $(x_2,y_2)=(\\var{bx},\\var{by})$
\nWe need to compare the 'rise on the y-axis' to the 'run across the x-axis', we can say that:
\n$\\text{gradient} = \\frac{\\text{rise}}{\\text{run}}$
\nThis is equivalent to using the formula:
$ m = \\frac{y_2 - y_1}{x_2 - x_1} $
and substitute the coordinates of the vertices of the triangle:
$\\begin{split} &\\, m = \\frac{\\var{by} - \\var{ay}}{\\var{bx} - \\var{ax}} \\\\
&\\, = \\frac{\\var{by-ay}}{\\var{bx-ax}} \\\\
&\\, = \\var[fractionNumbers]{m} \\\\
\\end{split} $
if(m=abs(m),'positive','negative')
", "templateType": "anything", "can_override": false}, "ax": {"name": "ax", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "ay": {"name": "ay", "group": "Ungrouped variables", "definition": "random(0,1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "bx": {"name": "bx", "group": "Ungrouped variables", "definition": "random(ax+1..3) \n", "description": "", "templateType": "anything", "can_override": false}, "by": {"name": "by", "group": "Ungrouped variables", "definition": "random(0..4 except ay)\n", "description": "", "templateType": "anything", "can_override": false}, "app_advice": {"name": "app_advice", "group": "Ungrouped variables", "definition": "geogebra_applet(\n 800,500,\n [\n A: [\n definition: p1,\n label_visible: false,\n visible: true\n ],\n B: [\n definition: p2,\n label_visible: false,\n visible: true \n ],\n \n C: [\n definition: p3,\n label_visible: false,\n visible: false \n ],\n \n line1: [\n definition: \"Line(A,B)\",\n label_visible: false,\n visible: true\n ],\n \n line2: [\n definition: \"Segment(A,C)\",\n label_visible: false,\n visible: true\n ],\n \n \n \n line3: [\n definition: \"Segment(C,B)\",\n label_visible: false,\n visible: true\n ]\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "p3": {"name": "p3", "group": "Ungrouped variables", "definition": "vector(bx,ay)", "description": "", "templateType": "anything", "can_override": false}, "pon": {"name": "pon", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(m=abs(m),'a positive number','a negative number'))", "description": "", "templateType": "anything", "can_override": false}, "sos": {"name": "sos", "group": "Ungrouped variables", "definition": "if(m=0,'horizontal',if(abs(m)<1,'shallow','steep'))", "description": "", "templateType": "anything", "can_override": false}, "mol": {"name": "mol", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(abs(m)<1,'less than 1','greater than or equal to 1'))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "m<>1", "maxRuns": 100}, "ungrouped_variables": ["app", "m", "c", "P1", "P2", "uod", "ax", "ay", "bx", "by", "app_advice", "p3", "pon", "sos", "mol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "It looks like you have incorrectly rounded this answer. You might want to look at some resources on rounded decimals. You can also leave your answer in fraction form as
$\\var[fractionNumbers]{m}$
Multiple choice - select the quadratic graph.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Which of the following is the graph $y=x^2$.
", "advice": "Use this link to find some resources to help you familiarise yourself with these graphs.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{geogebra_applet('https://www.geogebra.org/m/tpfzv3w7')}", "{geogebra_applet('https://www.geogebra.org/m/zftpwq64')}", "{geogebra_applet('https://www.geogebra.org/m/we3gngqa')}", "{geogebra_applet('https://www.geogebra.org/m/cadkup6r')}"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF04 Graphs of trig functions (sin, cos, tan)", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Match the relevant graph (sin, cos, tan) with its equation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "This is about core knowledge of graphs. You should know the shapes of the fundamental trig graphs, if you don't familiarize yourself with them from the resources linked below. In this setting the $x$-axis is given with a scale in radians but you might also find some where it is given in degrees. You should also be aware of the difference between those two different units of angles.
\n\nUse this link to find some resources to help you familiarise yourself with these graphs.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Match the graph to its function.
", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\sin(x)$", "$\\cos(x)$", "$\\tan(x)$"], "matrix": [["1", 0, 0], [0, "1", 0], [0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["{geogebra_applet('https://www.geogebra.org/m/ntqvuwqr')}", "{geogebra_applet('https://www.geogebra.org/m/fsqmnhsc')}", "{geogebra_applet('https://www.geogebra.org/m/yg6f9eqz')}"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AL01 Logs - definition", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Finding $x$ from a logarithmic equation of the form $\\log_ax = b$, where $a$ and $b$ are positive integers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the value of $x$:
\n\\[ \\log_\\var{a}x = \\var{n} \\]
", "advice": "To find the value of $x$, recall that $\\log_a(x)=b$ is equivalent to $x=a^b$.
\nTherefore, \\[\\log_\\var{a}(x) = \\var{n} \\implies \\simplify[!collectNumbers]{x={a}^{n}}.\\]
\nHence, \\[x=\\var{a^n}\\,.\\]
\nUse this link to find resources to help you revise logarithms.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a^n}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AL02 Logs - rules 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Solving $a\\log(x)+\\log(b)=\\log(c)$ for $x$, where $a$, $b$ and $c$ are positive integers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve for $x$:
\n\\[ \\var{a}\\log(x)+\\log(\\var{b})=\\log(\\var{c}). \\]
", "advice": "To solve $\\var{a}\\log(x)+\\log(\\var{b})=\\log(\\var{c})$ for $x$, we want to use the following logarithm rules:
\nHence,
\n\\[ \\begin{split} \\var{a}\\log(x)+\\log(\\var{b}) &\\,=\\log(\\var{c}) \\\\ \\log(x^\\var{a})+\\log(\\var{b}) &\\,= \\log(\\var{c}) \\\\ \\log(\\var{b}x^\\var{a}) &\\,= \\log(\\var{c}). \\end{split} \\]
\nIf $\\log(a)=\\log(b)$ then this implies $a=b$. Therefore,
\n\\[ \\begin{split} \\var{b}x^\\var{a} &\\,=\\var{c} \\\\ x^\\var{a} &\\,= \\simplify[fractionNumbers]{{c/b}} \\\\ x &\\,= \\simplify[fractionNumbers]{({c/b})^(1/{a})} \\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}\\end{split} \\]
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround((c/b)^(1/a),2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..40 except [b,b^(a+1)])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]] (Give you answer to 2 decimal places where necessary)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AL03 Logs - Solving equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Solving an equation of the form $a^x=b$ using logarithms to find $x$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve for $x$:
\n\\[ \\var{a}^x = \\var{b} \\,. \\]
", "advice": "To solve $\\var{a}^x = \\var{b}$ for $x$, since $x$ is the exponent we want to make use of the following logarithm rule:
\nBy taking the logarithm of each side and applying the above rule:
\n\\[ \\begin{split}\\var{a}^x &\\,= \\var{b} \\\\ \\log_{10}(\\var{a}^x) & \\,= \\log_{10}(\\var{b})\\\\ x \\log_{10}(\\var{a}) &\\,= \\log_{10}(\\var{b}) \\\\\\\\ x&\\,=\\simplify{log({b})/log({a})} \\\\\\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}. \\end{split} \\]
\nUse this link to find resources to help you revise how logarithms.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9 except [a,a^2,a^3])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround(log(b)/log(a),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]] (Give you answer to 2 decimal places where necessary)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": true, "startpassword": "", "allowAttemptDownload": true, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "This is a tool for you! It is here to help you diagnose whether there are any maths or statistics pre-requisites for your course that you may want to brush up on. If at any point you are struggling with any question you should find a link at the end of the \"reveal answer\" section that will take you to some recommended online resources on that subject area. You can also always contact the Maths and Stats Help team (MaSH) to arrange a one to one appointment or check out our workshop timetable to see if you can access the support you need that way. Find all this information via our website here!
", "end_message": "Thanks for completing the Skills Audit. You can attempt this as many times as you need. Remember the score is not what matters - this is in no way assessed work - this is simply a tool for working out whether you may need to brush up on anything to ensure that you can access all the material on your course and get off to the best possible start.
