// Numbas version: finer_feedback_settings {"name": "Statics - Maths Support Wiki", "duration": 0, "metadata": {"description": "

Four questions on statics of a particle.

", "licence": "Creative Commons Attribution 4.0 International"}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "feedback": {"showtotalmark": true, "advicethreshold": 0, "allowrevealanswer": true, "feedbackmessages": [], "showactualmark": true, "showanswerstate": true, "intro": "", "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Mass resting on a rough plane", "extensions": [], "custom_part_types": [], "resources": [["question-resources/statics6.png", "/srv/numbas/media/question-resources/statics6.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["g", "mass", "theta", "R", "mu"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

We can draw a diagram showing the weight, normal reaction $R$ and the force of friction, $F$.

\n

\n

Here $\\theta = \\var{theta}^{\\circ}$ and $m = \\var{mass}$. 

\n

a)

\n

To find the normal reaction, $R$, we resolve perpendicular to the plane.

\n

\\begin{align}
R - mg \\cos \\theta & = 0, \\\\
R & = mg \\cos \\theta, \\\\
& = \\var{mass} \\times 9.8 \\cos (\\var{theta}^{\\circ}), \\\\
& = \\var{precround(mass*9.8*cos(radians(theta)),3)} \\ \\mathrm{N}.
\\end{align}

\n

b)

\n

To find the coefficient of friction we can resolve parallel to the plane and use our 3d.p. value of $R$ from part a) and the fact that friction is limiting ($F = \\mu R$) as we are in equilibrium.

\n

\\begin{align}
F - mg \\sin \\theta & = 0, \\\\
F & = mg \\sin \\theta, \\\\
\\mu R & = mg \\sin \\theta, \\\\[0.5em]
\\mu & = \\frac{mg \\sin \\theta}{R}, \\\\[0.5em]
& = \\frac{ \\var{mass} \\times 9.8 \\sin (\\var{theta}^{\\circ})}{\\var{R}}, \\\\[0.5em]
& = \\var{precround( (mass*9.8*sin(radians(theta)))/R,3)}.
\\end{align}

", "rulesets": {}, "parts": [{"prompt": "

Find the normal reaction, $R$, between the ball and the plane, in $\\mathrm{N}$.

\n

$R = $ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "mass*g*cos(radians(theta))", "strictPrecision": false, "minValue": "mass*g*cos(radians(theta))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "showPrecisionHint": true, "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Using the value of $R$ from part a) find the coeffiecient of friction, $\\mu$, between the ball and the plane.

\n

$\\mu = $ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "mu", "strictPrecision": false, "minValue": "mu", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "showPrecisionHint": true, "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

A ball of mass $\\var{mass} \\ \\mathrm{kg}$ rests in limiting equilibrium on a rough plane inclined at $\\var{theta}^{\\circ}$ above the horizontal.

\n

Suppose that the acceleration due to gravity is $g= 9.8 \\mathrm{ms^{-2}}$.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"mu": {"definition": "(mass*g*sin(radians(theta)))/R", "templateType": "anything", "group": "Ungrouped variables", "name": "mu", "description": ""}, "theta": {"definition": "random(10..44#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta", "description": ""}, "R": {"definition": "precround(mass*g*cos(radians(theta)),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "R", "description": "

the normal reaction R, 3d.p

"}, "mass": {"definition": "random(2..8#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "mass", "description": ""}, "g": {"definition": "9.8", "templateType": "number", "group": "Ungrouped variables", "name": "g", "description": ""}}, "metadata": {"description": "

A mass is resting on a rough plane. Given the angle of the plane and the mass of the object, find the normal reaction force and hence the coefficient of friction.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Mass held in tension by a string", "extensions": [], "custom_part_types": [], "resources": [["question-resources/statics4.png", "/srv/numbas/media/question-resources/statics4.png"], ["question-resources/statics5.png", "/srv/numbas/media/question-resources/statics5.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["F", "theta", "g", "T", "Tp", "M", "M2"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

Draw a diagram showing all the forces acting on the bag of mass.

\n

\n

The tension $T$ is the same in both sections of the string, and the weight of the mass acts downwards. 

