// Numbas version: finer_feedback_settings {"name": "Week 9 (non-assessed)", "metadata": {"description": "", "licence": "All rights reserved"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "random-subset", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "vectors in R^2a", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "
These questions involve the bases $A=\\left\\{\\begin{pmatrix}1\\\\1\\end{pmatrix}, \\begin{pmatrix}1\\\\-1\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.
", "advice": "In all parts, we need to understand what the subscript on the vector means.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "2+n", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "2-n", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "0.5*(d1+d2)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "0.5*(d1-d2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["k", "m", "n", "c1", "c2", "d1", "d2", "d", "e"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $a\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}\\var{k}\\\\0\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{k}\\\\a\\end{pmatrix}_{E}$
\na=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{k}", "maxValue": "{k}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $b\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}\\var{m}\\\\\\var{m}\\end{pmatrix}_{A}=\\begin{pmatrix}b\\\\0\\end{pmatrix}_{E}$
\nb=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "2*m", "maxValue": "2*m", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $c\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}2\\\\c\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$
\nc=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $a, b\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{E}$
\na=[[0]], b=[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "d", "maxValue": "d", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "e", "maxValue": "e", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "vectors in R^2b", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "These questions involve the bases $A=\\left\\{\\begin{pmatrix}1\\\\1\\end{pmatrix}, \\begin{pmatrix}1\\\\-1\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.
", "advice": "In all parts, we need to understand what the subscript on the vector means.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "2+n", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "2-n", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "-m", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "0.5*(d1+d2)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "0.5*(d1-d2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["k", "m", "n", "c1", "c2", "m2", "d1", "d2", "d", "e"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $a\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}0\\\\\\var{k}\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{k}\\\\a\\end{pmatrix}_{E}$
\na=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-k", "maxValue": "-k", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $b\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}\\var{m}\\\\\\var{m2}\\end{pmatrix}_{A}=\\begin{pmatrix}0\\\\b\\end{pmatrix}_{E}$
\nb=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "2*m", "maxValue": "2*m", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $c\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}2\\\\c\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$
\nc=[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $a, b\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{E}$
\na=[[0]], b=[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "d", "maxValue": "d", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "e", "maxValue": "e", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Group", "pickingStrategy": "random-subset", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "change of basis simpler general in R^2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "These questions involve the bases $A=\\left\\{\\begin{pmatrix}\\var{a}\\\\\\var{c}\\end{pmatrix}, \\begin{pmatrix}\\var{b}\\\\\\var{d}\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.
\n(If your answer is best expressed as a fraction, you can do this by typing an expression of the form 'x/y' where x and y are integers.)
", "advice": "Consider what size the matrices $C_{EA}$ and $C_{AE}$ should have. Recall that $C_{EA}$ converts vectors from 'the language' of A to 'the language' of E.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "d+1", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a-1", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "a", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "(a*d)/c", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "1/(a*d-b*c)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "disc*(d*c1-b*c2)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "disc*(-c*c1+a*c2)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c1", "c2", "a", "c", "b", "d", "x", "disc", "m", "n", "d1", "d2", "e1", "e2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $a, b\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$
\na=[[0]], b=[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "m", "maxValue": "m", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the following matrix.
\n$C_{EA}=$[[0]]
\nHence find
\n$\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{A}=$[[1]]$_E$
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a,b],[c,d])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a*d1+b*d2],[c*d1+d*d2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the following matrix.
\n$C_{AE}=$[[0]]
\nHence find
\n$\\begin{pmatrix}\\var{e1}\\\\\\var{e2}\\end{pmatrix}_{E}=$[[1]]$_A$
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d,-disc*b],[-disc*c,disc*a])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d*e1-disc*b*e2],[-disc*c*e1+disc*a*e2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "change of basis general in R^2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "These questions involve the bases $A=\\left\\{\\begin{pmatrix}\\var{a}\\\\\\var{c}\\end{pmatrix}, \\begin{pmatrix}\\var{b}\\\\\\var{d}\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\end{pmatrix}\\right\\}$.
\n(If your answer is best expressed as a fraction, you can do this by typing an expression of the form 'x/y' where x and y are integers.)
", "advice": "Consider what size the matrices $C_{EA}$ and $C_{AE}$ should have. Recall that $C_{EA}$ converts vectors from 'the language' of A to 'the language' of E.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-2..4 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-2..4 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "d+1", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a-1", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-2..2 except a+1)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "(a*d)/c", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "1/(a*d-b*c)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "disc*(d*c1-b*c2)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "disc*(-c*c1+a*c2)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c1", "c2", "a", "c", "b", "d", "x", "disc", "m", "n", "d1", "d2", "e1", "e2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $a, b\\in\\mathbb{R}$ such that the following are equal.