\nDon't forget to look up what support is available to you through our web pages here!
", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "extensions": ["eukleides", "geogebra"], "custom_part_types": [{"source": {"pk": 2, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/2/edit"}, "name": "List of numbers", "short_name": "list-of-numbers", "description": "The answer is a comma-separated list of numbers.
\nThe list is marked correct if each number occurs the same number of times as in the expected answer, and no extra numbers are present.
\nYou can optionally treat the answer as a set, so the number of occurrences doesn't matter, only whether each number is included or not.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "join(\n if(settings[\"correctAnswerFractions\"],\n map(let([a,b],rational_approximation(x), string(a/b)),x,settings[\"correctAnswer\"])\n ,\n settings[\"correctAnswer\"]\n ),\n settings[\"separator\"] + \" \"\n)", "hint": {"static": false, "value": "if(settings[\"show_input_hint\"],\n \"Enter a list of numbers separated by{settings['separator']}.\",\n \"\"\n)"}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "bits:\nlet(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)\n\nexpected_numbers:\nlet(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)\n\nvalid_numbers:\nif(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )\n\nis_sorted:\nassert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )\n\nincluded:\nmap(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentIs every number in the student's list valid?
", "definition": "if(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )"}, {"name": "is_sorted", "description": "Are the student's answers in ascending order?
", "definition": "assert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )"}, {"name": "included", "description": "Is each number in the expected answer present in the student's list the correct number of times?
", "definition": "map(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentTrue if the student's list doesn't contain any numbers that aren't in the expected answer.
", "definition": "if(all(map(x in expected_numbers, x, interpreted_answer)),\n true\n ,\n incorrect(\"Your answer contains \"+extra_numbers[0]+\" but should not.\");\n false\n )"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "if(lower(studentAnswer) in [\"empty\",\"\u2205\"],[],\n map(\n if(settings[\"allowFractions\"],parsenumber_or_fraction(x,notationStyles), parsenumber(x,notationStyles))\n ,x\n ,bits\n )\n)"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=\"\",fail(\"You have not entered an answer\"),false);\napply(valid_numbers);\napply(included);\napply(no_extras);\ncorrectif(all_included and no_extras)"}, {"name": "notationStyles", "description": "", "definition": "[\"en\"]"}, {"name": "isSet", "description": "Should the answer be considered as a set, so the number of times an element occurs doesn't matter?
", "definition": "settings[\"isSet\"]"}, {"name": "extra_numbers", "description": "Numbers included in the student's answer that are not in the expected list.
", "definition": "filter(not (x in expected_numbers),x,interpreted_answer)"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The list of numbers that the student should enter. The order does not matter.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "allowFractions", "label": "Allow the student to enter fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "correctAnswerFractions", "label": "Display the correct answers as fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "isSet", "label": "Is the answer a set?", "help_url": "", "hint": "If ticked, the number of times an element occurs doesn't matter, only whether it's included at all.", "input_type": "checkbox", "default_value": false}, {"name": "show_input_hint", "label": "Show the input hint?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": true}, {"name": "separator", "label": "Separator", "help_url": "", "hint": "The substring that should separate items in the student's list", "input_type": "string", "default_value": ",", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": [["question-resources/sqbasedpyramid_sEpkGzO.svg", "/srv/numbas/media/question-resources/sqbasedpyramid_sEpkGzO.svg"], ["question-resources/triangularprism.svg", "/srv/numbas/media/question-resources/triangularprism.svg"], ["question-resources/cylinder.svg", "/srv/numbas/media/question-resources/cylinder.svg"], ["question-resources/cuboid.svg", "/srv/numbas/media/question-resources/cuboid.svg"], ["question-resources/Picture1_caMIdF1.png", "/srv/numbas/media/question-resources/Picture1_caMIdF1.png"], ["question-resources/Picture2_6KE4ZpW.png", "/srv/numbas/media/question-resources/Picture2_6KE4ZpW.png"]]}