// Numbas version: finer_feedback_settings {"name": "Dynamics - Forces at an angle", "duration": 0, "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "feedback": {"showtotalmark": true, "advicethreshold": 0, "allowrevealanswer": true, "feedbackmessages": [], "showactualmark": true, "showanswerstate": true, "intro": "", "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Resolve a force into $x$ and $y$ components", "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_component_image.png", "/srv/numbas/media/question-resources/force_component_image.png"], ["question-resources/force_component_image_PgpiR1U.png", "/srv/numbas/media/question-resources/force_component_image_PgpiR1U.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["force", "angle", "yangle"], "tags": [], "advice": "
The component of force in the $x$-direction can be found using $F \\times \\cos\\theta$. Remember to set your calculator to use degrees and not radians.
\n\\begin{align} \\text{component in the }x \\text{-direction } & = F \\cos \\theta \\\\
& = \\var{force} \\times \\cos \\var{angle} \\\\
& = \\var{precround(force*cos(radians(angle)),3)}\\end{align}
Now we need to make sure we find the angle between the force and the direction we are resolving in. Therefore $\\theta = 90 - \\var{angle} = \\var{yangle}$.
\n\\begin{align} \\text{component in the y-direction } & = F \\cos \\theta \\\\
& = \\var{force} \\times \\cos \\var{yangle} \\\\
& = \\var{precround(force*cos(radians(yangle)),3)}\\end{align}
Since $\\sin \\theta = \\cos(90-\\theta)$, we could also use $\\sin \\var{angle}$ in our calculations instead of $\\cos(90 - \\var{angle})$.
", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "Find the component of the force in the $x$-direction, in Newtons to 3 decimal places.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "force*cos(radians(angle))", "minValue": "force*cos(radians(angle))", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the component of the force in the $y$-direction, in Newtons to 3 decimal places.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "force*cos(radians(yangle))", "minValue": "force*cos(radians(yangle))", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "\nIn the above diagram the force $F=\\var{force} \\ \\mathrm{N}$ and the angle $\\theta = \\var{angle}^{\\circ}$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"yangle": {"definition": "90-angle", "templateType": "anything", "group": "Ungrouped variables", "name": "yangle", "description": ""}, "force": {"definition": "random(3..15#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force", "description": ""}, "angle": {"definition": "random(1..89#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "angle", "description": ""}}, "metadata": {"description": "Find the $x$ and $y$ components of a force which is applied at an angle to a particle. Resolve using $F \\cos \\theta$. The force acts in the positive $x$ and positive $y$ direction.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Resolve force into $x$ and $y$ components", "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_component_image_2.png", "/srv/numbas/media/question-resources/force_component_image_2.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["force", "theta", "angle", "yangle"], "tags": [], "advice": "We need to find the angle $\\theta_x$ of $F$ relative to the $x$-axis and then use $F \\times cos\\theta_x$.
\nWe consider the angle between the positive $x$-axis and $F$, i.e. $\\theta_x = 90 + \\var{theta}$.
\n\\begin{align}
\\text{component in the } x \\text{-direction} & = F \\cos\\theta_x \\\\
& = \\var{force} \\times \\cos \\var{angle} \\\\
& = \\var{precround(force*cos(radians(angle)),3)}
\\end{align}
The positive $y$-direction is vertically upwards and we need the angle relative to the positive $y$-direction therefore $\\theta_y = 180 - \\var{theta}$.
\n\\begin{align}
\\text{component in the } y \\text{-direction} & = F \\cos\\theta_y \\\\
& = \\var{force} \\times \\cos \\var{yangle} \\\\
& = \\var{precround(force*cos(radians(yangle)),3)}
\\end{align}
Notice that both these answers are negative as the force acts in the opposite direction to the positive. You could also answer these by resolving in the negative $x$ or $y$ direction and changing the sign of your solution. For example in part b) you could use $\\theta_y = \\var{theta}$ which gives $F \\cos \\theta_y = \\var{precround(-force*cos(radians(yangle)),3)}$ and then change the sign.
", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "Find the component of the force in the $x$-direction in Newtons.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "force*cos(radians(angle))", "minValue": "force*cos(radians(angle))", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the component of the force in the $y$-direction in Newtons.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "force*cos(radians(yangle))", "minValue": "force*cos(radians(yangle))", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "\nIn the above diagram, $F = \\var{force} \\, \\mathrm{N}$ and $\\theta = \\var{theta}^{\\circ}$.
