// Numbas version: exam_results_page_options {"name": "USSKL6-30-1 CC1a - Electronics Written Assessment (RESIT)", "metadata": {"description": "

SbE Electronics Resit Written Assessment

", "licence": "Creative Commons Attribution 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": false, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "ElQ3 - Power & Frequency Response - Randomised Variables Only", "extensions": [], "custom_part_types": [], "resources": [["question-resources/SbE_CC1_Q3ai.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3ai.png"], ["question-resources/SbE_CC1_Q3b.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3b.png"], ["question-resources/SbE_CC1_Q3d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3d.png"], ["question-resources/SbE_CC1_Q3c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3c.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}], "tags": [], "metadata": {"description": "

Question Covering AC power and frquency response

", "licence": "All rights reserved"}, "statement": "

Power & Frequency Response

", "advice": "

see spread sheet

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"Q3ai_f_S": {"name": "Q3ai_f_S", "group": "Q3a", "definition": "random(100 .. 150#10)", "description": "

Frequency (fs)

", "templateType": "randrange", "can_override": false}, "Q3ai_V_PP": {"name": "Q3ai_V_PP", "group": "Q3a", "definition": "random(5 .. 9#1)", "description": "

VP-P

", "templateType": "randrange", "can_override": false}, "Q3ai_V_DC": {"name": "Q3ai_V_DC", "group": "Q3a", "definition": "random(-0.5 .. 0.5#0.2)", "description": "

DC Offset

", "templateType": "randrange", "can_override": false}, "Q3ai_R_L": {"name": "Q3ai_R_L", "group": "Q3a", "definition": "random(50 .. 150#10)", "description": "

Load Resistor RL

", "templateType": "randrange", "can_override": false}, "q3aii_f_s": {"name": "q3aii_f_s", "group": "Q3a", "definition": "random(33 .. 99#33)", "description": "

Frequency (fs)

", "templateType": "randrange", "can_override": false}, "q3aii_v_pp": {"name": "q3aii_v_pp", "group": "Q3a", "definition": "random(5 .. 5#1)", "description": "

VP-P

", "templateType": "randrange", "can_override": false}, "Q3aii_R_L": {"name": "Q3aii_R_L", "group": "Q3a", "definition": "random(2000 .. 2000#1)", "description": "

RL

", "templateType": "randrange", "can_override": false}, "Q3aii_t_rise": {"name": "Q3aii_t_rise", "group": "Q3a", "definition": "siground(dec(1/(Q3aii_t_rise_modifier*q3aii_f_s)),4)", "description": "", "templateType": "anything", "can_override": false}, "Q3aii_t_rise_modifier": {"name": "Q3aii_t_rise_modifier", "group": "Q3a", "definition": "random(3 .. 4#1)", "description": "

Modifier of t_rise

", "templateType": "randrange", "can_override": false}, "Q3aii_V_DC": {"name": "Q3aii_V_DC", "group": "Q3a", "definition": "random(1 .. 1#1)", "description": "

DC Offset

", "templateType": "randrange", "can_override": false}, "Q3b_R1": {"name": "Q3b_R1", "group": "Q3b", "definition": "random(3000 .. 3600#100)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_R2": {"name": "Q3b_R2", "group": "Q3b", "definition": "random(2000 .. 2000#1000)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_R3": {"name": "Q3b_R3", "group": "Q3b", "definition": "random(1800 .. 2000#500)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_R4": {"name": "Q3b_R4", "group": "Q3b", "definition": "random(10000 .. 20000#2000)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_VS": {"name": "Q3b_VS", "group": "Q3b", "definition": "random(12 .. 12#1)", "description": "", "templateType": "randrange", "can_override": false}, "Q3c_R_L": {"name": "Q3c_R_L", "group": "Q3d", "definition": "random(1 .. 3#1)", "description": "

Load Resistance (kΩ)

", "templateType": "randrange", "can_override": false}, "Q3c_C1": {"name": "Q3c_C1", "group": "Q3d", "definition": "random(1 .. 3#1)", "description": "

Smoothing Capacitor (uF)

", "templateType": "randrange", "can_override": false}, "Q3c_V_S": {"name": "Q3c_V_S", "group": "Q3d", "definition": "random(20 .. 23#1)", "description": "

