// Numbas version: finer_feedback_settings {"name": "Logaritmer", "metadata": {"description": "", "licence": "None specified"}, "duration": 0, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Forenkling av uttrykk", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "Logaritmer - forenkle uttrykk 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": [], "metadata": {"description": "
Expand $\\ln(a^{x}b^{y})$ into $x\\ln(a)+y\\ln(b)$, x and y randomised.
", "licence": "None specified"}, "statement": "Forenkle uttrykkene mest mulig.
", "advice": "Her bruker vi første og tredje logaritmesetning:
\nDa får vi at $\\ln(a^{\\var{c[0]}}b^{\\var{c[1]}})=\\var{c[0]}\\ln(a)+\\var{c[1]}\\ln(b)$.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random(2..7),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\ln(a^{\\var{c[0]}}b^{\\var{c[1]}})=$[[0]]$\\ln(a)+$[[1]]$\\ln(b)$
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[0]", "maxValue": "c[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[1]", "maxValue": "c[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Logaritmer - forenkle uttrykk 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": [], "metadata": {"description": "Expand $\\ln(\\dfrac{a^{x}}{b^{y}})$ into $x\\ln(a)-y\\ln(b)$, x and y randomised.
", "licence": "None specified"}, "statement": "Forenkle uttrykkene mest mulig.
", "advice": "Her bruker vi andre og tredje logaritmesetning:
\nDa får vi at $\\ln(\\frac{a^{\\var{c[0]}}}{b^{\\var{c[1]}}})=\\var{c[0]}\\ln(a)-\\var{c[1]}\\ln(b)$.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random(2..7),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\ln(\\dfrac{a^{\\var{c[0]}}}{b^{\\var{c[1]}}})=$[[0]]$\\ln(a)+$[[1]]$\\ln(b)$
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[0]", "maxValue": "c[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-c[1]", "maxValue": "-c[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Logaritmer - forenkle uttrykk 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": [], "metadata": {"description": "Simlify (expand) logarithmic expressions
", "licence": "None specified"}, "statement": "Forenkle uttrykket.
", "advice": "Her bruker vi logaritmesetningene:
\nI tillegg bruker vi sammenhengen $\\ln(e)=1$.
\nVi skal forenkle uttrykket
\n\\[\\ln\\left(\\var{b1}a^{\\var{c[0]}}\\right)-\\ln\\left(\\dfrac{b^{\\var{c[1]}}}{a^{\\var{c[2]}}}\\right)+\\ln\\left(\\dfrac{e^{\\var{c[3]}}}{\\var{b2}b^{\\var{c[4]}}}\\right)\\]
\nHer kan det være en fordel å forenkle hvert ledd for seg først:
\nSå setter vi sammen:
\n$\\ln\\left(\\var{b1}a^{\\var{c[0]}}\\right)-\\ln\\left(\\dfrac{b^{\\var{c[1]}}}{a^{\\var{c[2]}}}\\right)+\\ln\\left(\\dfrac{e^{\\var{c[3]}}}{\\var{b2}b^{\\var{c[4]}}}\\right)\\\\
=\\var{ex[0]}\\ln(2)+\\var{c[0]}\\ln(a)-\\left(\\var{c[1]}\\ln(b)-\\var{c[2]}\\ln(a)\\right)+\\var{c[3]}-\\var{ex[1]}\\ln(2)-\\var{c[4]}\\ln(b)\\\\
=\\var{c[0]}\\ln(a)+\\var{c[2]}\\ln(a)-\\var{c[1]}\\ln(b)-\\var{c[4]}\\ln(b)+\\var{ex[0]}\\ln(2)-\\var{ex[1]}\\ln(2)+\\var{c[3]}\\\\
=\\underline{\\underline{\\var{ka}\\ln(a)-\\var{kb}\\ln(b)+\\var{k2}\\ln(2)+\\var{c[3]}}}$
$\\ln\\left(\\var{b1}a^{\\var{c[0]}}\\right)-\\ln\\left(\\dfrac{b^{\\var{c[1]}}}{a^{\\var{c[2]}}}\\right)+\\ln\\left(\\dfrac{e^{\\var{c[3]}}}{\\var{b2}b^{\\var{c[4]}}}\\right)$=[[0]]$\\ln(a)-$[[1]]$\\ln(b)+$[[2]]$\\ln(2)+$[[3]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[0]+c[2]", "maxValue": "c[0]+c[2]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[1]+c[4]", "maxValue": "c[1]+c[4]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ex[0]-ex[1]", "maxValue": "ex[0]-ex[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c[3]", "maxValue": "c[3]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Likninger", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Logaritme- og eksponentiallikninger", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "Løs likningene. Avrund svaret til 2 desimaler.
