// Numbas version: finer_feedback_settings {"name": "Ulikheter quiz", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], []], "questions": [{"name": "Ulikheter: Navn og symboler", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": ["inequalities", "inequality", "inequations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Koble symbol til riktig mening.
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Uttrykket $x<3$ leses som '$x$ er mindre enn 3'. Vi kan tenke oss at symbolet $<$ har en spiss i ene enden og en åpning i andre, der spissen peker mot det minste tallet og åpningen mot det største tallet.
\nDet gjelder også hvis symbolet snus andre veien. For eksempel, i uttrykket $y>2$ peker spissen mot 2 mens åpningen er mot $y$. Det leser vi som '$y$ er større enn 2'.
\nNår det er en strek under symbolet, f.eks $\\ge$, kan vi tenke oss at det er tilført et likhetstegn, f.eks. betyr $w\\ge 5$ at '$w$ er større enn eller lik 5'. På samme måte betyr $z\\le 0$ at '$z$ er mindre eller lik 0'.
"}], "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["mindre enn
", "mindre eller lik
", "større enn
", "større eller lik
"], "matrix": [["1", 0, 0, 0], [0, "1", 0, 0], [0, 0, "1", 0], [0, 0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["$<$
", "$\\leq$
", "$>$
", "$\\ge$
"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ulikheter: Enkel ulikhet, tester verdier", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": ["inequalities", "inequality", "inequations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "num+random(0.01..0.5#0.01)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "num+random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "num-random(0.01..0.5#0.01)", "description": "", "templateType": "anything", "can_override": false}, "numtex": {"name": "numtex", "group": "Ungrouped variables", "definition": "'\\$\\\\var{num}\\$'", "description": "", "templateType": "anything", "can_override": false}, "question": {"name": "question", "group": "Ungrouped variables", "definition": "variable+ineq+numtex", "description": "", "templateType": "anything", "can_override": false}, "possible_values": {"name": "possible_values", "group": "Ungrouped variables", "definition": "[num,a,b,c,d]", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "num-random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "variable": {"name": "variable", "group": "Ungrouped variables", "definition": "random('\\$x\\$','\\$y\\$','\\$z\\$','\\$n\\$','\\$m\\$','\\$a\\$','\\$b\\$')", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "", "templateType": "anything", "can_override": false}, "words": {"name": "words", "group": "Ungrouped variables", "definition": "if(ineq='\\$\\\\,<\\\\,\\$','er mindre enn',\n if(ineq='\\$\\\\,\\\\le\\\\,\\$','er mindre eller lik',\n if(ineq='\\$\\\\,>\\\\,\\$','er st\u00f8rre enn',\n if(ineq='\\$\\\\,\\\\ge\\\\,\\$','er st\u00f8rre eller lik',\"error\"))))", "description": "", "templateType": "anything", "can_override": false}, "test": {"name": "test", "group": "Ungrouped variables", "definition": "if(ineq='\\$\\\\,<\\\\,\\$','ok', 'nei')", "description": "", "templateType": "anything", "can_override": false}, "ineq": {"name": "ineq", "group": "Ungrouped variables", "definition": "random('\\$\\\\,<\\\\,\\$','\\$\\\\,\\\\le\\\\,\\$','\\$\\\\,>\\\\,\\$','\\$\\\\,\\\\ge\\\\,\\$')", "description": "", "templateType": "anything", "can_override": false}, "marking": {"name": "marking", "group": "Ungrouped variables", "definition": "if(ineq='\\$\\\\,<\\\\,\\$',[0,0,1,0,1],\n if(ineq='\\$\\\\,\\\\le\\\\,\\$',[1,0,1,0,1],\n if(ineq='\\$\\\\,>\\\\,\\$',[0,1,0,1,0],\n if(ineq='\\$\\\\,\\\\ge\\\\,\\$',[1,1,0,1,0],\"error\"))))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["variable", "ineq", "num", "numtex", "question", "test", "possible_values", "a", "b", "c", "d", "marking", "words"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Hvilke verdier av {variable} tilfredsstiller ulikheten {question}?
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Uttrykket {question} betyr at {variable} {words} {numtex}.
