// Numbas version: finer_feedback_settings {"name": "Week 9 (non-assessed)", "metadata": {"description": "", "licence": "All rights reserved"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "random-subset", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "vectors in R^2a", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

These questions involve the bases $A=\\left\\{\\begin{pmatrix}1\\\\1\\end{pmatrix}, \\begin{pmatrix}1\\\\-1\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.

", "advice": "

In all parts, we need to understand what the subscript on the vector means.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "2+n", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "2-n", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "0.5*(d1+d2)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "0.5*(d1-d2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["k", "m", "n", "c1", "c2", "d1", "d2", "d", "e"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $a\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}\\var{k}\\\\0\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{k}\\\\a\\end{pmatrix}_{E}$

\n

a=[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{k}", "maxValue": "{k}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $b\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}\\var{m}\\\\\\var{m}\\end{pmatrix}_{A}=\\begin{pmatrix}b\\\\0\\end{pmatrix}_{E}$

\n

b=[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "2*m", "maxValue": "2*m", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $c\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}2\\\\c\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$

\n

c=[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $a, b\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{E}$

\n

a=[[0]], b=[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "d", "maxValue": "d", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "e", "maxValue": "e", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "vectors in R^2b", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

These questions involve the bases $A=\\left\\{\\begin{pmatrix}1\\\\1\\end{pmatrix}, \\begin{pmatrix}1\\\\-1\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.

", "advice": "

In all parts, we need to understand what the subscript on the vector means.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "2+n", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "2-n", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "-m", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "0.5*(d1+d2)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "0.5*(d1-d2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["k", "m", "n", "c1", "c2", "m2", "d1", "d2", "d", "e"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $a\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}0\\\\\\var{k}\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{k}\\\\a\\end{pmatrix}_{E}$

\n

a=[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-k", "maxValue": "-k", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $b\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}\\var{m}\\\\\\var{m2}\\end{pmatrix}_{A}=\\begin{pmatrix}0\\\\b\\end{pmatrix}_{E}$

\n

b=[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "2*m", "maxValue": "2*m", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $c\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}2\\\\c\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$

\n

c=[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $a, b\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{E}$

\n

a=[[0]], b=[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "d", "maxValue": "d", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "e", "maxValue": "e", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Group", "pickingStrategy": "random-subset", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "change of basis simpler general in R^2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

These questions involve the bases $A=\\left\\{\\begin{pmatrix}\\var{a}\\\\\\var{c}\\end{pmatrix}, \\begin{pmatrix}\\var{b}\\\\\\var{d}\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.

\n

(If your answer is best expressed as a fraction, you can do this by typing an expression of the form 'x/y' where x and y are integers.)

", "advice": "

Consider what size the matrices $C_{EA}$ and $C_{AE}$ should have. Recall that $C_{EA}$ converts vectors from 'the language' of A to 'the language' of E.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "d+1", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a-1", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "a", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "(a*d)/c", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "1/(a*d-b*c)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "disc*(d*c1-b*c2)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "disc*(-c*c1+a*c2)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c1", "c2", "a", "c", "b", "d", "x", "disc", "m", "n", "d1", "d2", "e1", "e2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $a, b\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$

\n

a=[[0]], b=[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "m", "maxValue": "m", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the following matrix.

\n

$C_{EA}=$[[0]]

\n

Hence find

\n

$\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{A}=$[[1]]$_E$

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a,b],[c,d])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a*d1+b*d2],[c*d1+d*d2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the following matrix.

\n

$C_{AE}=$[[0]]

\n

Hence find

\n

$\\begin{pmatrix}\\var{e1}\\\\\\var{e2}\\end{pmatrix}_{E}=$[[1]]$_A$

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d,-disc*b],[-disc*c,disc*a])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d*e1-disc*b*e2],[-disc*c*e1+disc*a*e2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "change of basis general in R^2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

These questions involve the bases $A=\\left\\{\\begin{pmatrix}\\var{a}\\\\\\var{c}\\end{pmatrix}, \\begin{pmatrix}\\var{b}\\\\\\var{d}\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.

\n

(If your answer is best expressed as a fraction, you can do this by typing an expression of the form 'x/y' where x and y are integers.)

", "advice": "

Consider what size the matrices $C_{EA}$ and $C_{AE}$ should have. Recall that $C_{EA}$ converts vectors from 'the language' of A to 'the language' of E.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-2..4 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-2..4 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "d+1", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a-1", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-2..2 except a+1)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "(a*d)/c", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "1/(a*d-b*c)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "disc*(d*c1-b*c2)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "disc*(-c*c1+a*c2)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c1", "c2", "a", "c", "b", "d", "x", "disc", "m", "n", "d1", "d2", "e1", "e2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $a, b\\in\\mathbb{R}$ such that the following are equal.

\n

$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$

\n

a=[[0]], b=[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "m", "maxValue": "m", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the following matrix.

\n

$C_{EA}=$[[0]]

\n

Hence find

\n

$\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{A}=$[[1]]$_E$

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a,b],[c,d])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a*d1+b*d2],[c*d1+d*d2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the following matrix.