Supply Voltage (VS)

", "templateType": "randrange", "can_override": true}, "Q3c_Z_BDV": {"name": "Q3c_Z_BDV", "group": "Q3d", "definition": "siground(dec(q3c_v_s*(3/20)),2)", "description": "

Zener Diode Reverse Breakdown Voltage (V)

", "templateType": "anything", "can_override": false}, "Q3d_C1": {"name": "Q3d_C1", "group": "Q4d", "definition": "random(10 .. 12#0.1)", "description": "

Capacitance C1

", "templateType": "randrange", "can_override": false}, "Q3d_L1": {"name": "Q3d_L1", "group": "Q4d", "definition": "random(170 .. 190#10)", "description": "

Inductance

", "templateType": "randrange", "can_override": false}, "Q3d_R_L": {"name": "Q3d_R_L", "group": "Q4d", "definition": "random(1 .. 5#4)", "description": "", "templateType": "randrange", "can_override": false}, "Q3d_V_S": {"name": "Q3d_V_S", "group": "Q4d", "definition": "random(1 .. 10#9)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Unnamed group", "variables": []}, {"name": "Q3b", "variables": ["Q3b_R1", "Q3b_R2", "Q3b_R3", "Q3b_R4", "Q3b_VS"]}, {"name": "Q3a", "variables": ["Q3ai_f_S", "Q3ai_R_L", "Q3ai_V_DC", "Q3ai_V_PP", "q3aii_f_s", "Q3aii_R_L", "Q3aii_t_rise", "Q3aii_t_rise_modifier", "Q3aii_V_DC", "q3aii_v_pp"]}, {"name": "Q3d", "variables": ["Q3c_R_L", "Q3c_C1", "Q3c_V_S", "Q3c_Z_BDV"]}, {"name": "Q4d", "variables": ["Q3d_C1", "Q3d_V_S", "Q3d_L1", "Q3d_R_L"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part a) Signal Waveforms

\n

Draw or derive the voltage and current wave forms for the following:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Waveform\n

Varibles

\n
\n

Circuit

\n
i. Sinusoidal \n

RL: {Q3ai_R_L} Ω

\n

Frequency (fs): {Q3ai_F_S} Hz

\n

VP-P: {Q3ai_V_PP} V

\n

DC Offset (VDC): {Q3ai_V_DC} V

\n
\n

\n

\"Simple

\n
ii. Triangular\n

RL: {Q3aii_R_L/1000} kΩ

\n

Frequency (fs): {Q3aii_F_S} Hz

\n

VP-P: {Q3aii_V_PP} V

\n

DC Offset (VDC): {Q3aii_V_DC} V

\n

tRise: {Q3aii_t_rise*1000} ms

\n
\n

\"Simple

\n
\n

\n

SPICE Circuit suitable for analysis: SbE CC1 Q3a (multisim.com)

\n

\n

[4Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part b) Power Calculation

\n

The figure shows a resistor network connected to a Triangular Waveform source and the equations that can be used to convert between Star and Delta impedance configurations:

\n

\"Resistor

\n

Circuit Varibles: VS(peak) = {Q3b_VS}V, f = {100}Hz trise = {2}ms Hz, R1= {siground(dec(Q3b_R1/1000),2)}kΩ, R2= {siground(dec(Q3b_R2/1000),2)}kΩ, R3= {siground(dec(Q3b_R3/1000),2)}kΩ, R4= {siground(dec(Q3b_R4/1000),2)}kΩ

\n

For the values given, calculate or determine the RMS power dissipated in the whole circuit and resistor R­1

\n

SPICE Circuit Suitable for Analysis: *SbE CC1 Q3b (multisim.com)

\n

[6Marks]

\n

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part c) Power Supply

\n

The figure shows a circuit designed for Voltage Reduction, Rectification and Regulation of an AC power source. 

\n

\n

Circuit Variables: VS = {Q3c_V_S}VRMS; C1 = {Q3c_C1}mF; R1={1}Ω; RL = {Q3c_R_L}kΩ; T1: Turns on Primary Winding,  NP = 20 and Secondary NS = 9;  Diodes D1 & D2, Forward Bias Voltage = 860mV; Diode Z1, Reverse Breakdown Voltage = {Q3c_Z_BDV}V.  

