// Numbas version: finer_feedback_settings {"name": "Dynamics - Impulse and momentum", "duration": 0, "metadata": {"description": "
To be used on the Mechanics wiki page under the Dynamics section, impulse and momentum page. Questions about impulse, momentum and collisions.
", "licence": "Creative Commons Attribution 4.0 International"}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "feedback": {"allowrevealanswer": true, "showtotalmark": true, "advicethreshold": 0, "intro": "", "feedbackmessages": [], "showanswerstate": true, "showactualmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Calculate momentum given mass and speed", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["mass1", "kg1", "velocity1", "tonnes1", "kg2", "velocity2"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "Momentum $p \\ \\mathrm{Ns} = $ mass $\\mathrm{kg} \\ \\times $ velocity $\\mathrm{ms^{-1}}$.
\nRemember that in the above formula, the mass is measured in $\\mathrm{kg}$.
\nWe have
\n\\begin{align}
p & = \\frac{\\var{mass1}}{1000} \\times \\var{velocity1}, \\\\
&= \\var{precround(kg1*velocity1,3)} \\, \\mathrm{Ns}.
\\end{align}
The magnitude of the momentum is $\\var{precround(kg1*velocity1,3)} \\, \\mathrm{Ns}.$
\nWe have
\n\\begin{align}
p & = (\\var{tonnes1} \\times 1000) \\times \\var{velocity2}, \\\\
& = \\var{precround(tonnes1*1000*velocity2,3)} \\, \\mathrm{Ns}.
\\end{align}
The magnitude of the momentum is $\\var{precround(tonnes1*1000*velocity2,3)} \\, \\mathrm{Ns}.$
", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "A particle of mass $\\var{mass1} \\mathrm{g}$ moving at $\\var{velocity1} \\mathrm{ms^{-1}}$.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "kg1*velocity1", "strictPrecision": false, "minValue": "kg1*velocity1", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "showPrecisionHint": false, "type": "numberentry"}, {"precisionType": "dp", "prompt": "A caravan of mass $\\var{tonnes1} \\ \\mathrm{tonnes}$ moving at $\\var{velocity2} \\mathrm{ms^{-1}}$.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "kg2*velocity2", "strictPrecision": false, "minValue": "kg2*velocity2", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "showPrecisionHint": false, "type": "numberentry"}], "statement": "Find the magnitude of the momentum, $p \\ \\mathrm{Ns}$, of the following objects. Give your answers to 3 decimal places.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"kg1": {"definition": "mass1/1000", "templateType": "anything", "group": "Ungrouped variables", "name": "kg1", "description": ""}, "kg2": {"definition": "tonnes1*1000", "templateType": "anything", "group": "Ungrouped variables", "name": "kg2", "description": ""}, "mass1": {"definition": "random(200..1000#10)", "templateType": "randrange", "group": "Ungrouped variables", "name": "mass1", "description": "mass in grams
"}, "velocity2": {"definition": "random(0.2..1.6#0.05)", "templateType": "randrange", "group": "Ungrouped variables", "name": "velocity2", "description": ""}, "velocity1": {"definition": "random(2..20#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "velocity1", "description": ""}, "tonnes1": {"definition": "random(0.5..10#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "tonnes1", "description": ""}}, "metadata": {"description": "Find the magnitude of the momentum of some objects, given mass and speed. Apply the formula $\\rho = mv$.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Find change in speed after force applied for given time", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["mass", "force", "time", "impulse"], "tags": [], "advice": "The impulse imparted is given by $\\text{impulse} = \\text{force} \\times \\text{time}$.
\nSo we have $\\var{force} \\times \\var{time} = \\var{impulse} \\mathrm{Ns}.$
\nThe Impulse-Momentum Principle states that $\\text{Impulse} = \\text{Final momentum} - \\text{Initial momentum}$.
\nSo we have
\n\\begin{align}
\\var{impulse} & = \\var{mass}v - \\var{mass}u, \\\\
& = \\var{mass}v - 0, \\\\
v & = \\frac{\\var{impulse}}{\\var{mass}}, \\\\
& =\\var{impulse/mass} \\mathrm{ms^{-1}}.
\\end{align}
To 3 significant figures, find the magnitude of the impulse given to the body by the force (in $\\mathrm{Ns}$).