\n\nNår vi har negative tall, må vi huske på at 'mindre' betyr lenger til venstre på tallinjen mens 'større' betyr lenger til høyre. Så $-10$ er mindre enn $-5$, siden $-10$ er fem plasser til venstre for $-5$ på tallinjen..
\n\n"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "0", "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["
{num}
{a}
{b}
{c}
{d}
[less, num1, middle, num2, more]
", "templateType": "anything", "can_override": false}, "num2tex": {"name": "num2tex", "group": "Ungrouped variables", "definition": "'\\$\\\\var{num2}\\$'", "description": "", "templateType": "anything", "can_override": false}, "less": {"name": "less", "group": "Ungrouped variables", "definition": "num1-random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "question": {"name": "question", "group": "Ungrouped variables", "definition": "num1tex+ineq1+variable+ineq2+num2tex", "description": "", "templateType": "anything", "can_override": false}, "more": {"name": "more", "group": "Ungrouped variables", "definition": "num2+random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "ineq1": {"name": "ineq1", "group": "Ungrouped variables", "definition": "random('\\$\\\\,<\\\\,\\$','\\$\\\\,\\\\le\\\\,\\$')", "description": "", "templateType": "anything", "can_override": false}, "ineq2": {"name": "ineq2", "group": "Ungrouped variables", "definition": "random('\\$\\\\,<\\\\,\\$','\\$\\\\,\\\\le\\\\,\\$')", "description": "", "templateType": "anything", "can_override": false}, "variable2": {"name": "variable2", "group": "partb", "definition": "random(['\\$x\\$','\\$y\\$','\\$z\\$','\\$n\\$','\\$m\\$','\\$a\\$','\\$b\\$'] except variable)", "description": "", "templateType": "anything", "can_override": false}, "question2": {"name": "question2", "group": "partb", "definition": "variable2+ineqs[0]+num3+' \\$\\\\textbf{og}\\$ '+variable2+ineqs[1]+num4", "description": "", "templateType": "anything", "can_override": false}, "variable": {"name": "variable", "group": "Ungrouped variables", "definition": "random('\\$x\\$','\\$y\\$','\\$z\\$','\\$n\\$','\\$m\\$','\\$a\\$','\\$b\\$')", "description": "", "templateType": "anything", "can_override": false}, "solution": {"name": "solution", "group": "partb", "definition": "if(ineqs[2]='l',variable2+ineqs[0]+num3+' fordi '+num3+'\\$\\\\,<\\\\,\\$'+num4,if(ineqs[2]='g',variable2+ineqs[1]+num4+' fordi '+num4+'\\$\\\\,>\\\\,\\$'+num3,\"error\"))", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "[less, num1, middle, num2, more]", "description": "", "templateType": "anything", "can_override": false}, "num1tex": {"name": "num1tex", "group": "Ungrouped variables", "definition": "'\\$\\\\var{num1}\\$'", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "\n", "maxRuns": 100}, "ungrouped_variables": ["variable", "ineq1", "ineq2", "num1", "num2", "num1tex", "num2tex", "question", "less", "more", "middle", "choices", "marking", "words1", "words2"], "variable_groups": [{"name": "partb", "variables": ["variable2", "ineqs", "num3", "num4", "question2", "marking2", "solution"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Hvilke av følgende verdier for {variable} tilfredsstiller ulikheten {question}?
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Uttrykket {question} betyr at {num1tex} {words1[0]} {variable} og {variable} {words2[0]} {num2tex}. En annen måte å si dette på er at {variable} er {words1[1]} {num1tex} {words2[1]} {num2tex}, dvs at {num1tex} {words1[2]} og {num2tex} {words2[2]} i løsningen.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["
{less}
{num1}
{middle}
{num2}
{more}
Hvilken av følgende ulikheter er ekvivalent (ensbetydende) med betingelsen {question2}?