\n

For the component values given, explain how the circuit operates.  Ensure that you:

\n\n

SPICE Circuit Suitable for Analysis: SbE CC1 EL Q3c (multisim.com)

\n

[8 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part d) Frequency Response

\n

The circuit shown has a capacitor and inductor in parallel which has been designed to be in resonance at a known frequency.  The signal is measured across the load (RL).

\n

\n

\n

Circuit Varibles: VS = {Q3d_V_S}V(RMS) , RL = {Q3d_R_L} kΩ C1 = {Q3d_C1}μF L1 = {Q3d_L1} mH

\n

Using calculation or simulation, evaluate the performance of the circuit in a frequency range from 1Hz to 10kHz.  Ensure that you:

\n\n

SPICE Circuit Suitable for Analysis: *SbE CC1 Q3d (multisim.com)

\n

\n

[12 Marks]

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "ElQ2 - Steady State & Step Response - Randomised Variables Only", "extensions": [], "custom_part_types": [], "resources": [["question-resources/SbE_CC1_Q2c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2c.png"], ["question-resources/SbE_CC1_Q2b_aIYsTQF.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2b_aIYsTQF.png"], ["question-resources/SbE_CC1_Q2d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2d.png"], ["question-resources/SbE_CC1_Q2a.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2a.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}], "tags": [], "metadata": {"description": "

Question covering DC and Step response circuits

", "licence": "All rights reserved"}, "statement": "

Steady State & Step Response

", "advice": "

See Spread Sheet

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"Q2b_R3": {"name": "Q2b_R3", "group": "Ungrouped variables", "definition": "q2b_rs1", "description": "

M

\n

", "templateType": "anything", "can_override": false}, "Q2b_Resistivity": {"name": "Q2b_Resistivity", "group": "Ungrouped variables", "definition": "random(640 .. 640#10)", "description": "

Resistivity of Silicon (Ωm)

", "templateType": "randrange", "can_override": false}, "Q2b_VS": {"name": "Q2b_VS", "group": "Ungrouped variables", "definition": "random(9 .. 12#1)", "description": "

Supply Voltage V

", "templateType": "randrange", "can_override": false}, "Q2b_R1": {"name": "Q2b_R1", "group": "Ungrouped variables", "definition": "random(4000000 .. 7000000#1000000)", "description": "

Resistance of R1 in MΩ

", "templateType": "randrange", "can_override": false}, "Q2b_R2": {"name": "Q2b_R2", "group": "Ungrouped variables", "definition": "Q2b_R1", "description": "", "templateType": "anything", "can_override": false}, "Q2b_A1": {"name": "Q2b_A1", "group": "Ungrouped variables", "definition": "random(1 .. 2#1)", "description": "

Cross Sectional Area mm2

", "templateType": "randrange", "can_override": false}, "Q2b_l1": {"name": "Q2b_l1", "group": "Ungrouped variables", "definition": "random(10 .. 10#1)", "description": "

length pf gauge mm

", "templateType": "randrange", "can_override": false}, "Q2b_Volume_of_Sample": {"name": "Q2b_Volume_of_Sample", "group": "Ungrouped variables", "definition": "dec(q2b_a1/1000000)*dec(Q2b_l1/1000)\n", "description": "", "templateType": "anything", "can_override": false}, "Q2b_l2": {"name": "Q2b_l2", "group": "Ungrouped variables", "definition": "random(10.1 .. 10.2#0.1)", "description": "

Length of sample after load is applied (mm)

", "templateType": "randrange", "can_override": false}, "Q2b_A2": {"name": "Q2b_A2", "group": "Ungrouped variables", "definition": "siground(dec((Q2b_Volume_of_Sample/(Q2b_l2/1000))*1000000),4)\n", "description": "