\n$\\begin{pmatrix}a\\\\b\\end{pmatrix}_{A}=\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\end{pmatrix}_{E}$
\na=[[0]], b=[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "m", "maxValue": "m", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n", "maxValue": "n", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the following matrix.
\n$C_{EA}=$[[0]]
\nHence find
\n$\\begin{pmatrix}\\var{d1}\\\\\\var{d2}\\end{pmatrix}_{A}=$[[1]]$_E$
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a,b],[c,d])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a*d1+b*d2],[c*d1+d*d2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the following matrix.
\n$C_{AE}=$[[0]]
\nHence find
\n$\\begin{pmatrix}\\var{e1}\\\\\\var{e2}\\end{pmatrix}_{E}=$[[1]]$_A$
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d,-disc*b],[-disc*c,disc*a])", "correctAnswerFractions": true, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([disc*d*e1-disc*b*e2],[-disc*c*e1+disc*a*e2])", "correctAnswerFractions": true, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "change of basis in R^3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "These questions involve the bases $B=\\left\\{\\begin{pmatrix}2\\\\0\\\\0\\end{pmatrix}, \\begin{pmatrix}1\\\\1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\\\1\\end{pmatrix}\\right\\}$ and $E=\\left\\{\\begin{pmatrix}1\\\\0\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\1\\\\0\\end{pmatrix}, \\begin{pmatrix}0\\\\0\\\\1\\end{pmatrix}\\right\\}$.
", "advice": "Understanding of the subscripts on the given vectors will allow us to set up simultaneous linear equations that we can solve.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c1", "c2", "c3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find $a, b, c\\in\\mathbb{R}$ such that the following are equal. (Your answers may be fractions.) $\\begin{pmatrix}\\var{c1}\\\\\\var{c2}\\\\\\var{c3}\\end{pmatrix}_{E}=\\begin{pmatrix}a\\\\b\\\\c\\end{pmatrix}_{B}$
\na=[[0]], b=[[1]], c=[[2]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0.5*(c1-c2+c3)", "maxValue": "0.5*(c1-c2+c3)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c2-c3", "maxValue": "c2-c3", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c3", "maxValue": "c3", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "eigenvectors and diagonalisation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Charles Garnet Cox", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24585/"}], "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "Throughout this question, we work with
\n$A=M_{EE}(f)=\\begin{pmatrix}1&1&2\\\\2&2&4\\\\3&3&6\\end{pmatrix}.$
\nNote that $E$ denotes the standard basis and $f: \\mathbb{R}^3\\to \\mathbb{R}^3$.
\n(This matrix does not change if you refresh the question.)
", "advice": "For parts (a)-(c), it could be worth looking over the related exercises on diagonalisation that appear on the corresponding problem sheet.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The vector $w=\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}$ is an eigenvector corresponding to the eigenvalue [[0]].
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "9", "maxValue": "9", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Consider whether our matrix has a non-trivial kernel.
\nCan you find a vector $v$ in $\\ker(A)$? [[0]]
\nAre scalar multiples of $v$, your vector, in $\\ker(A)$? [[1]]
\nCan you find another vector in $\\ker(A)$ which is not a scalar multiple of $v$? [[2]]
\nWhat is $\\dim(\\ker(A))$? [[3]]
\nBefore moving on to the next part, it is recommended that you find a basis of eigenvectors for our matrix $A$.
", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Yes", "No"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "2", "maxValue": "2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Note that if $v, w \\in \\ker(A)$, then any element of $\\textrm{span}\\{v, w\\}$ is also in $\\ker(A)$.
\nLet $v_1$ and $v_2$ be defined as follows.
\n$v_1=\\begin{pmatrix}1\\\\-1\\\\0\\end{pmatrix}$ and $v_2=\\begin{pmatrix}2\\\\0\\\\-1\\end{pmatrix}$.
\nCheck that $v_1, v_2 \\in \\ker(A)$. [[0]]
\nCheck that your eigenvectors (calculated in (b) lie in $\\textrm{span}\\{v_1, v_2\\}$. [[1]]
\nUsing the vector $w$ from part (a), we have that $B=\\{v_1, v_2, w\\}$ is a basis of eigenvectors. [[2]]
\nWe can use the result from lectures to find $M_{BB}(f)$, which will be a diagonal matrix. [[3]]
", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Done!"], "matrix": [0], "distractors": [""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "We continue with $B=\\{v_1, v_2, w\\}$ where $v_1=\\begin{pmatrix}1\\\\-1\\\\0\\end{pmatrix}$ and $v_2=\\begin{pmatrix}2\\\\0\\\\-1\\end{pmatrix}$ and $w=\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}$.
\nConsider each of the following sets of vectors, and select answers from the drop-down lists.
\n