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "'{question2}' krever at begge ulikhetene er tilfredsstilt. Begge er tilfredsstilt når {solution}.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{variable2+ineqs[0]+num3}
", "{variable2+ineqs[1]+num4}
"], "matrix": "marking2"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ulikheter: Doble ulikheter (ELLER), tester verdier", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": ["inequalities", "inequality", "inequations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"num4": {"name": "num4", "group": "partb", "definition": "num3+random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "num1": {"name": "num1", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "num1+random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "num3": {"name": "num3", "group": "partb", "definition": "random(-12..12 except num1)", "description": "", "templateType": "anything", "can_override": false}, "ineqs": {"name": "ineqs", "group": "partb", "definition": "random(\n [random('\\$\\\\,<\\\\,\\$','\\$\\\\,\\\\le\\\\,\\$'),random('\\$\\\\,<\\\\,\\$','\\$\\\\,\\\\le\\\\,\\$'),'l'],\n [random('\\$\\\\,>\\\\,\\$','\\$\\\\,\\\\ge\\\\,\\$'),random('\\$\\\\,>\\\\,\\$','\\$\\\\,\\\\ge\\\\,\\$'),'g'])", "description": "", "templateType": "anything", "can_override": false}, "words2": {"name": "words2", "group": "Ungrouped variables", "definition": "if(ineq2='\\$\\\\,<\\\\,\\$',['er mindre enn','\\$\\\\textbf{ikke}\\$ inkludert'],\n if(ineq2='\\$\\\\,\\\\le\\\\,\\$',['er mindre eller lik','inkludert'],\n if(ineq2='\\$\\\\,>\\\\,\\$',['er st\u00f8rre enn','\\$\\\\textbf{ikke}\\$ inkludert'],\n if(ineq2='\\$\\\\,\\\\ge\\\\,\\$',['er st\u00f8rre eller lik','inkludert'],[\"error\",\"error\"]))))", "description": "", "templateType": "anything", "can_override": false}, "words1": {"name": "words1", "group": "Ungrouped variables", "definition": "if(ineq1='\\$\\\\,<\\\\,\\$',['er mindre enn','\\$\\\\textbf{ikke}\\$ inkludert'],\n if(ineq1='\\$\\\\,\\\\le\\\\,\\$',['er mindre eller lik','inkludert'],\n if(ineq1='\\$\\\\,>\\\\,\\$',['er st\u00f8rre enn','\\$\\\\textbf{ikke}\\$ inkludert'],\n if(ineq1='\\$\\\\,\\\\ge\\\\,\\$',['er st\u00f8rre eller lik','inkludert'],[\"error\",\"error\"]))))", "description": "", "templateType": "anything", "can_override": false}, "middle": {"name": "middle", "group": "Ungrouped variables", "definition": "(num1+num2)/2+random(-0.1..0.1#0.01)", "description": "", "templateType": "anything", "can_override": false}, "marking2": {"name": "marking2", "group": "partb", "definition": "if(ineqs[2]='l',[0,1],if(ineqs[2]='g',[1,0],\"error\"))", "description": "", "templateType": "anything", "can_override": false}, "marking": {"name": "marking", "group": "Ungrouped variables", "definition": "if(ineq1='\\$\\\\,<\\\\,\\$' and ineq2='\\$\\\\,>\\\\,\\$',[1,0,0,0,1],\nif(ineq1='\\$\\\\,<\\\\,\\$' and ineq2='\\$\\\\,\\\\ge\\\\,\\$',[1,0,0,1,1],\nif(ineq1='\\$\\\\,\\\\le\\\\,\\$' and ineq2='\\$\\\\,\\\\ge\\\\,\\$',[1,1,0,1,1],\nif(ineq1='\\$\\\\,\\\\le\\\\,\\$' and ineq2='\\$\\\\,>\\\\,\\$',[1,1,0,0,1],\"error\"))))", "description": "[less, num1, middle, num2, more]
", "templateType": "anything", "can_override": false}, "num2tex": {"name": "num2tex", "group": "Ungrouped variables", "definition": "'\\$\\\\var{num2}\\$'", "description": "", "templateType": "anything", "can_override": false}, "less": {"name": "less", "group": "Ungrouped variables", "definition": "num1-random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "question": {"name": "question", "group": "Ungrouped variables", "definition": "variable+ineq1+num1tex+' eller '+variable+ineq2+num2tex", "description": "", "templateType": "anything", "can_override": false}, "more": {"name": "more", "group": "Ungrouped variables", "definition": "num2+random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "ineq1": {"name": "ineq1", "group": "Ungrouped