// Numbas version: finer_feedback_settings {"name": "Representing A Matrix", "metadata": {"description": "

This is a collection of questions to test different aspect to consider when representing a matrix.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "Choosing an Element", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}], "tags": [], "metadata": {"description": "Identify element of a matrix.", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Finding Elements of a Matrix

\n

For each of the given matrices, determine the value of the specific element

", "advice": "

We are presented with random matrices and asked to identify certain elements of those matrices.

\n

What you need to remember is:

\n

In matrix $A$ the element in row $i$ and column $j$ is denoted by $a_{ij}$ .

\n

 

\n

In easier terms, in the subscript the numbers represent row then column

\n

 

\n

So given the matrix  $A=\\var{A}$

\n

$a_{\\var{n1}\\var{m1}}$ is the element in row $\\var{n1}$ and column $\\var{m1}$. Therefore,  $a_{\\var{n1}\\var{m1}}=\\var{E1}$

\n

 

\n

given the matrix  $B=\\var{B}$

\n

$b_{\\var{n2}\\var{m2}}$ is the element in row $\\var{n2}$ and column $\\var{m2}$. Therefore,  $b_{\\var{n2}\\var{m2}}=\\var{E2}$

\n

 

\n

given the matrix  $C=\\var{C}$

\n

$c_{\\var{n3}\\var{m3}}$ is the element in row $\\var{n3}$ and column $\\var{m3}$. Therefore,  $c_{\\var{n3}\\var{m3}}=\\var{E3}$

\n

$c_{\\var{n4}\\var{m4}}$ is the element in row $\\var{n4}$ and column $\\var{m4}$. Therefore,  $c_{\\var{n4}\\var{m4}}=\\var{E4}$

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m1": {"name": "m1", "group": "A", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "A", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n1),m1)))", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "B", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "B", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "B", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n2),m2)))", "description": "", "templateType": "anything", "can_override": false}, "n3": {"name": "n3", "group": "C", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "m3": {"name": "m3", "group": "C", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "C", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n3),m3)))", "description": "", "templateType": "anything", "can_override": false}, "n4": {"name": "n4", "group": "D", "definition": "random(1..(n3-1) except n3)", "description": "", "templateType": "anything", "can_override": false}, "m4": {"name": "m4", "group": "D", "definition": "random(1..(m3-1) except m3)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "A", "definition": "random(1..(m3-1) except m3)", "description": "", "templateType": "anything", "can_override": false}, "D": {"name": "D", "group": "D", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n4),m4)))", "description": "", "templateType": "anything", "can_override": false}, "n5": {"name": "n5", "group": "E", "definition": "m3", "description": "", "templateType": "anything", "can_override": false}, "m5": {"name": "m5", "group": "E", "definition": "n4", "description": "", "templateType": "anything", "can_override": false}, "EE": {"name": "EE", "group": "E", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n5),m5)))", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "A", "definition": "A[n1-1][m1-1]", "description": "", "templateType": "anything", "can_override": false}, "E2": {"name": "E2", "group": "B", "definition": "b[n2-1][m2-1]", "description": "", "templateType": "anything", "can_override": false}, "E3": {"name": "E3", "group": "C", "definition": "c[n3-1][m3-1]", "description": "", "templateType": "anything", "can_override": false}, "E4": {"name": "E4", "group": "C", "definition": "c[n4-1][m4-1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "A", "variables": ["n1", "m1", "A", "e1"]}, {"name": "B", "variables": ["n2", "m2", "B", "E2"]}, {"name": "C", "variables": ["n3", "m3", "C", "E3", "E4"]}, {"name": "D", "variables": ["n4", "m4", "D"]}, {"name": "E", "variables": ["n5", "m5", "EE"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Consider the matrices:

\n

$$
A=\\var{A}, \\ \\ 
B=\\var{B}, \\ \\ 
C=\\var{C}
$$

\n

Give the values of the following elements:

\n

$a_{\\var{n1}\\var{m1}}=$ [[0]]

\n

 

\n

$b_{\\var{n2}\\var{m2}}=$ [[1]]

\n

 

\n

$c_{\\var{n3}\\var{m3}}=$ [[2]]

\n

 

\n

$c_{\\var{n4}\\var{m4}}=$ [[3]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A[n1-1][m1-1]", "maxValue": "A[n1-1][m1-1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b[n2-1][m2-1]", "maxValue": "b[n2-1][m2-1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[n3-1][m3-1]", "maxValue": "c[n3-1][m3-1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[n4-1][m4-1]", "maxValue": "c[n4-1][m4-1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Order of a Matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}], "tags": [], "metadata": {"description": "Classifying matrices (dimensions/order)", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Order of a Matrix

\n

Given the following matrices, determine their dimensions

", "advice": "

A general $m \\times n$ matrix $A$ has $m$ rows and $n$ columns

\n

a)

\n

$$
A=\\var{A}
$$

\n

$A$ has $\\var{n1}$ rows and $\\var{m1}$ columns. So $A$ has dimensions $ \\var{n1}  \\times  \\var{m1}$

\n

\n

b)

\n

$$
B=\\var{B}
$$

\n

$B$ has $\\var{n2}$ rows and $\\var{m2}$ columns. So $B$ has dimensions $ \\var{n2}  \\times \\var{m2}$

\n

 

\n

c)

\n

$$
C=\\var{C}
$$

\n

$C$ has $\\var{n3}$ rows and $\\var{m3}$ columns. So $C$ has dimensions $ \\var{n3}  \\times \\var{m3}$

\n

 

\n

d)