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "force*time", "minValue": "force*time", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "prompt": "To 3 significant figures, find the final speed of the body in $\\mathrm{ms^{-1}}$.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "impulse/mass", "minValue": "impulse/mass", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "A body of mass $\\var{mass} \\mathrm{kg}$ is initially at rest on a smooth horizontal plane. Suppose that a horizontal force of magnitude $\\var{force} \\mathrm{N}$ acts on the body for $\\var{time} \\mathrm{s}$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"mass": {"definition": "random(0.5..8#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "mass", "description": ""}, "force": {"definition": "random(0.5..5#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force", "description": ""}, "impulse": {"definition": "force*time", "templateType": "anything", "group": "Ungrouped variables", "name": "impulse", "description": ""}, "time": {"definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "time", "description": ""}}, "metadata": {"description": "Use the Impulse-Momentum principle to find the change in speed of an object after a constant force is applied for a given period of time.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Relate impulse to change in momentum", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["football_mass", "football_speed", "squash_mass", "squash_speed", "restitution", "squash_impulse", "squash_second_speed"], "tags": [], "advice": "Impulse is change in momentum. The ball begins at rest so initially has a momentum of zero.
\nTherefore
\n\\begin{align}
I & = \\var{football_mass} \\times\\var{football_speed} - 0, \\\\
& = \\var{siground(football_mass*football_speed,3)} \\, \\mathrm{Ns}.
\\end{align}
The impulse received by the ball is $ \\var{siground(football_mass*football_speed,3)} \\, \\mathrm{Ns}$.
\nImpulse is change in momentum. Therefore we take the rebound direction as being positive and have that
\n\\begin{align}
I & = mv - mu, \\\\
\\var{squash_impulse} & = \\var{squash_mass} v - (\\var{squash_mass} \\times \\var{- squash_speed}), \\\\
v & = \\frac{\\var{squash_impulse} + (\\var{squash_mass} \\times \\var{-squash_speed})}{\\var{squash_mass}}, \\\\
& = \\var{siground((squash_impulse + squash_mass*-squash_speed)/squash_mass,3)} \\, \\mathrm{ms^{-1}}.
\\end{align}
The speed after the ball rebounds is $\\var{siground(squash_second_speed,3)} \\, \\mathrm{ms^{-1}}$.
", "rulesets": {}, "parts": [{"precisionType": "sigfig", "prompt": "A football of mass $\\var{football_mass} \\, \\mathrm{kg}$ is at rest before it is kicked.
\nWhat is the impulse received by the ball in $\\mathrm{Ns}$ if its speed is $\\var{football_speed} \\, \\mathrm{ms^{-1}}$ after it is struck?
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "football_mass*football_speed", "minValue": "football_mass*football_speed", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "prompt": "A squash ball of mass $\\var{squash_mass} \\, \\mathrm{kg}$ hits a fixed vertical wall at right angles with speed $\\var{squash_speed} \\, \\mathrm{ms^{-1}}$. The ball rebounds at right angles to the wall.
\nWhat is the speed of the ball in $\\mathrm{ms^{-1}}$ just after it has hit the wall, given that the magnitude of the impulse exerted by the wall on the ball is $\\var{squash_impulse} \\, \\mathrm{Ns}$?
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "(squash_impulse)/(squash_mass) - squash_speed", "minValue": "(squash_impulse)/(squash_mass) - squash_speed", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "Give your answers to the following questions to 3 significant figures.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "squash_second_speed>0"}, "preamble": {"css": "", "js": ""}, "variables": {"squash_impulse": {"definition": "precround(squash_mass*((1+restitution)*squash_speed),1)", "templateType": "anything", "group": "Ungrouped variables", "name": "squash_impulse", "description": ""}, "squash_mass": {"definition": "random(0.01..1#0.01)", "templateType": "randrange", "group": "Ungrouped variables", "name": "squash_mass", "description": ""}, "football_speed": {"definition": "random(10..50#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "football_speed", "description": ""}, "squash_second_speed": {"definition": "squash_impulse/squash_mass-squash_speed", "templateType": "anything", "group": "Ungrouped variables", "name": "squash_second_speed", "description": ""}, "squash_speed": {"definition": "random(0.5..5#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "squash_speed", "description": ""}, "football_mass": {"definition": "random(0.05..1#0.05)", "templateType": "randrange", "group": "Ungrouped variables", "name": "football_mass", "description": ""}, "restitution": {"definition": "random(0.1..0.9#0.02)", "templateType": "randrange", "group": "Ungrouped variables", "name": "restitution", "description": "coefficient of restitution of the wall
"}}, "metadata": {"description": "Finding speeds and impulses
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Impulse transmitted through a string between two objects", "extensions": [], "custom_part_types": [], "resources": [["question-resources/impulse1.png", "/srv/numbas/media/question-resources/impulse1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["particle_speed", "A_speed", "A_mass", "B_mass", "impulse"], "tags": [], "advice": "We can draw a diagram with all the speeds and impulses with arrows.