variables", "definition": "random('\\$\\\\,<\\\\,\\$','\\$\\\\,\\\\le\\\\,\\$')", "description": "", "templateType": "anything", "can_override": false}, "ineq2": {"name": "ineq2", "group": "Ungrouped variables", "definition": "random('\\$\\\\,>\\\\,\\$','\\$\\\\,\\\\ge\\\\,\\$')", "description": "", "templateType": "anything", "can_override": false}, "variable2": {"name": "variable2", "group": "partb", "definition": "random(['\\$x\\$','\\$y\\$','\\$z\\$','\\$n\\$','\\$m\\$','\\$a\\$','\\$b\\$'] except variable)", "description": "", "templateType": "anything", "can_override": false}, "question2": {"name": "question2", "group": "partb", "definition": "variable2+ineqs[0]+num3+' eller '+variable2+ineqs[1]+num4", "description": "", "templateType": "anything", "can_override": false}, "variable": {"name": "variable", "group": "Ungrouped variables", "definition": "random('\\$x\\$','\\$y\\$','\\$z\\$','\\$n\\$','\\$m\\$','\\$a\\$','\\$b\\$')", "description": "", "templateType": "anything", "can_override": false}, "solution": {"name": "solution", "group": "partb", "definition": "if(ineqs[2]='l',variable2+ineqs[0]+num4+' fordi '+num3+'\\$\\\\,<\\\\,\\$'+num4,if(ineqs[2]='g',variable2+ineqs[1]+num3+' fordi '+num4+'\\$\\\\,>\\\\,\\$'+num3,\"error\"))", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "[less, num1, middle, num2, more]", "description": "", "templateType": "anything", "can_override": false}, "num1tex": {"name": "num1tex", "group": "Ungrouped variables", "definition": "'\\$\\\\var{num1}\\$'", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["variable", "ineq1", "ineq2", "num1", "num2", "num1tex", "num2tex", "question", "less", "more", "middle", "choices", "marking", "words1", "words2"], "variable_groups": [{"name": "partb", "variables": ["variable2", "ineqs", "num3", "num4", "question2", "marking2", "solution"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Hvilke verdier for {variable} tilfredsstiller ulikhetene {question}?
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Uttrykket {question} betyr '{variable} {words1[0]} {num1tex} eller {variable} {words2[0]} {num2tex}'.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["
{less}
{num1}
{middle}
{num2}
{more}
Hvilke av de følgende uttrykkene er ekvivalent med (betyr det samme som) {question2}?
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "'{question2}' krever bare at en av ulikhetene er tilfredsstilt (men begge kan være det). Betingelsen er tilfredsstilt når {solution}.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{variable2+ineqs[0]+num3}
", "{variable2+ineqs[1]+num4}
"], "matrix": "marking2"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Ulikheter: Line\u00e6re", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": ["algebra", "Algebra", "balancing equations", "inequalities", "inequality", "inequation", "inequations", "Linear equations", "linear equations", "rearranging equations", "solving equations", "Solving equations", "two step equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "$\\var{a}x+\\var{b}<\\var{c}$,
$x<$ [[0]].
Løses som en likning, bortsett fra at du må snu ulikhetstegnet om du multipliserer eller dividerer med et negativt tall.
\n$\\var{a}x+\\var{b}$ | \n$<$ | \n$\\var{c}$ | \n
\n | \n | \n |
$\\var{a}x+\\var{b}-\\var{b}$ | \n$<$ | \n$\\var{c}-\\var{b}$ | \n
\n | \n | \n |
$\\var{a}x$ | \n$<$ | \n$\\var{c-b}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{a}x}{\\var{a}}}$ | \n$<$ | \n$\\displaystyle{\\frac{\\var{c-b}}{\\var{a}}}$ | \n
\n | \n | \n |
$x$ | \n$<$ | \n$\\displaystyle{\\simplify{{c-b}/{a}}}$ | \n
$\\var{d}-\\var{f}y\\le\\var{g}$,
\n$y\\ge$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Løses som en likning, bortsett fra at du må snu ulikhetstegnet om du multipliserer eller dividerer med et negativt tall.