\n

$C_{AE}=$[[0]]

\n

Hence find

\n

$\\begin{pmatrix}\\var{e1}\\\\\\var{e2}\\end{pmatrix}_{E}=$[[1]]$_A$

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d,-disc*b],[-disc*c,disc*a])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d*e1-disc*b*e2],[-disc*c*e1+disc*a*e2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "change of basis in R^3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

These questions involve the bases $B=\\left\\{\\begin{pmatrix}2\\\\0\\\\0\\end{pmatrix}, \\begin{pmatrix}1\\\\1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\\\1\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\0\\\\1\\end{pmatrix}\\right\\}$.

", "advice": "

Understanding of the subscripts on the given vectors will allow us to set up simultaneous linear equations that we can solve.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c1", "c2", "c3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find $a, b, c\\in\\mathbb{R}$ such that the following are equal. (Your answers may be fractions.) $\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\\\\\var{c3}\\end{pmatrix}_{E}=\\begin{pmatrix}a\\\\b\\\\c\\end{pmatrix}_{B}$

\n

a=[[0]], b=[[1]], c=[[2]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0.5*(c1-c2+c3)", "maxValue": "0.5*(c1-c2+c3)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c2-c3", "maxValue": "c2-c3", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c3", "maxValue": "c3", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "eigenvectors and diagonalisation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

Throughout this question, we work with

\n

$A=M_{EE}(f)=\\begin{pmatrix}1&1&2\\\\2&2&4\\\\3&3&6\\end{pmatrix}.$

\n

Note that $E$ denotes the standard basis and $f: \\mathbb{R}^3\\to \\mathbb{R}^3$.

\n

(This matrix does not change if you refresh the question.)

", "advice": "

For parts (a)-(c), it could be worth looking over the related exercises on diagonalisation that appear on the corresponding problem sheet.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The vector $w=\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}$ is an eigenvector corresponding to the eigenvalue [[0]].

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "9", "maxValue": "9", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Consider whether our matrix has a non-trivial kernel.

\n

Can you find a vector $v$ in $\\ker(A)$? [[0]]

\n

Are scalar multiples of $v$, your vector, in $\\ker(A)$? [[1]]

\n

Can you find another vector in $\\ker(A)$ which is not a scalar multiple of $v$? [[2]]

\n

What is $\\dim(\\ker(A))$? [[3]]

\n

Before moving on to the next part, it is recommended that you find a basis of eigenvectors for our matrix $A$.

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "2", "maxValue": "2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Note that if $v, w \\in \\ker(A)$, then any element of $\\textrm{span}\\{v, w\\}$ is also in $\\ker(A)$.

\n

Let $v_1$ and $v_2$ be defined as follows.

\n

$v_1=\\begin{pmatrix}1\\\\-1\\\\0\\end{pmatrix}$ and $v_2=\\begin{pmatrix}2\\\\0\\\\-1\\end{pmatrix}$.

\n

Check that $v_1, v_2 \\in \\ker(A)$. [[0]]

\n

Check that your eigenvectors (calculated in (b) lie in $\\textrm{span}\\{v_1, v_2\\}$. [[1]]

\n

Using the vector $w$ from part (a), we have that $B=\\{v_1, v_2, w\\}$ is a basis of eigenvectors. [[2]]

\n

We can use the result from lectures to find $M_{BB}(f)$, which will be a diagonal matrix. [[3]]

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We continue with $B=\\{v_1, v_2, w\\}$ where $v_1=\\begin{pmatrix}1\\\\-1\\\\0\\end{pmatrix}$ and $v_2=\\begin{pmatrix}2\\\\0\\\\-1\\end{pmatrix}$ and $w=\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}$.

\n

Consider each of the following sets of vectors, and select answers from the drop-down lists.

\n", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": [0, 0, "1", 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": [0, "1", 0, 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": [0, 0, "1", 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": [0, 0, 0, "1"], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": [0, 0, "1", 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["This basis will result in the same diagonal matrix as $M_{BB}(f)$ above.", "This is a basis of eigenvectors, but the order of the diagonal entries will differ to $M_{BB}(f)$ above.", "This is not a basis of eigenvectors because it is not a basis.", "This is a basis, but not a basis of eigenvectors since one of the elements is not an eigenvector."], "matrix": ["0", 0, 0, "1"], "distractors": ["", "", "", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "allowAttemptDownload": false, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "
This is a non-assessed quiz for MATH10015 Linear Algebra.
\n
\n
You can attempt this quiz as many times as you like (although questions may change on each attempt). Your score will come from your highest attempt. You should enter your answers as exact numbers unless a question instructs you to give an answer rounded to a certain number of decimal places/significant figures.
\n
\n
Clicking on this link will allow you to start a new attempt or resume a previous one. Please note the deadline. After you have submitted an attempt you will also see the option to review your answers to that attempt and will be able to see your mark for each question, the correct answer, and solutions for each part. Note that the questions will change for each attempt. 
\n
\n
Once the deadline has passed you will be able to review your attempts by using the above link.
", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "extensions": [], "custom_part_types": [], "resources": []}