\n\nHere particle $A$ has mass $m_1 = \\var{A_mass} \\, \\mathrm{kg}$ and is projected with a speed $u_1 \\, \\mathrm{ms^{-1}} = \\var{A_speed} \\, \\mathrm{ms^{-1}}$. Particle $B$ has mass $m_2 \\, \\mathrm{kg}$ to be determined and is initially at rest: $u_2 = 0 \\, \\mathrm{ms^{-1}}$. Both particles have common final velocities $v = \\var{particle_speed} \\, \\mathrm{ms^{-1}}$ and exert an impulse $I \\, \\mathrm{Ns}$ through the string as shown.
\nTo find the mass of particle $B$ we can use the principle of conservation of momentum: the total momentum in a system remains constant.
\n\\begin{align}
m_1 u_1 + m_2 u_2 & = m_1 v_1 + m_2v_2, \\\\
(\\var{A_mass} \\times \\var{A_speed}) + 0 & = \\var{particle_speed} ( \\var{A_mass} + m_2 ), \\\\
\\frac{ \\var{A_mass} \\times \\var{A_speed}}{\\var{particle_speed}} & = \\var{A_mass} + m_2, \\\\
m_2 & = \\frac{ \\var{A_mass} \\times \\var{A_speed}}{\\var{particle_speed}} - \\var{A_mass}, \\\\
& = \\var{siground( (A_mass*A_speed)/particle_speed - A_mass,3)} \\, \\mathrm{kg}.
\\end{align}
So the mass of particle $B$ is $\\var{siground( (A_mass*A_speed)/particle_speed - A_mass,3)} \\, \\mathrm{kg}$.
\nTo find the impulse we consider one of the particles and apply the Impulse-Momentum Principle. Although it is easier to consider particle $B$ as it is initially at rest we will consider particle $A$ incase the mass of particle $B$ was calculated incorrectly in part a).
\nWe will consider particle $A$ and apply the Impulse-Momentum Principle in the direction of the impulse shown in the diagram, $(\\leftarrow)$. This means our velocities will now be negative as they are acting in the opposite direction to the impulse.
\n\\begin{align}
I & = mv - mu_1, \\\\
& = m (v - u_1), \\\\
& = \\var{A_mass} \\times ( - \\var{particle_speed} - ( - \\var{A_speed})), \\\\
& = \\var{A_mass} \\times ( \\var{ - particle_speed + A_speed} ), \\\\
& = \\var{siground( A_mass*(A_speed - particle_speed),3)} \\, \\mathrm{Ns}.
\\end{align}
The magnitude of the impulse transmitted through the string is $\\var{impulse} \\, \\mathrm{Ns}$.
", "rulesets": {}, "parts": [{"precisionType": "sigfig", "prompt": "If the mass of particle $A$ is $\\var{A_mass} \\, \\mathrm{kg}$, what is the mass of particle $B$ in $\\mathrm{kg}$?
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "B_mass", "minValue": "B_mass", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "prompt": "Find the magnitude in $\\mathrm{Ns}$ of the impulse transmitted through the string when it goes taut.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "impulse", "minValue": "impulse", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "Two particles $A$ and $B$ are at rest and connected by a light inextensible string which is slack. Particle $A$ is projected directly away from particle $B$ with speed $\\var{A_speed} \\mathrm{ms^{-1}}$.
\nWhen the string goes taut the common speed of the particles is $\\var{particle_speed} \\mathrm{ms^{-1}}$.
\nGive your answers to the following questions to 3 significant figures.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "impulse>0"}, "preamble": {"css": "", "js": ""}, "variables": {"particle_speed": {"definition": "random(0.5..5#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "particle_speed", "description": "common speed of particles when the string goes taut
"}, "A_speed": {"definition": "random(5.1..7#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "A_speed", "description": "particle A is projected away from B with this speed
"}, "B_mass": {"definition": "(A_speed*A_mass)/particle_speed - A_mass", "templateType": "anything", "group": "Ungrouped variables", "name": "B_mass", "description": ""}, "A_mass": {"definition": "random(8..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "A_mass", "description": "mass $A$
"}, "impulse": {"definition": "-A_mass*(particle_speed-A_speed)", "templateType": "anything", "group": "Ungrouped variables", "name": "impulse", "description": ""}}, "metadata": {"description": "Collisions question involving principle of conservation of momentum.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Find initial speeds of particles given speeds after collision and impulse", "extensions": [], "custom_part_types": [], "resources": [["question-resources/collision.png", "/srv/numbas/media/question-resources/collision.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["A_mass", "B_mass", "A_speed", "B_speed", "impulse", "A_before_speed", "B_before_speed"], "tags": [], "advice": "We can draw a diagram.