\n

$$
D=\\var{D}
$$

\n

$D$ has $\\var{n4}$ rows and $\\var{m4}$ columns. So $D$ has dimensions $ \\var{n4}  \\times \\var{m4}$

\n

 

\n

e)

\n

$$
E=\\var{EE}
$$

\n

$E$ has $\\var{n5}$ rows and $\\var{m5}$ columns. So $E$ has dimensions $ \\var{n5}  \\times \\var{m5}$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m1": {"name": "m1", "group": "A", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "A", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n1),m1)))", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "B", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "B", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "B", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n2),m2)))", "description": "", "templateType": "anything", "can_override": false}, "n3": {"name": "n3", "group": "C", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "m3": {"name": "m3", "group": "C", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "C", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n3),m3)))", "description": "", "templateType": "anything", "can_override": false}, "n4": {"name": "n4", "group": "D", "definition": "random(1..(n3-1) except n3)", "description": "", "templateType": "anything", "can_override": false}, "m4": {"name": "m4", "group": "D", "definition": "random(1..(m3-1) except m3)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "A", "definition": "random(1..(m3-1) except m3)", "description": "", "templateType": "anything", "can_override": false}, "D": {"name": "D", "group": "D", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n4),m4)))", "description": "", "templateType": "anything", "can_override": false}, "n5": {"name": "n5", "group": "E", "definition": "m3", "description": "", "templateType": "anything", "can_override": false}, "m5": {"name": "m5", "group": "E", "definition": "n4", "description": "", "templateType": "anything", "can_override": false}, "EE": {"name": "EE", "group": "E", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n5),m5)))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "A", "variables": ["n1", "m1", "A"]}, {"name": "B", "variables": ["n2", "m2", "B"]}, {"name": "C", "variables": ["n3", "m3", "C"]}, {"name": "D", "variables": ["n4", "m4", "D"]}, {"name": "E", "variables": ["n5", "m5", "EE"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$$
A=\\var{A}
$$

\n

$A$ is a [[0]]$\\times$ [[1]] matrix. 

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{n1}", "maxValue": "{n1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{m1}", "maxValue": "{m1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$$
B=\\var{B}
$$

\n

$B$ is a [[0]]$\\times$ [[1]] matrix.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{n2}", "maxValue": "{n2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{m2}", "maxValue": "{m2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$$
C=\\var{C}
$$

\n

$C$ is a [[0]]$\\times$ [[1]] matrix.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{n3}", "maxValue": "{n3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{m3}", "maxValue": "{m3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$$
D=\\var{D}
$$

\n

$D$ is a [[0]]$\\times$ [[1]] matrix.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{n4}", "maxValue": "{n4}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{m4}", "maxValue": "{m4}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$$
E=\\var{EE}
$$

\n

$E$ is a [[0]]$\\times$ [[1]] matrix.

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{n5}", "maxValue": "{n5}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{m5}", "maxValue": "{m5}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Order of a Matrix, with Subscript Notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}], "tags": [], "metadata": {"description": "

This question tests understanding of subscript notation for matrices

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "
\n

Subscript Notation

\n

Given the matrix:

\n$$
\\boldsymbol{M} = \\var{B}
$$
\n
\n
Answer the following questions.
", "advice": "

a)

\n

The order of a matrix is written as $ ROWS \\times COLUMNS$ . In this example there are $\\var{n}$ rows and $\\var{m}$ columns so we would say this matrix has order $\\var{n}\\times\\var{m}$.

\n

\n

b)

\n

$\\boldsymbol{M}_{\\var{n1},\\var{m1}}$ means you are looking for the element in row $\\var{n1}$ and in column $\\var{m1}$. In this case that means we are looking at the element $\\var{E}$.

\n

\n

c)

\n

The elements of $\\boldsymbol{M}_{\\var{n2},}$ refers to row $\\var{n2}$ of matrix $\\boldsymbol{M}$ as the subscript is written ${\\var{n2},}$ meaning row $\\var{n2}$. Hence we have $\\var{C}$

\n

The elements of $\\boldsymbol{M}_{,\\var{m2}}$ refers to column $\\var{m2}$ of matrix $\\boldsymbol{M}$ as the subscript is written ${,\\var{m2}}$ meaning column $\\var{m2}$. Hence we have $\\var{C}$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "

Rows

", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "

columns

", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-10..10),m),n))", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(1..n)", "description": "", "templateType": "anything", "can_override": false}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(1..m)", "description": "", "templateType": "anything", "can_override": false}, "E": {"name": "E", "group": "Ungrouped variables", "definition": "B[n1-1][m1-1]", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "random(1..n)", "description": "", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "Ungrouped variables", "definition": "if(row_or_col=0,matrix(B[n2-1]),transpose(matrix(transpose(B)[m2-1])))", "description": "", "templateType": "anything", "can_override": false}, "row_or_col": {"name": "row_or_col", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(1..m)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "m", "B", "n1", "m1", "E", "n2", "C", "row_or_col", "m2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write down the order of $\\boldsymbol{M}$

\n

[[0]]$\\times$ [[1]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{M}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

State the value of $m_{\\var{n1},\\var{m1}}$

\n

$m_{\\var{n1},\\var{m1}} = $ [[0]]

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{E}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write out the elements of $\\boldsymbol{M}_{\\var{n2},}$ Write out the elements of $\\boldsymbol{M}_{,\\var{m2}}$

\n

$\\boldsymbol{M}_{\\var{n2},} = $ $\\boldsymbol{M}_{,\\var{m2}} = $ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "{C}", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": "10", "minRows": 1, "maxRows": "10", "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "allowAttemptDownload": false, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "end_message": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}], "extensions": [], "custom_part_types": [], "resources": []}