// Numbas version: finer_feedback_settings {"name": "Business Studies Diagnostic", "feedback": {"showtotalmark": true, "advicethreshold": 0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": false, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "timing": {"allowPause": true, "timeout": {"action": "warn", "message": "
Your time is up. Thank you for doing this online test.
\nRemember the Academic Learning Centre provides free maths support. Check out room D259.
"}, "timedwarning": {"action": "warn", "message": "You have 5 minutes remaining.
"}}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 70, "duration": 1080, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": false, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "metadata": {"notes": "", "description": "This is diagnostic test for BS1.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Julie's copy of Substitution Q1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "tags": [], "advice": "", "rulesets": {}, "parts": [{"prompt": "$t^2+\\var{a}$.
", "expectedvariablenames": [], "checkingaccuracy": 0.0, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "marks": 1.0, "answer": "({t}^2)+{a} ", "checkvariablenames": false, "type": "jme"}], "statement": "Find the value of the following expression, given the stated value of $t$.
\n$t=\\var{t}$
", "variable_groups": [], "progress": "in-progress", "type": "question", "variables": {"a": {"definition": "random(8..12)", "name": "a"}, "b": {"definition": "random(3..6)", "name": "b"}, "t": {"definition": "random(3..7)", "name": "t"}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Julie's copy of Numerical reasoning - lottery syndicate", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": ["lottery", "maths-aid", "money", "numerical reasoning", "ratio", "shares"], "metadata": {"description": "\n \t\tGiven the stakes of three people in a lottery syndicate, and the amount the syndicate won, work out each person's share of the winnings.
\n \t\tBased on question 4 from section 3.2 of the Maths-Aid workbook on numerical reasoning.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "{name[0]}, {name[1]} and {name[2]} agree to buy {numbernames[total]} euro worth of lottery tickets, with {name[0]} contributing {share[0]} euro, {name[1]} contributing {share[1]} euro and {name[2]} contributing {share[2]} euro.
\nThey agree that if they win anything with any of these tickets that it should be shared out in the same ratio as their contributions.
", "advice": "Their agreement means that the winnings should go to {name[0]}, {name[1]} and {name[2]} in the ratio $\\var{share[0]}:\\var{share[1]}:\\var{share[2]}$. Think of these as being shares in the winnings.
\nThere are $\\var{share[0]}+\\var{share[1]}+\\var{share[2]} = \\var{total}$ shares in all for the €{win}.
\nHence each share is worth $€\\var{win} \\div \\var{total} = €\\var{part}$.
\nSo {name[0]} gets {share[0]} {pluralise(share[0],'share','shares')} = $\\var{share[0]} \\times €\\var{part} = €\\var{winnings[0]}$, {name[1]} {share[1]} {pluralise(share[1],'share','shares')} = $\\var{share[1]} \\times €\\var{part} = €\\var{winnings[1]}$ and {name[2]} {share[2]} {pluralise(share[2],'share','shares')} = $\\var{share[2]} \\times €\\var{part} = €\\var{winnings[2]}$.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"numbernames": {"name": "numbernames", "group": "Ungrouped variables", "definition": "['zero','one','two','three','four','five','six','seven','eight','nine','ten','eleven','twelve','thirteen','fourteen','fifteen','sixteen','seventeen','eighteen','nineteen']", "description": "", "templateType": "anything", "can_override": false}, "winnings": {"name": "winnings", "group": "Ungrouped variables", "definition": "map(x*win/total,x,share)", "description": "", "templateType": "anything", "can_override": false}, "name": {"name": "name", "group": "Ungrouped variables", "definition": "shuffle(['Bob','Terry','Cilla','Jim','Margaret','Cyril','Ethel','Horace','Beryl'])[0..3]", "description": "", "templateType": "anything", "can_override": false}, "share": {"name": "share", "group": "Ungrouped