\n\n$\\var{d}-\\var{f}y$ | \n$\\le$ | \n$\\var{g}$ | \n
\n | \n | \n |
$\\var{d}-\\var{f}y-\\var{d}$ | \n$\\le$ | \n$\\var{g}-\\var{d}$ | \n
\n | \n | \n |
$-\\var{f}y$ | \n$\\le$ | \n$\\var{g-d}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{-f}y}{\\var{-f}}}$ | \n$\\ge$ | \n$\\displaystyle{\\frac{\\var{g-d}}{\\var{-f}}}$ | \n
\n | \n | \n |
$y$ | \n$\\ge$ | \n$\\displaystyle{\\simplify{{g-d}/{-f}}}$ | \n
$\\displaystyle{-\\frac{z}{\\var{h}}}-\\var{j}<\\var{k}$,
\n$z>$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Løses som en likning, bortsett fra at du må snu ulikhetstegnet om du multipliserer eller dividerer med et negativt tall.
\n$\\displaystyle{-\\frac{z}{\\var{h}}}-\\var{j}$ | \n$<$ | \n$\\var{k}$ | \n
\n | \n | \n |
$\\displaystyle{-\\frac{z}{\\var{h}}}-\\var{j}+\\var{j}$ | \n$<$ | \n$\\var{k}+\\var{j}$ | \n
\n | \n | \n |
$\\displaystyle{-\\frac{z}{\\var{h}}}$ | \n$<$ | \n$\\var{k+j}$ | \n
\n | \n | \n |
$\\displaystyle{-\\frac{z}{\\var{h}}\\times\\var{h}}$ | \n$<$ | \n$\\var{k+j}\\times \\var{h}$ | \n
\n | \n | \n |
$-z$ | \n$<$ | \n$\\var{-ans3}$ | \n
\n | \n | \n |
$z$ | \n$>$ | \n$\\var{ans3}$ | \n
$\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}\\le\\var{n}$ ,
\n$a\\le$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Løses som en likning, bortsett fra at du må snu ulikhetstegnet om du multipliserer eller dividerer med et negativt tall.
\n$\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}$ | \n$\\le$ | \n$\\var{n}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}\\times \\var{m}$ | \n$\\le$ | \n$\\var{n}\\times\\var{m}$ | \n
\n | \n | \n |
$a-\\var{l}$ | \n$\\le$ | \n$\\var{n*m}$ | \n
\n | \n | \n |
$a-\\var{l}+\\var{l}$ | \n$\\le$ | \n$\\var{n*m}+\\var{l}$ | \n
\n | \n | \n |
$a$ | \n$\\le$ | \n$\\var{ans4}$ | \n
$\\var{p}>\\var{q}(\\var{r}+b)$.
\n$b>$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Løses som en likning, bortsett fra at du må snu ulikhetstegnet om du multipliserer eller dividerer med et negativt tall.
\n$\\var{p}$ | \n$>$ | \n$\\var{q}(\\var{r}+b)$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{p}}{\\var{q}}}$ | \n$<$ | \n$\\displaystyle{\\frac{\\var{q}(\\var{r}+b)}{\\var{q}}}$ | \n
\n | \n | \n |
$\\displaystyle{\\simplify{{p}/{q}}}$ | \n$<$ | \n$\\var{r}+b$ | \n
\n | \n | \n |
$\\displaystyle{\\simplify{{p}/{q}}}-\\var{r}$ | \n$<$ | \n$\\var{r}+b-\\var{r}$ | \n
\n | \n | \n |
$\\displaystyle{\\simplify{{p-r*q}/{q}}}$ | \n$<$ | \n$b$ | \n
\n | \n | \n |
$b$ | \n$>$ | \n$\\displaystyle{\\simplify{{p-r*q}/{q}}}$ | \n
$\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}\\ge\\var{u}$.
\n$w\\le$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Løses som en likning, bortsett fra at du må snu ulikhetstegnet om du multipliserer eller dividerer med et negativt tall.