\nGive your answers to the following questions to 3 decimal places.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"yangle": {"definition": "180-theta", "templateType": "anything", "group": "Ungrouped variables", "name": "yangle", "description": ""}, "theta": {"definition": "random(2..89#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta", "description": ""}, "force": {"definition": "random(3..20#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force", "description": ""}, "angle": {"definition": "90 + theta", "templateType": "anything", "group": "Ungrouped variables", "name": "angle", "description": ""}}, "metadata": {"description": "Find the $x$ and $y$ components of a force which is applied at an angle to a particle. Resolve using $F \\cos \\theta$. The force is applied in the negative $x$ and negative $y$ direction.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Resolve force into $x$ and $y$ components - negative $x$", "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_component_image_3.png", "/srv/numbas/media/question-resources/force_component_image_3.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["force", "theta", "angle", "yangle"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "We resolve in the positive $x$-direction so the answer will be negative. We take $\\theta = \\var{theta}^{\\circ}$ as the angle is already between the force and the $x$-axis.
\n\\begin{align} \\text{component in } x \\text{-direction} & = F \\cos \\theta \\\\
& = \\var{force} \\times \\cos \\var{theta} \\\\
& = \\var{precround(force*cos(radians(theta)),3)}
\\end{align}
We need the angle between the force and the direction we are resolving so take $\\theta = 90 - \\var{theta}= \\var{90-theta}^{\\circ}$.
\n\\begin{align}
\\text{component in } y \\text{-direction} & = F \\cos \\theta \\\\
& = \\var{force} \\times \\cos \\var{yangle} \\\\
& = \\var{precround(force*cos(radians(yangle)),3)}
\\end{align}
Find the component of the force in the $x$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "force*cos(radians(theta))", "strictPrecision": false, "minValue": "force*cos(radians(theta))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the component of the force in the $y$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "force*cos(radians(yangle))", "strictPrecision": false, "minValue": "force*cos(radians(yangle))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "\nIn the diagram above, $F = \\var{force} \\ \\mathrm{N}$ and $\\theta = \\var{theta}^{\\circ}$.
\nGive your answers to the following questions in Newtons to 3 decimal places.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"yangle": {"definition": "90-theta", "templateType": "anything", "group": "Ungrouped variables", "name": "yangle", "description": ""}, "theta": {"definition": "random(5..85#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta", "description": ""}, "force": {"definition": "random(2..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force", "description": ""}, "angle": {"definition": "180-theta", "templateType": "anything", "group": "Ungrouped variables", "name": "angle", "description": ""}}, "metadata": {"description": "Find the $x$ and $y$ components of a force which is applied at an angle to a particle. Resolve using $F \\cos \\theta$. The force is applied in the negative $x$ direction but the positive $y$.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Resolve forces into components", "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_component_image_4.png", "/srv/numbas/media/question-resources/force_component_image_4.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["force1", "force2", "force3", "theta1", "theta2", "yangle1", "yangle2"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "Resolve each force from the positive $x$-direction (pointing to the right). For the force $P$ this is at $90^{ \\circ}$ to the $x$-axis therefore has a contribution of $P \\times \\cos 90^{\\circ} = 0$ to the sum of components.
\nThe force $F$ is at $(180-\\var{theta1})^{\\circ}=\\var{90 + 90 - theta1}^{\\circ}$ to the positive $x$-direction therefore has a contribution of $F \\times \\cos \\var{180-theta1}^{\\circ} = \\var{force1} \\times \\cos \\var{180-theta1}^{\\circ} = \\var{precround(force1*cos(radians(180-theta1)),3)}$ to the sum of components. This will be negative as you can imagine if you were moving in the positive $x$-direction this force is acting in the opposite direction and pulling you back!
\nThe force $Q$ is at $\\var{theta2}^{\\circ}$ to the positive $x$-direction therefore has a contribution of $Q \\times cos \\var{theta2}^{\\circ} = \\var{force3} \\times \\cos\\var{theta2}^{\\circ} = \\var{precround(force3*cos(radians(theta2)),3)}$. This is positive as it is acting in the same direction as the positive.
\nTherefore the sum of components in the $x$-direction is $0 - \\var{precround(-force1*cos(radians(180-theta1)),3)} + \\var{precround(force3*cos(radians(theta2)),3)} = \\var{precround(force1*cos(radians(180-theta1)) + force3*cos(radians(theta2)),3)}$.
\nResolve each force from the positive $y$-direction (upwards). For the force $P$ this is acting completely in the positive direction, at no angle. Therefore it's contribution is $\\var{force2}$. Note that this is the same as $\\var{force2} \\times \\cos 0^{\\circ}$.
\nThe force $F$ is at $(90 - \\var{theta1})^{\\circ} = \\var{90 - theta1}^{\\circ}$ to the positive $y$-direction therefore has a contribution of $F \\times \\cos \\var{90 - theta1}^{\\circ} = \\var{force1} \\times \\cos \\var{90 - theta1}^{\\circ} = \\var{precround(force1*cos(radians(90-theta1)),3)}$ to the sum of components. This is positive as it is acting in the same direction to the positive.
