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HEAT TRANSFER DATA SHEETS 
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CONVECTION HEAT TRANSFER CORRELATIONS 

 
1. External Flows 
 
Local Nu for laminar flow on a flat plate with constant surface temperature.  0.6 ≤ Pr ≤ 50.  

                       2131332.0 xx RePrNu =  
 
Average Nu for laminar flow over flat plate with constant surface temperature. 0.6 ≤ Pr ≤ 50. 

                                 2131664.0 xx RePrNu =  
 
 
Local Nu for laminar flow on a flat plate with constant heat flux. 0.6 ≤ Pr ≤ 50. 

                                2131453.0 xx RePrNu =  
 
Local Nu for turbulent flow over a flat plate with constant surface temperature. 
5×105 ≤ Rex ≤ 108; 0.6 ≤ Pr ≤ 60 

                                318.00296.0 PrReNu xx =  
 
Average Nu for turbulent flow over a flat plate with constant surface temperature. 
5×105 ≤ Rex ≤ 108; 0.6 ≤ Pr ≤ 60 

                                318.0037.0u PrReN LL =  
 
Average Nu for mixed flow conditions over flat plate, i.e. starting laminar and becoming turbulent. 
Rex,crit = 5×105; ReL < 108; 0.6 < Pr < 60. 

                                ( )870037.0 8.031 −= LL RePrNu  

 
________________________________________________________________________________ 

Average Nu for cylinder in cross flow.  Pr ≥ 0.7 

      31PrReCNu m
DD =  

 
 

DRe  C m 

 
0.4 - 4 
4 - 40 

40 - 4000 
4000 - 40,000 

40,000 - 400,000 

 
0.989 
0.911 
0.683 
0.193 
0.027 

 
0.330 
0.385 
0.466 
0.618 
0.805 

 

________________________________________________________________________________ 
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2. Internal flow in Circular Channels 
 

Laminar fully developed flow with constant heat flux.  Pr ≥ 0.6 

   36.4=DNu  

________________________________________________________________________________ 

Laminar fully developed flow with constant surface temperature.  Pr ≥ 0.6 

   66.3=DNu  

________________________________________________________________________________ 

Laminar, combined entry length with constant surface temperature 
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Fully developed turbulent flow.  0.6 ≤ Pr ≤ 160;   ReD ≥ 2500; L/D ≥ 10; n = 0.4 for heated tube 
and 0.3 for cooled tube. 
 
   n

DD PrReNu 54023.0=  
________________________________________________________________________________ 
 
Not fully developed turbulent flow (entrance region).  10 ≤ L/D ≤ 400 (Properties at mean bulk 
temperature). 
 
   ( ) 055.0318.0036.0 LDPrReNuD =  
________________________________________________________________________________ 
 
 
3. Free Convection 
 
 
Flat vertical plate with constant surface temperature, all values of RaL 
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Horizontal plate hot surface up or cold surface down.  Characteristic length = surface area ÷ 
perimeter.  104 ≤ RaL ≤ 107; and 107 ≤  RaL ≤ 1011 respectively. 
 
   4154.0 LL RaNu =  
 
   31

L 15.0Nu LRa=  
________________________________________________________________________________ 
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Flat plate cold surface up or hot surface down.  105 ≤ RaL ≤ 1010.  Characteristic length = surface 
area ÷ perimeter. 
 
   4127.0 LL RaNu =  
________________________________________________________________________________ 
 
Horizontal cylinder.   RaD ≤ 1012 
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Efficiency of straight fins (rectangular, triangular and parabolic profile)

Efficiency of annular fins of rectangular profile 
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View Factor for two coaxial parallel discs 
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Generalised Solution Methodologies
If a surface is open then any radiation that passes through it is unlikely to return.
Therefore an open surface acts as a black body with ε =1.

If a surface is adiabatic then the resistance (1- ε) / εA becomes irrelevant and

If one surface cannot see another then the view factor F will be zero and the resistance
will be infinite. This indicates there will be no heat transfer between those surfaces by
radiation.

For general problems involving more than 3 bodies a large number of simultaneous
linear equations may need to be solved and this can be done by Gauss-Siedel method.
The general set of equations are given by:

ibi JE 

][]][[ SJM 
where [ M ] is a n x n matrix for n bodies where the components are given by:

i

iii
iij

FM

 





)1(1

&
i

jii
iij

F
M


 






)1(

[ J ] and [ S] are  1 x n matrices which are given by: 
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For some problems it is easier to write [ S ] matrix as:
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For this case [ M ] matrix takes the following form:
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for i = 1,2,…..k

iiiij FM  1 & jiiij FM   for i = k+1,k+2,…..n

The radiosity matrix [ J ] remains unchanged and one needs to solve [ M ] [J ] = [S]