\n

a)

\n

We resolve the forces horizontally to get

\n

\\begin{align}
T \\cos \\theta - F & = 0, \\\\[0.5em]
T & = \\frac{F}{\\cos \\theta}, \\\\[0.5em]
& = \\frac{\\var{F}}{\\cos \\var{theta}^{\\circ}}, \\\\[0.5em]
& = \\var{precround(F/cos(radians(theta)),3)} \\mathrm{N}.
\\end{align}

\n

The tension in the string is $\\var{precround(F/cos(radians(theta)),3)} \\mathrm{N}.$

\n

b)

\n

We resolve the forces vertically, and use our 3d.p. value of $T$ found in part a) to get

\n

\\begin{align}
T + T \\sin \\theta - Mg & = 0, \\\\
Mg & = T + T \\sin \\theta, \\\\[0.5em]
M & = \\frac{T + T \\sin \\theta}{g}, \\\\[0.5em]
& = \\frac{ \\var{Tp} + \\var{Tp} \\sin \\var{theta}^{\\circ}}{9.8}, \\\\[0.5em]
& = \\var{precround( (Tp +Tp*sin(radians(theta)))/9.8,3)} \\mathrm{kg}.
\\end{align}

\n

The mass of the bag is $\\var{precround( (Tp +Tp*sin(radians(theta)))/9.8,3)} \\mathrm{kg}.$

", "rulesets": {}, "parts": [{"prompt": "

Find the tension, $T$, in the string in Newtons ($\\mathrm{N}$), to 3d.p.

\n

$T = $ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "T", "strictPrecision": false, "minValue": "T", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Using the value of $T$ found in part a) find $M$, the mass of the bag, in $\\mathrm{kg}$ to 3d.p.

\n

$M = $ [[0]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "maxValue": "M", "strictPrecision": false, "minValue": "M", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

A small bag of mass $M \\, \\mathrm{kg}$ is held by a light inextensible string. The ends of the string are attached to two fixed points $A$ and $B$ which are horizontally on the same level. The bag is held in equilibrium by a horizontal force of magnitude $F \\ \\mathrm{N} = \\var{F} \\ \\mathrm{N}$ acting parallel to $AB$. The bag is vertically below $A$ and the angle $A\\hat{B}M$ is $\\theta =\\var{theta}^{\\circ}$.

\n

\n

The acceleration due to gravity is $g = 9.8 \\mathrm{ms^{-2}}$.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"g": {"definition": "9.8", "templateType": "number", "group": "Ungrouped variables", "name": "g", "description": ""}, "F": {"definition": "random(5..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "F", "description": ""}, "M": {"definition": "(Tp+Tp*sin(radians(theta)))/g", "templateType": "anything", "group": "Ungrouped variables", "name": "M", "description": "

mass using the tension to 3dp

"}, "Tp": {"definition": "precround(T,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "Tp", "description": "

T to 3d.p. (answer to part a) students will use this in part b

"}, "T": {"definition": "F/cos(radians(theta))", "templateType": "anything", "group": "Ungrouped variables", "name": "T", "description": "

tension

"}, "M2": {"definition": "(T+T*sin(radians(theta)))/g", "templateType": "anything", "group": "Ungrouped variables", "name": "M2", "description": "

mass not using T to 3d.p. to check if part b answer is effected.

"}, "theta": {"definition": "random(10..40#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta", "description": ""}}, "metadata": {"description": "

A mass is hanging from a string, tethered to two points. A horizontal force applied to the mass holds it directly underneath one of the points. Given the magnitude of the force, find the tension in the string and the mass of the bag.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Particle in equilibrium on an incline.", "extensions": [], "custom_part_types": [], "resources": [["question-resources/statics2.png", "/srv/numbas/media/question-resources/statics2.png"], ["question-resources/statics3.png", "/srv/numbas/media/question-resources/statics3.png"], ["question-resources/Particle_in_equilibrium_on_a_plane.png", "/srv/numbas/media/question-resources/Particle_in_equilibrium_on_a_plane.png"], ["question-resources/Particle_in_equilibrium_on_a_plane_solution_gxmuyuG.png", "/srv/numbas/media/question-resources/Particle_in_equilibrium_on_a_plane_solution_gxmuyuG.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["F1", "F3", "F4", "theta1", "tantheta2", "theta2", "F2", "thetadp", "F2check", "F2sig"], "tags": [], "advice": "

We can draw our $x$ and $y$ axis as being parallel and perpendicular to the particle, as shown in the diagram below and then resolve the forces.