\n$\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}$ | \n$\\ge$ | \n$\\var{u}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}\\times\\var{t}$ | \n$\\ge$ | \n$\\var{u}\\times\\var{t}$ | \n
\n | \n | \n |
$\\var{s}w$ | \n$\\ge$ | \n$\\var{u*t}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{s}w}{\\var{s}}}$ | \n$\\le$ | \n$\\displaystyle{\\frac{\\var{u*t}}{\\var{s}}}$ | \n
\n | \n | \n |
$w$ | \n$\\le$ | \n$\\displaystyle{\\simplify{{u*t}/{s}}}$ | \n
Gitt at $x>\\var{left_ba}$ og $x<\\var{right_ba}$. Det kan skrives som [[0]] $<x<$ [[1]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{left_ba} <x< \\var{right_ba}$ betyr at $\\var{left_ba} <x$ og $x< \\var{right_ba}$. Det kan leses som \"$x$ er mellom $\\var{left_ba}$ og $\\var{right_ba}$\".
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{left_ba}", "maxValue": "{left_ba}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["si-fr", "eu", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{right_ba}", "maxValue": "{right_ba}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["si-fr", "eu", "plain-eu"], "correctAnswerStyle": "si-fr"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Gitt ulikheten $\\var{left_bb}<\\frac{x}{\\var{c}}<\\var{right_bb}$. Løser vi den for $x$ får vi [[0]]$<x<$ [[1]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Vi løser på samme måte som enkle ulikheter, men pass på å gjøre det samme på alle sider av ulikhetstegnene. Målet er å få $x$ alene i midten.
\n$\\var{left_bb}$ | \n$<$ | \n$\\displaystyle \\frac{x}{\\var{c}}$ | \n$<$ | \n$\\var{right_bb}$ | \n
\n | \n | \n | \n | \n |
$\\var{left_bb}\\times \\var{c}$ | \n$<$ | \n$\\displaystyle \\frac{x}{\\var{c}}\\times \\var{c}$ | \n$<$ | \n$\\var{right_bb}\\times \\var{c}$ | \n
\n | \n | \n | \n | \n |
$\\var{bleft}$ | \n$<$ | \n$x$ | \n$<$ | \n$\\var{bright}$ | \n
Gitt $\\var{left_bc}<\\frac{\\simplify{{a}x+{b}}}{\\var{c}}<\\var{right_bc}$. Løsning for $x$ gir [[0]]$<x<$ [[1]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Vi løser på samme måte som enkle ulikheter, men pass på å gjøre det samme på alle sider av ulikhetstegnene. Målet er å få $x$ alene i midten.Solving inequalities is similar to solving equations, ensure you do the same thing to all sides. Note that the operations we do are to get $x$ by itself.
\n$\\var{left_bc}$ | \n$<$ | \n$\\displaystyle \\frac{\\simplify{{a}x+{b}}}{\\var{c}}$ | \n$<$ | \n$\\var{right_bc}$ | \n
\n | \n | \n | \n | \n |
$\\var{left_bc}\\times \\var{c}$ | \n$<$ | \n$\\displaystyle \\frac{\\simplify{{a}x+{b}}}{\\var{c}}\\times \\var{c}$ | \n$<$ | \n$\\var{right_bc}\\times \\var{c}$ | \n
\n | \n | \n | \n | \n |
$\\var{left_bc*c}$ | \n$<$ | \n$\\simplify{{a}x+{b}}$ | \n$<$ | \n$\\var{right_bc*c}$ | \n
\n | \n | \n | \n | \n |
$\\simplify[basic]{{left_bc*c}-{b}}$ | \n$<$ | \n$\\simplify[basic]{{a}x+{b}-{b}}$ | \n$<$ | \n$\\simplify[basic]{{right_bc*c}-{b}}$ | \n
\n | \n | \n | \n | \n |
$\\var{left_bc*c-b}$ | \n$<$ | \n$\\var{a}x$ | \n$<$ | \n$\\var{right_bc*c-b}$ | \n
\n | \n | \n | \n | \n |
$\\displaystyle\\frac{\\var{left_bc*c-b}}{\\var{a}}$ | \n$<$ | \n$\\displaystyle\\frac{\\var{a}x}{\\var{a}}$ | \n$<$ | \n$\\displaystyle\\frac{\\var{right_bc*c-b}}{\\var{a}}$ | \n
\n | \n | \n | \n | \n |
$\\displaystyle\\simplify{{left_bc*c-b}/{a}}$ | \n$<$ | \n$x$ | \n$<$ | \n$\\displaystyle\\simplify{{right_bc*c-b}/{a}}$ | \n