variables", "definition": "shuffle([share0,share1,share2])", "description": "", "templateType": "anything", "can_override": false}, "share1": {"name": "share1", "group": "Ungrouped variables", "definition": "random(1..min(floor(total/2),total-1-share0))", "description": "", "templateType": "anything", "can_override": false}, "share0": {"name": "share0", "group": "Ungrouped variables", "definition": "random(1..floor(total/2))", "description": "", "templateType": "anything", "can_override": false}, "share2": {"name": "share2", "group": "Ungrouped variables", "definition": "total-share0-share1", "description": "", "templateType": "anything", "can_override": false}, "part": {"name": "part", "group": "Ungrouped variables", "definition": "win/total", "description": "", "templateType": "anything", "can_override": false}, "win": {"name": "win", "group": "Ungrouped variables", "definition": "random(2..10)*total*5", "description": "", "templateType": "anything", "can_override": false}, "total": {"name": "total", "group": "Ungrouped variables", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["numbernames", "winnings", "name", "share", "share1", "share0", "share2", "part", "win", "total"], "variable_groups": [], "functions": {"pluralise": {"parameters": [["n", "number"], ["single", "string"], ["plural", "string"]], "type": "string", "language": "javascript", "definition": "return Numbas.util.pluralise(n,single,plural);"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "They win {win} euro. How much does each get?
\n{name[0]} | \n[[0]] euro | \n
{name[1]} | \n[[1]] euro | \n
{name[2]} | \n[[2]] euro | \n
Given the selling price of an item both as a cash amount and as a percentage of the cost of production, find the cost of production and the profit.
\n \t\tBased on question 1 from section 3 of the Maths-Aid workbook on numerical reasoning.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "The selling price of {thing[0]} is {dpformat(sell,2)} euro.
\nThis price was {percent}% greater than the cost to produce the {thing[1]}.
", "advice": "", "rulesets": {}, "variables": {"sell": {"name": "sell", "group": "Ungrouped variables", "definition": "produce*(1+percent/100)", "description": "", "templateType": "anything"}, "thing": {"name": "thing", "group": "Ungrouped variables", "definition": "random(['a box of chocolates','box'],['an action figure','toy'],['a scarf','scarf'])", "description": "", "templateType": "anything"}, "produce": {"name": "produce", "group": "Ungrouped variables", "definition": "random(3..12 except 10)", "description": "", "templateType": "anything"}, "percent": {"name": "percent", "group": "Ungrouped variables", "definition": "random(10..60#5)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["sell", "thing", "produce", "percent"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "How much did it cost to produce the {thing[1]} and what was the profit?
\nCost to produce: [[0]] euro
\nProfit: [[1]] euro
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "produce", "maxValue": "produce", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "sell-produce", "maxValue": "sell-produce", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Julie's copy of Alison's copy of Straight Lines", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "tags": [], "advice": "", "rulesets": {}, "parts": [{"prompt": "State the y-axis intercept of the line y = {m}x+{c}
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "{c}", "checkvariablenames": false, "type": "jme"}, {"prompt": "State the slope of the line y ={m2}x+ {c2}.
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "{m2}", "checkvariablenames": false, "type": "jme"}, {"prompt": "Given that y = {m}x+{c}, determine y when x={x}
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 1.0, "answer": "{m}*{x}+{c}", "checkvariablenames": false, "type": "jme"}], "statement": "Lines are used in business to describe the relationship between two different quantities. An example is the number of products demanded by customers and the price of the product. There are three parts to this question.