\n

\n

Resolving in the $x$ direction gives equation (1)

\n

\\begin{align}
F_3 + F_4 \\cos(90^{\\circ} - \\theta_1) - F_2 \\cos \\theta_2 & = 0,\\\\[0.5em]
F_2 \\cos \\theta_2 & = F_3 + F_4 \\sin \\theta_1, \\\\
&= \\var{F3} + \\var{F4} \\sin \\var{theta1}^{\\circ}. && (1) 
\\end{align}

\n

Resolving in the $y$ direction gives equation (2)

\n

\\begin{align}
F_1 - F_4 \\cos \\theta_1 + F_2 \\sin \\theta_2 & = 0,\\\\[0.5em]
F_2 \\sin \\theta_2 & = F_4 \\cos \\theta_1 - F_1, \\\\
&= \\var{F4} \\cos \\var{theta1}^{\\circ} - \\var{F1}. && (2) 
\\end{align}

\n

Dividing equation (2) by equation (1) gives (to 3 s.f.)

\n

\\begin{align}
\\frac{F_2 \\sin \\theta_2}{F_2 \\cos \\theta_2} & = \\frac{\\var{F4} \\cos \\var{theta1}^{\\circ} - \\var{F1}}{\\var{F3} + \\var{F4} \\sin \\var{theta1}^{\\circ}}, \\\\[0.5em]
\\tan \\theta_2 & = \\frac{\\var{F4} \\cos \\var{theta1}^{\\circ} - \\var{F1}}{\\var{F3} + \\var{F4} \\sin \\var{theta1}^{\\circ}}, \\\\[0.5em]
\\theta_2 & = \\arctan \\left(\\frac{\\var{F4} \\cos \\var{theta1}^{\\circ} - \\var{F1}}{\\var{F3} + \\var{F4} \\sin \\var{theta1}^{\\circ}}\\right), \\\\[0.5em]
& = \\var{thetadp}^{\\circ}.
\\end{align} 

\n

We can then substitute the value for $\\theta_2$ in either equation (1) or (2) to find $F_2$.

\n

Using equation (1), we get

\n

\\begin{align} 
F_2 \\cos \\theta_2 & = \\var{F3} + \\var{F4} \\sin \\var{theta1}^{\\circ}, \\\\[0.5em]
F_2 & = \\frac{\\var{F3} + \\var{F4} \\sin \\var{theta1}^{\\circ}}{\\cos \\var{thetadp}^{\\circ}}, \\\\[0.5em]
& = \\var{siground( (F3 + F4*sin(radians(theta1)))/(cos(radians(thetadp))),3)} \\ \\mathrm{N}.
\\end{align}

", "rulesets": {}, "parts": [{"prompt": "

By resolving forces in components find, to 3 significant figures, the unknown angle $\\theta_2$.

\n

$\\theta_2 = $ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "theta2", "minValue": "theta2", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Using your answer from part a) find the magnitude of the force $F_2$, in Newtons to 3 significant figures.

\n

$F_2 = $ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "F2+0.01", "minValue": "F2-0.01", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

The diagram below shows a particle in equilibrium under the action of four forces.

\n

\n

You are given the following information:

\n", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "F2>0"}, "preamble": {"css": "", "js": ""}, "variables": {"theta2": {"definition": "degrees(arctan(tantheta2))", "templateType": "anything", "group": "Ungrouped variables", "name": "theta2", "description": ""}, "F1": {"definition": "random(3..4#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "F1", "description": ""}, "F2": {"definition": "(F3 + F4*sin(radians(theta1)))/(cos(radians(thetadp)))", "templateType": "anything", "group": "Ungrouped variables", "name": "F2", "description": "

uses theta2 to 3dp

"}, "theta1": {"definition": "random(10..40#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta1", "description": ""}, "F4": {"definition": "random(5.1..8#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "F4", "description": ""}, "thetadp": {"definition": "siground(theta2,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "thetadp", "description": "

theta2 to 3d.p. (part a solution will be used in part b - which will allow for rounding errors)

"}, "F2sig": {"definition": "siground(F2,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "F2sig", "description": ""}, "F3": {"definition": "random(0.5..2.8#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "F3", "description": ""}, "tantheta2": {"definition": "(F4*cos(radians(theta1))-F1)/(F3+F4*cos(radians(90-theta1)))", "templateType": "anything", "group": "Ungrouped variables", "name": "tantheta2", "description": ""}, "F2check": {"definition": "(F3 + F4*sin(radians(theta1)))/(cos(radians(theta2)))", "templateType": "anything", "group": "Ungrouped variables", "name": "F2check", "description": "

uses theta2

"}}, "metadata": {"description": "