Cross Sectional Area of Guage when load is applied mm2

", "templateType": "anything", "can_override": false}, "Q2b_RS1": {"name": "Q2b_RS1", "group": "Ungrouped variables", "definition": "siground(dec((Q2b_Resistivity*(Q2b_l1/1000))/(Q2b_a1/1000000)),4)\n", "description": "", "templateType": "anything", "can_override": false}, "Q2b_RS2": {"name": "Q2b_RS2", "group": "Ungrouped variables", "definition": "siground(dec((Q2b_Resistivity*(Q2b_l2/1000))/(Q2b_a2/1000000)),4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Q2b_Resistivity", "Q2b_VS", "Q2b_R1", "Q2b_R2", "Q2b_R3", "Q2b_A1", "Q2b_l1", "Q2b_Volume_of_Sample", "Q2b_l2", "Q2b_A2", "Q2b_RS1", "Q2b_RS2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part a. Circuit Symbols

\n

For each of the symbols shown in the table, state the name and function of the device: 

\n

\"Circuit

\n

[4 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part b. Wheatstone Bridge Calculation

\n

A Wheatstone Bridge is used to measure the change of resistance before & while a load is applied to a gauge block made of silicon material with resistivity ρ = {Q2b_Resistivity}Ωm.

\n

\"Wheatstone

\n

Circuit Varibles:  VS = {Q2b_VS} V, R1 = {siground({Q2b_R1}/1000000,2)} MΩ,  R2 = {siground({Q2b_R2}/1000000,2)} MΩ, R3 = {siground({Q2b_R3}/1000000,2)} MΩ

\n

\n

The dimensions of the gauge before the load is applied are: Cross Sectional Area, A1  = {Q2b_A1} mm2, length, l1 = {Q2b_l1} mm.   

\n

The dimensions of the gauge when the load is applied are: Cross Sectional Area, A2 = {Q2b_A2} mm2, length, l2 = {Q2b_l2} mm.   

\n\n

SPICE circuit suitable for analysis:  SbE CC1 Q1b (multisim.com)

\n

[6 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part c. Step Response

\n

The circuit shows a Resistor and Capacitor Network as well as the charge/discharge plots of the Capacitor when the switch is closed and opened.

\n

\n

Circuit Varibles: VS = {5} V, VB = {2.5} V tON ={50} ms, tOFF ={200} ms C1 ={10} μF , R1 = {10} kΩ, R2 = {2} kΩ

\n

 

\n

Explain what is happening in the circuit.  What is the relationship between the voltage across and current through the Capacitor.

\n

SPICE circuit suitable for analysis: SbE CC1 Q2c (multisim.com)

\n

[8 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part d. Circuit Analysis

\n

The circuit shown is for a simple ‘No Volt Release’ circuit configuration which is used as a safety feature on electrical equipment:

\n

\"No

\n

Analyse the operation of this circuit for the intended purpose. Ensure that you:

\n\n

SPICE circuit suitable for analysis: EveryCircuit - No Volt Release

\n

[12 Marks]

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "ElQ4 - Electromechanical Application & Control - Randomised Variables Only", "extensions": [], "custom_part_types": [], "resources": [["question-resources/SbE_CC1_Q4a.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4a.png"], ["question-resources/SbE_CC1_Q4b.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4b.png"], ["question-resources/SbE_CC1_Q4c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4c.png"], ["question-resources/SbE_CC1_Q4d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4d.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}], "tags": [], "metadata": {"description": "

Question covering Solenoids, Motors and Semiconductors

", "licence": "All rights reserved"}, "statement": "

Electromechanical  Application & Control

", "advice": "

See Spreadsheet

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"Q4b_L1": {"name": "Q4b_L1", "group": "EL Q4b", "definition": "random(0.05 .. 0.05#1)", "description": "

Solenoid Inductace (L1)

", "templateType": "randrange", "can_override": true}, "Q4b_R1": {"name": "Q4b_R1", "group": "EL Q4b", "definition": "random(1 .. 2#0.2)", "description": "

Solenoid Resistance (Ω)

", "templateType": "randrange", "can_override": false}, "Q4b_Solenoid_length": {"name": "Q4b_Solenoid_length", "group": "EL Q4b", "definition": "random(10 .. 10#1)", "description": "

The length (l ) of the solenoid in mm

", "templateType": "randrange", "can_override": false}, "Q4b_Armature_Gap": {"name": "Q4b_Armature_Gap", "group": "EL Q4b", "definition": "random(2 .. 2#1)", "description": "

the gap (g) between the solenoid and the armature in mm 

", "templateType": "randrange", "can_override": false}, "Q4b_F_gen": {"name": "Q4b_F_gen", "group": "EL Q4b", "definition": "random(2.3 .. 2.3#1)", "description": "