", "variable_groups": [], "progress": "in-progress", "type": "question", "variables": {"c": {"definition": "random(1..20 except 0)", "name": "c"}, "m2": {"definition": "random(1.. 20 except 1)", "name": "m2"}, "m": {"definition": "random(1..10)", "name": "m"}, "m1": {"definition": "-c/m", "name": "m1"}, "c2": {"definition": "2*c-1", "name": "c2"}, "x": {"definition": "random(1..5#1)", "name": "x"}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Julie's copy of Numerical fractions 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "tags": ["Arithmetic", "Fractions", "Lowest terms", "arithmetic", "fractions"], "advice": "\nFor addition and subtraction, write fractions so that they have a common denominator and then perform addition or subtraction on the numerators. One method of doing this is 'cross-multiplication'. The rules are :
\n\\[\\simplify{a/b+ c/d=(a*d+b*c)/(b*d)}.\\]
\\[\\simplify{a/b- c/d=(a*d-b*c)/(b*d)}.\\]
For multiplication and division the rules are simpler:
\n\\[\\simplify{(a/b)} * \\simplify{(c/d)=(a*c)/(b*d)}.\\]
\\[\\simplify{(a/b)} / \\simplify{(c/d)}=\\simplify{(a*d)/(b*c)}.\\]
Having applied these rules, it will be necessary to reduce the resulting fractions to lowest terms.
\n \n ", "rulesets": {}, "parts": [{"prompt": "$\\dfrac{\\var{a1}}{\\var{b1}} + \\dfrac{\\var{c1}}{\\var{d1}}$
\nIn lowest terms is [[0]] / [[1]]
", "gaps": [{"minvalue": "{(a1*d1+b1*c1)/f1}", "type": "numberentry", "maxvalue": "{(a1*d1+b1*c1)/f1}", "marks": 1.0, "showPrecisionHint": false}, {"integerpartialcredit": 0.0, "integeranswer": true, "maxvalue": "{b1*d1/f1}", "minvalue": "{b1*d1/f1}", "marks": 1.0, "type": "numberentry", "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "$\\dfrac{\\var{a1}}{\\var{b1}} \\times \\dfrac{\\var{c1}}{\\var{d1}}$
\nIn lowest terms is [[0]] / [[1]]
", "gaps": [{"minvalue": "{a1*c1/h1}", "type": "numberentry", "maxvalue": "{a1*c1/h1}", "marks": 1.0, "showPrecisionHint": false}, {"minvalue": "{b1*d1/h1}", "type": "numberentry", "maxvalue": "{b1*d1/h1}", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "Evaluate the following as fractions in lowest terms. There are two parts to this question.
", "variable_groups": [], "progress": "testing", "type": "question", "variables": {"f1": {"definition": "gcd(a1*d1+b1*c1,b1*d1)", "name": "f1"}, "r1": {"definition": "random(1..11)", "name": "r1"}, "g1": {"definition": "gcd(a1*d1-b1*c1,b1*d1)", "name": "g1"}, "s1": {"definition": "random(2..13 except r1)", "name": "s1"}, "h1": {"definition": "gcd(a1*c1,b1*d1)", "name": "h1"}, "u1": {"definition": "random(1..11)", "name": "u1"}, "j1": {"definition": "gcd(a1*d1,b1*c1)", "name": "j1"}, "t1": {"definition": "gcd(r1,s1)", "name": "t1"}, "a1": {"definition": "r1/t1", "name": "a1"}, "v1": {"definition": "random(2..13 except [u1,s1,u11])", "name": "v1"}, "b1": {"definition": "s1/t1", "name": "b1"}, "w1": {"definition": "gcd(u1,v1)", "name": "w1"}, "u11": {"definition": "s1*u1/r1", "name": "u11"}, "c1": {"definition": "u1/w1", "name": "c1"}, "d1": {"definition": "v1/w1", "name": "d1"}}, "metadata": {"notes": "", "description": "Questions testing understanding of numerators and denominators of numerical fractions, and reduction to lowest terms.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Mean", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["a1", "a3", "a2", "a5", "a4", "a7", "a6"], "tags": ["median", "mode", "Rebel", "REBEL", "rebel", "rebelmaths", "sample mean", "standard deviation", "statistics", "teame"], "preamble": {"css": "", "js": ""}, "advice": "To find the mean: Add up all the values. Then divide by the number of values.