\nThe force $Q$ is at $(90+\\var{theta2})^{\\circ}=\\var{90 + theta2}^{\\circ}$ to the positive $y$-direction therefore has a contribution of $Q \\times \\cos \\var{90 + theta2}^{\\circ} = \\var{force3} \\times \\cos \\var{90 + theta2}^{\\circ} = \\var{precround(force3*cos(radians(90+theta2)),3)}$ to the sum of components. This is negative as it is acting downwards, in the opposite direction to the positive.
\nTherefore the sum of components in the $y$-direction is $\\var{force2} + \\var{precround(force1*cos(radians(90-theta1)),3)} - \\var{-precround(force3*cos(radians(90+theta2)),3)} = \\var{precround(force2 + force1*cos(radians(90-theta1)) + force3*cos(radians(90+theta2)),3)}$.
\n", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "
Find the component of $F$ in the $x$-direction
", "precisionMessage": "You have not given your answer to the correct precision.
", "allowFractions": false, "variableReplacements": [], "maxValue": "f1x", "strictPrecision": false, "minValue": "f1x", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the component of $Q$ in the $x$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "f3x", "strictPrecision": false, "minValue": "f3x", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the resultant force in the $x$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [{"variable": "f1x", "part": "p0", "must_go_first": false}, {"variable": "f3x", "part": "p1", "must_go_first": false}], "maxValue": "f1x+f3x", "strictPrecision": false, "minValue": "f1x+f3x", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the component of $P$ in the $y$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "force2", "strictPrecision": false, "minValue": "force2", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the component of $F$ in the $y$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "f1y", "strictPrecision": false, "minValue": "f1y", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the component of $Q$ in the $y$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "f3y", "strictPrecision": false, "minValue": "f3y", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the resultant force in the $y$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [{"variable": "f1y", "part": "p4", "must_go_first": false}, {"variable": "f3y", "part": "p5", "must_go_first": false}, {"variable": "force2", "part": "p3", "must_go_first": false}], "maxValue": "f1y+force2+f3y", "strictPrecision": false, "minValue": "f1y+force2+f3y", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "\nIn the diagram above, $F = \\var{force1} \\, \\mathrm{N}$, $P = \\var{force2} \\, \\mathrm{N}$ and $Q = \\var{force3} \\, \\mathrm{N}$. The angles are $\\theta = \\var{theta1}^{\\circ}$ and $\\theta^{\\ast} = \\var{theta2}^{\\circ}$.
\nGive your answers to the following questions in Newtons to 3 decimal places.
", "variable_groups": [{"variables": ["f1x", "f1y", "f3x", "f3y"], "name": "components"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"theta2": {"definition": "random(5..85#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta2", "description": ""}, "theta1": {"definition": "random(2..88#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta1", "description": ""}, "yangle1": {"definition": "90-theta1", "templateType": "anything", "group": "Ungrouped variables", "name": "yangle1", "description": ""}, "yangle2": {"definition": "90+theta2", "templateType": "anything", "group": "Ungrouped variables", "name": "yangle2", "description": ""}, "f1x": {"definition": "-force1*cos(radians(theta1))", "templateType": "anything", "group": "components", "name": "f1x", "description": ""}, "f1y": {"definition": "force1*sin(radians(theta1))", "templateType": "anything", "group": "components", "name": "f1y", "description": ""}, "force1": {"definition": "random(3..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force1", "description": ""}, "force3": {"definition": "random(2..10#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force3", "description": ""}, "force2": {"definition": "random(2..7#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force2", "description": ""}, "f3x": {"definition": "force3*cos(radians(theta2))", "templateType": "anything", "group": "components", "name": "f3x", "description": ""}, "f3y": {"definition": "-force3*sin(radians(theta2))", "templateType": "anything", "group": "components", "name": "f3y", "description": ""}}, "metadata": {"description": "Find the $x$ and $y$ components of the resultant force on an object, when multiple forces are applied at different angles.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Resolve forces into components", "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_component_image_5.png", "/srv/numbas/media/question-resources/force_component_image_5.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["f", "p", "q", "theta1", "theta2"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "Resolve each force from the positive $x$-direction (pointing to the right).