A particle is in equilibrium on an incline. Four forces are acting on it. You're given the angle of the incline and three forces. Resolve the forces to find the angle and magnitude of the other force.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Resolve forces on particle in equilibrium", "extensions": [], "custom_part_types": [], "resources": [["question-resources/statics1.png", "/srv/numbas/media/question-resources/statics1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "functions": {}, "ungrouped_variables": ["F1", "theta1", "F2", "theta2", "F3", "theta3", "check", "check2"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

As the particle is in equilibrium we equate the sum of the forces to zero. 

\n

Resolving horizontally we have 

\n

\\begin{align}
F_1 \\cos \\theta_1 + F_2 \\cos \\theta_2 - F_3 \\cos \\theta_3 & = 0, \\\\
\\var{F1} \\cos \\var{theta1}^{\\circ} + F_2 \\cos \\var{theta2}^{\\circ} - F_3 \\cos \\var{theta3}^{\\circ} & = 0, \\\\
F_2 \\cos \\var{theta2}^{\\circ} & = F_3 \\cos \\var{theta3}^{\\circ} - \\var{F1} \\cos \\var{theta1}^{\\circ}, \\\\
F_2 & = \\frac{F_3 \\cos \\var{theta3}^{\\circ} - \\var{F1} \\cos \\var{theta1}^{\\circ}}{ \\cos \\var{theta2}^{\\circ}}.
\\end{align}

\n

Resolving vertically, we have

\n

\\begin{align}
F_1 \\sin \\theta_1 - F_2 \\sin \\theta_2 - F_3 \\sin \\theta_3 & = 0, \\\\
\\var{F1} \\sin \\var{theta1}^{\\circ} - F_2 \\sin \\var{theta2}^{\\circ} - F_3 \\sin \\var{theta3}^{\\circ} & = 0, \\\\
F_3 \\sin \\var{theta3}^{\\circ}& = \\var{F1} \\sin \\var{theta1}^{\\circ} - F_2 \\sin \\var{theta2}^{\\circ}.
\\end{align}

\n

Substituting our value for $F_2$ into the formula $F_3 \\sin \\var{theta3}^{\\circ}$ and rearranging gives

\n

\\begin{align}
F_3 \\sin \\var{theta3}^{\\circ} & = \\var{F1} \\sin \\var{theta1}^{\\circ} - F_2 \\sin \\var{theta2}^{\\circ} \\\\
F_3 \\sin \\var{theta3}^{\\circ} & = \\var{F1} \\sin \\var{theta1}^{\\circ} - \\left( \\frac{F_3 \\cos \\var{theta3}^{\\circ} - \\var{F1} \\cos \\var{theta1}^{\\circ}}{\\cos \\var{theta2}^{\\circ}} \\right) \\sin \\var{theta2}^{\\circ}, \\\\
F_3 \\sin \\var{theta3}^{\\circ} & = \\var{F1} \\sin \\var{theta1}^{\\circ} - F_3 \\frac{ \\cos \\var{theta3}^{\\circ}}{ \\cos \\var{theta2}^{\\circ}} \\sin \\var{theta2}^{\\circ} + \\var{F1} \\frac{ \\cos \\var{theta1}^{\\circ}}{ \\cos \\var{theta2}^{\\circ}} \\sin \\var{theta2}^{\\circ}, \\\\
F_3 \\left( \\sin \\var{theta3}^{\\circ} + \\frac{ \\cos \\var{theta3}^{\\circ}}{ \\cos \\var{theta2}^{\\circ}} \\sin \\var{theta2}^{\\circ} \\right) & = \\var{F1} \\sin \\var{theta1}^{\\circ} + \\var{F1} \\frac{ \\cos \\var{theta1}^{\\circ}}{ \\cos \\var{theta2}^{\\circ}} \\sin \\var{theta2}^{\\circ} \\\\
F_3 & = \\frac{\\var{F1} \\sin \\var{theta1}^{\\circ} + \\var{F1} \\frac{ \\cos \\var{theta1}^{\\circ}}{ \\cos \\var{theta2}^{\\circ}} \\sin \\var{theta2}^{\\circ}}{ \\sin \\var{theta3}^{\\circ} + \\frac{ \\cos \\var{theta3}^{\\circ}}{ \\cos \\var{theta2}^{\\circ}} \\sin \\var{theta2}^{\\circ}}.
\\end{align} 