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "$\\text{mean}=\\;\\;$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "1/7*{(a1+a2+a3+a4+a5+a6+a7)}", "strictPrecision": false, "minValue": "1/7*{(a1+a2+a3+a4+a5+a6+a7)}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "1", "scripts": {}, "marks": "2", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Calculate the mean of the following set of numbers correct to one decimal place:
\n$\\var{a1}, \\var{a2}, \\var{a3}, \\var{a4}, \\var{a5}, \\var{a6}, \\var{a7}$ .
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a1": {"definition": "random(9..10)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(5..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(7..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a5": {"definition": "random(0..2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a5", "description": ""}, "a4": {"definition": "random(3..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a4", "description": ""}, "a7": {"definition": "random(3..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a7", "description": ""}, "a6": {"definition": "random(3..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a6", "description": ""}}, "metadata": {"description": "calculating mean
\nrebelmaths
\nWhat's $\\frac {\\var{num}} {\\var{denom} }$ in its simplest form (please enter your answer in the form a/b)? Answer: [[0]]
\n\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "\n
You need to find a number that divides exactly into $\\var{num}$ and $\\var{denom}$ (a \"common factor\").
\nWhen you've found one, you can simplify the fraction $\\frac {\\var{num}} {\\var{denom}}$ by dividing $\\var{num}$ and $\\var{denom}$ by the common factor.
\nCarry on until there aren't any more common factors..
\n ", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{simplenum}/{simpledenom}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "You shouldn't need a calculator for these...
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"perc": {"definition": "simplenum*100/simpledenom", "templateType": "anything", "group": "Ungrouped variables", "name": "perc", "description": ""}, "num1": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "num1", "description": ""}, "num2": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "num2", "description": ""}, "simplenum": {"definition": "num/gcd(num,denom)", "templateType": "anything", "group": "Ungrouped variables", "name": "simplenum", "description": ""}, "num": {"definition": "if(num2To express A as a percentage of B
\nWhat's $\\var{A}$ expressed as a percentage of $\\var{B}$? $\\var{A}$ is [[0]]% of $\\var{B}$.
First work out $\\frac {\\var{A}} {\\var{B}} $ as a decimal = $\\var{AOverB} $
\nThen convert the decimal to a percentage.
", "marks": 0}], "type": "gapfill"}, {"prompt": "What's $\\var{A2}$ expressed as a percentage of $\\var{B2}$? $\\var{A2}$ is [[0]]% of $\\var{B2}$. Please give your answer to exactly 2 decimal places.
", "marks": 0, "gaps": [{"marks": 1, "maxValue": "{perc2}", "minValue": "{perc2}", "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nFinding what A is, expressed as a percentage of B.
\nFor example, 15 is 5% of 300.
\nTry the first question without a calculator.
\n\n ", "variable_groups": [], "progress": "testing", "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "5*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "perc": {"definition": "random(5,10,20,25,40,50,80,100)", "templateType": "anything", "group": "Ungrouped variables", "name": "perc", "description": ""}, "b": {"definition": "A*100/perc", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "aoverb": {"definition": "A/B", "templateType": "anything", "group": "Ungrouped variables", "name": "aoverb", "description": ""}, "a2": {"definition": "5*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}, "b2": {"definition": "10*random(1..100)", "templateType": "anything", "group": "Ungrouped variables", "name": "b2", "description": ""}, "perc2": {"definition": "precround(A2*100/B2,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "perc2", "description": ""}}, "metadata": {"notes": "\n \t\t
The range of variables for the first part is restricted so that the question should be solvable mentally, or with pen and paper at worst...
\n \t\tHad to use precround to handle the 2 dp.
\n \t\t\n \t\t", "description": "
What's A as a percentage of B?
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "extensions": ["stats"], "custom_part_types": [], "resources": []}