\n\nThe impulse applied to both balls is $I = \\var{impulse} \\, \\mathrm{Ns}$, and the speeds after the collision are $v_1 = \\var{A_speed} \\, \\mathrm{ms^{-1}}$ and $v_2 = \\var{B_speed} \\, \\mathrm{ms^{-1}}$ for the balls $A$ and $B$ respectively.
\nTo calculate $u_1$, the speed of ball $A$ before the collision, we use the equation $I = m_1v_1 - m_1u_1$, where $m_1$ is the mass of ball $A$, which is $\\var{A_mass} \\, \\mathrm{kg}$. We resolve in the direction of the impulse, therefore the signs of $v_1$ and $u_1$ will be reversed.
\n\\begin{align}
I & = m_1v_1 - m_1u_1, \\\\
\\var{impulse} & = \\var{A_mass} (v_1 - u_1), \\\\
\\frac{\\var{impulse}}{\\var{A_mass}} & = - \\var{A_speed} - (- u_1), \\\\
u_1 & = \\frac{\\var{impulse}}{\\var{A_mass}} + \\var{A_speed}, \\\\
& = \\var{siground( impulse/A_mass + A_speed,3)} \\, \\mathrm{ms^{-1}}.
\\end{align}
The magnitude of the speed of $A$ before the collision is $\\var{siground( impulse/A_mass + A_speed,3)} \\, \\mathrm{ms^{-1}}$.
\nTo calculate $u_2$, the speed of ball $B$ before the collision we use the equation $I = m_2v_2 - m_2u_2$, where $m_2$ is the mass of ball $B$, which is $\\var{B_mass} \\, \\mathrm{kg}$. We resolve in the direction of the impulse shown in the diagram, which is the same as the direction of the speeds.
\n\\begin{align}
I & = m_2v_2 - m_2u_2, \\\\
\\var{impulse} & = \\var{B_mass} ( \\var{B_speed} - u_2), \\\\
\\frac{\\var{impulse} }{ \\var{B_mass}} & = \\var{B_speed} - u_2, \\\\
u_2 & = \\var{B_speed} - \\frac{\\var{impulse} }{ \\var{B_mass}}, \\\\
& = \\var{siground( B_speed - (impulse/B_mass),3)} \\, \\mathrm{ms^{-1}}.
\\end{align}
If this is positive it means the direction of ball $B$ we assumed is correct; if it is negative it means the ball was originally travelling in the other direction. However we were asked to find the magnitude of the speed so we take our answer as $\\var{B_before_speed} \\, \\mathrm{ms^{-1}}$.
", "rulesets": {}, "parts": [{"precisionType": "sigfig", "prompt": "Find the magnitude of the speed of $A$ before the collision, in $\\mathrm{ms^{-1}}$ to 3 s.f.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "A_before_speed", "minValue": "A_before_speed", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "prompt": "Find the magnitude of the speed of $B$ before the collision, in $\\mathrm{ms^{-1}}$ to 3 s.f.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "B_before_speed", "minValue": "B_before_speed", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "Two balls $A$ and $B$ of mass $\\var{A_mass} \\mathrm{kg}$ and $\\var{B_mass} \\mathrm{kg}$ respectively are moving in the same straight line on a smooth horizontal surface. The balls collide. After the collision both of the balls are moving in the same direction.
\nAfter the collision, the $A$ travels at $\\var{A_speed} \\mathrm{ms^{-1}}$ and $B$ travels at $\\var{B_speed} \\mathrm{ms^{-1}}$. The magnitude of the impulse of $A$ on $B$ is $\\var{impulse} \\mathrm{Ns}$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"B_speed": {"definition": "random(3.1..5#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "B_speed", "description": ""}, "B_mass": {"definition": "random(0.5..3#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "B_mass", "description": ""}, "A_mass": {"definition": "random(3.1..5#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "A_mass", "description": ""}, "A_speed": {"definition": "random(0.5..3#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "A_speed", "description": ""}, "impulse": {"definition": "random(5..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "impulse", "description": ""}, "A_before_speed": {"definition": "(impulse/A_mass)+A_speed", "templateType": "anything", "group": "Ungrouped variables", "name": "A_before_speed", "description": ""}, "B_before_speed": {"definition": "sqrt((B_speed-(impulse/B_mass))^2)", "templateType": "anything", "group": "Ungrouped variables", "name": "B_before_speed", "description": ""}}, "metadata": {"description": "Two particles collide. Given the masses and final speeds of the particles, as well as the impulse imparted on each, find their initial speeds.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/impulse1.png", "/srv/numbas/media/question-resources/impulse1.png"], ["question-resources/collision.png", "/srv/numbas/media/question-resources/collision.png"]]}