\n

Therefore, to 3 s.f. we have $F_3 = \\var{siground(F3,3)} \\mathrm{N}. $

\n

We can then use our $F_3$ value in our equation for $F_2$

\n

\\begin{align} 
F_2 & = \\frac{F_3 \\cos \\var{theta3}^{\\circ} - \\var{F1} \\cos \\var{theta1}^{\\circ}}{\\cos \\var{theta2}^{\\circ}}, \\\\
& = \\frac{\\var{siground(F3,3)} \\cos \\var{theta3}^{\\circ} - \\var{F1} \\cos \\var{theta1}^{\\circ}}{\\cos \\var{theta2}^{\\circ}}, \\\\
& = \\var{siground(F2,3)} \\mathrm{N}.
\\end{align}
  
 
              

                    

", "rulesets": {}, "parts": [{"prompt": "

$F_2 = $ [[0]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "maxValue": "F2", "strictPrecision": false, "minValue": "F2", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$F_3 = $ [[0]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "maxValue": "F3", "strictPrecision": false, "minValue": "F3", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

The diagram shows a particle in equilibrium under the forces shown.

\n

\n

You are told that $F_1 = \\var{F1} \\ \\mathrm{N}$ and that the angles are $\\theta_1 = \\var{theta1}^{\\circ}, \\ \\theta_2 = \\var{theta2}$ and $\\theta_3 = \\var{theta3}^{\\circ}$.

\n

By resolving horizontally and vertically, find the magnitude of the forces $F_2 $ and $F_3 $, in Newtons, and input them to 3 significant figures below.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"theta2": {"definition": "random(10..70#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta2", "description": ""}, "F1": {"definition": "random(2..4#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "F1", "description": ""}, "F2": {"definition": "(F3*cos(radians(theta3))-F1*cos(radians(theta1)))/(cos(radians(theta2)))", "templateType": "anything", "group": "Ungrouped variables", "name": "F2", "description": ""}, "theta1": {"definition": "random(10..60#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta1", "description": ""}, "theta3": {"definition": "random(2..30#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta3", "description": ""}, "F3": {"definition": "(F1*sin(radians(theta1))+F1*(cos(radians(theta1))/cos(radians(theta2)))*sin(radians(theta2)))/((sin(radians(theta3))+(cos(radians(theta3))*sin(radians(theta2)))/cos(radians(theta2))))", "templateType": "anything", "group": "Ungrouped variables", "name": "F3", "description": "

F3 calculated by the student

"}, "check2": {"definition": "F1*sin(radians(theta1))-F2*sin(radians(theta2))-F3*sin(radians(theta3))", "templateType": "anything", "group": "Ungrouped variables", "name": "check2", "description": "

Total vertical force. Should be zero for equilbrium.

"}, "check": {"definition": "F1*cos(radians(theta1))+F2*cos(radians(theta2))-F3*cos(radians(theta3))", "templateType": "anything", "group": "Ungrouped variables", "name": "check", "description": "

Total horizontal force. Should be zero for equilibrium

"}}, "metadata": {"description": "

Three forces act on a particle. You're given the magnitude of one, and the directions of all three. Find the magnitudes of the other two forces.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/statics6.png", "/srv/numbas/media/question-resources/statics6.png"], ["question-resources/statics4.png", "/srv/numbas/media/question-resources/statics4.png"], ["question-resources/statics5.png", "/srv/numbas/media/question-resources/statics5.png"], ["question-resources/statics2.png", "/srv/numbas/media/question-resources/statics2.png"], ["question-resources/statics3.png", "/srv/numbas/media/question-resources/statics3.png"], ["question-resources/Particle_in_equilibrium_on_a_plane.png", "/srv/numbas/media/question-resources/Particle_in_equilibrium_on_a_plane.png"], ["question-resources/Particle_in_equilibrium_on_a_plane_solution_gxmuyuG.png", "/srv/numbas/media/question-resources/Particle_in_equilibrium_on_a_plane_solution_gxmuyuG.png"], ["question-resources/statics1.png", "/srv/numbas/media/question-resources/statics1.png"]]}