\nFor the force $Q$ this is at $180^{ \\circ}$ to the positive $x$-axis so makes a contribution to the sum of components of $Q \\times \\cos 180^{\\circ} = -\\var{q}$
\nThe force $F$ is at $(90+\\var{theta1})^{\\circ}=\\var{90 + theta1}^{\\circ}$ to the positive $x$-direction therefore has a contribution of $F \\times \\cos \\var{90+theta1}^{\\circ} = \\var{f} \\times \\cos \\var{90+theta1}^{\\circ} = \\var{precround(f*cos(radians(90+theta1)),3)}$ to the sum of components. This will be negative as you can imagine if you were moving in the positive $x$-direction this force is acting in the opposite direction and pulling you back!
\nThe force $P$ is at $\\var{theta2}^{\\circ}$ to the positive $x$-direction therefore has a contribution of $P \\times \\cos \\var{theta2}^{\\circ} = \\var{p} \\times \\cos\\var{theta2}^{\\circ} = \\var{precround(p*cos(radians(theta2)),3)}$. This is positive as it is acting in the same direction as the positive.
\nTherefore the sum of component in the $x$-direction is $-\\var{q} - \\var{precround(-f*cos(radians(90+theta1)),3)} + \\var{precround(p*cos(radians(theta2)),3)} = \\var{precround(-q+f*cos(radians(90+theta1)) + p*cos(radians(theta2)),3)}$.
\nResolve each force from the positive $y$-direction (upwards). For the force $Q$ this is acting at a right angle to the positive direction. Therefore it's contribution is $\\var{q} \\times \\cos 90^{\\circ}= 0$. There is no upward or downward pull from force $Q$.
\nThe force $F$ is at $(180 - \\var{theta1})^{\\circ} = \\var{180 - theta1}^{\\circ}$ to the positive $y$-direction therefore has a contribution of $F \\times \\cos \\var{180 - theta1}^{\\circ} = \\var{f} \\times \\cos \\var{180 - theta1}^{\\circ} = \\var{precround(f*cos(radians(180-theta1)),3)}$ to the sum of components. This is negative as it is acting in the opposite direction to the positive (downwards).
\nThe force $P$ is at $(90-\\var{theta2})^{\\circ}=\\var{90 - theta2}^{\\circ}$ to the positive $y$-direction therefore has a contribution of $P \\times \\cos \\var{90 - theta2}^{\\circ} = \\var{p} \\times \\cos \\var{90 - theta2}^{\\circ} = \\var{precround(p*cos(radians(90-theta2)),3)}$ to the sum of components. This is positive as it is acting upwards.
\nTherefore the sum of components in the $y$-direction is $0 - \\var{precround(-f*cos(radians(180-theta1)),3)} + \\var{precround(p*cos(radians(90-theta2)),3)} = \\var{precround(f*cos(radians(180-theta1)) + p*cos(radians(90-theta2)),3)}$.
", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "Find the sum of the components in the $x$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "f*cos(radians(90+theta1))+q*cos(radians(180))+p*cos(radians(theta2))", "strictPrecision": false, "minValue": "f*cos(radians(90+theta1))+q*cos(radians(180))+p*cos(radians(theta2))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Find the sum of the components in the $y$-direction.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "q*cos(radians(90))+f*cos(radians(180-theta1))+p*cos(radians(90-theta2))", "strictPrecision": false, "minValue": "q*cos(radians(90))+f*cos(radians(180-theta1))+p*cos(radians(90-theta2))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "\nIn the diagram above, $F=\\var{f} \\ \\mathrm{N}, P = \\var{p} \\ \\mathrm{N}$ and $Q=\\var{q} \\ \\mathrm{N}$. The angles are $\\theta = \\var{theta1}^{\\circ}$ and $\\theta^{*}=\\var{theta2}^{\\circ}$.
\nGive your answers to the following questions in Newtons, to 3 decimal places.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"q": {"definition": "random(2..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "q", "description": "force Q
"}, "p": {"definition": "random(2..18#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "p", "description": "force P
"}, "theta1": {"definition": "random(2..88#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta1", "description": ""}, "theta2": {"definition": "random(2..88#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta2", "description": ""}, "f": {"definition": "random(5..15#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "f", "description": "force F
"}}, "metadata": {"description": "Another example of finding the $x$ and $y$ components when multiple forces are applied at different angles to a particle.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_component_image.png", "/srv/numbas/media/question-resources/force_component_image.png"], ["question-resources/force_component_image_PgpiR1U.png", "/srv/numbas/media/question-resources/force_component_image_PgpiR1U.png"], ["question-resources/force_component_image_2.png", "/srv/numbas/media/question-resources/force_component_image_2.png"], ["question-resources/force_component_image_3.png", "/srv/numbas/media/question-resources/force_component_image_3.png"], ["question-resources/force_component_image_4.png", "/srv/numbas/media/question-resources/force_component_image_4.png"], ["question-resources/force_component_image_5.png", "/srv/numbas/media/question-resources/force_component_image_5.png"]]}