Force (F) generated by the solenoid in N

", "templateType": "randrange", "can_override": false}, "Q4c_Duty_cycle": {"name": "Q4c_Duty_cycle", "group": "EL Q4c", "definition": "random(25 .. 60#5)", "description": "

PWM Duty Cycle

", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "EL Q4a", "variables": []}, {"name": "EL Q4b", "variables": ["Q4b_L1", "Q4b_R1", "Q4b_Solenoid_length", "Q4b_Armature_Gap", "Q4b_F_gen"]}, {"name": "EL Q4c", "variables": ["Q4c_Duty_cycle"]}, {"name": "EL Q4d", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part a) Semiconductor Circuit Symbols

\n

For each of the symbols shown in the table, state the name of the device and the function:

\n

\"Semiconductor

\n

\n

[4 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part b) Solenoid Calculation

\n

The figure shows a solenoid electromagnet circuit compromising the inductance of the coil and the series resistance.  It is being energised by a battery.  The switch has been closed for {100*Q4b_L1*Q4b_R1}s. 

\n

\"Solenoid

\n

The measured Inductance (L) of the solenoid is {siground(dec(Q4b_L1*1000),4)}mH and the Resistance is {Q4b_R1}Ω.  The length (l ) of the solenoid is {Q4b_Solenoid_length}mm and the gap (g) between the solenoid and the armature is {Q4b_Armature_Gap}mm. 

\n\n

[6Marks]

\n

SPICE circuit suitable for analysis:  SbE CC1 EL Q4b (multisim.com)

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part c) DC Motor Driver

\n

The figure shows a circuit used to drive a Permanent Magnet DC Motor.   

\n

\"DC

\n

Circuit Variables:

\n

VCC=12V; VPWM=5V, 1kz, {25}% Duty Cycle; R1 = 1kΩ;   Motor Armature Resistance RA = 1kΩ; Motor Inductance LA = 100μH;  Diode Reverse Breakdown Voltage = 1kV. 

\n

 

\n

Explain the operation of the circuit.  Ensure that you: 

\n\n

 

\n

SPICE circuit suitable for analysis:  SbE CC1 EL Q4c - Multisim Live

\n

 

\n

[8 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part d) Servo Vs Stepper Motor

\n

Simplified models of Servo Motor Control and a Stepper Motor Control are shown in shown in the figures below: 

\n

\"Stepper

\n

One of these technologies provides precision position control and the other provides precision motion control.  Compare the two technologies highlighting the advantages and disadvantages of each and for each suggest a suitable medical application that they would be best suited for. 

\n

Ensure that you give a brief description of how each motor control type functions. 

\n

[12 Marks]

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": false, "browse": false, "allowsteps": false, "showfrontpage": false, "showresultspage": "never", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": false, "typeendtoleave": false, "startpassword": "", "allowAttemptDownload": false, "downloadEncryptionKey": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": false, "showtotalmark": false, "showanswerstate": false, "allowrevealanswer": false, "advicethreshold": 0, "intro": "

Electronics Written Assessment Instructions

\n

\n\n

\n\n

 

\n

Ver 1.1

", "end_message": "", "reviewshowscore": false, "reviewshowfeedback": false, "reviewshowexpectedanswer": false, "reviewshowadvice": false, "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": []}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/SbE_CC1_Q3ai.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3ai.png"], ["question-resources/SbE_CC1_Q3b.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3b.png"], ["question-resources/SbE_CC1_Q3d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3d.png"], ["question-resources/SbE_CC1_Q3c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3c.png"], ["question-resources/SbE_CC1_Q2c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2c.png"], ["question-resources/SbE_CC1_Q2b_aIYsTQF.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2b_aIYsTQF.png"], ["question-resources/SbE_CC1_Q2d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2d.png"], ["question-resources/SbE_CC1_Q2a.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2a.png"], ["question-resources/SbE_CC1_Q4a.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4a.png"], ["question-resources/SbE_CC1_Q4b.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4b.png"], ["question-resources/SbE_CC1_Q4c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4c.png"], ["question-resources/SbE_CC1_Q4d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q4d.png"]]}