", "advice": "a)
\nLøsningsformelen for en logaritmelikning på grunnform ser slik ut:
\n$\\begin{align}\\ln(x)&=a\\\\ &\\Downarrow \\\\x&=e^{a}\\end{align}$
\nVi snur på likningen og regner ut:
\n$\\begin{align}
\\simplify{{a1} ln(x)+{b1}}&=\\var{c1}\\\\
\\simplify{{a1}ln(x)} &= \\simplify[!collectNumbers]{{c1}-{b1}}\\\\
\\simplify{{a1}ln(x)}&= \\simplify{{c1}-{b1}}\\\\
\\ln(x) &= \\simplify{{{c1}-{b1}}/{{a1}}}\\\\
x &= e^{\\simplify{{{c1}-{b1}}/{{a1}}}}\\\\
\\end{align}$
$x=${precround({exp(({c1}-{b1})/{a1})},2)}
\nb)
\nLikningen $\\simplify{{a2}(ln(x))^{2}+{b2}ln(x)+{c2}=0}$ er en andregradslikning med $\\ln(x)$ som ukjent. Vi bruker da først abc-formelen for å finne $\\ln(x)$:
\n$a=\\var{a2},\\;b=\\var{b2},\\;c=\\var{c2}$
\n$\\ln(x)=\\dfrac{\\simplify{-{b2}}\\pm\\sqrt{\\simplify[!collectNumbers,timesDot]{{b2}^{2}-4*{a2}*{c2}}}}{2\\cdot\\var{a2}}=\\dfrac{\\simplify{-{b2}}\\pm\\sqrt{\\simplify{{b2}^2-4*{a2}*{c2}}}}{\\simplify{2*{a2}}}$.
\nVi to løsninger for $\\ln(x)$: $\\ln(x)= \\var{x[0]}\\text{ og } \\ln(x)=\\var{x[1]}$.
\nVi løser for $x$:
\n$\\ln(x)= \\var{x[0]}\\Rightarrow x=e^{\\var{x[0]}}=${precround(e^(x[0]),6)}$\\approx\\underline{\\underline{\\var{sol[0]}}}$
\n$\\ln(x)= \\var{x[1]}\\Rightarrow x=e^{\\var{x[1]}}=${precround(e^(x[1]),6)}$\\approx\\underline{\\underline{\\var{sol[1]}}}$
\n\nc)
\nLøsningsformelen for eksponentiallikning på grunnform ser slik ut:
\n$\\begin{align}e^{x}&=a\\\\ &\\Downarrow \\\\x&=\\ln(a)\\end{align}$
\nVi snur på likningen og regner ut:
\n$\\begin{align}
e^{\\simplify{{c1}x}}-\\var{e1}&=0\\\\
e^{\\simplify{{c1}x}}&=\\var{e1}\\\\
\\var{c1}x &= \\ln(\\var{e1})\\\\
x &=\\dfrac{\\ln(\\var{e1})}{\\var{c1}}\\\\
\\end{align}$
$x=${precround(ln(e1)/c1,2)}
\n\nd)
\nLikningen $\\simplify{{a2}e^(2*x)+{c2}e^(x)+{b2}=0}$ er en andregradslikning med $e^{x}$ som ukjent. Vi bruker da først abc-formelen for å finne $e^{x}$:
\n$a=\\var{a2},\\;b=\\var{c2},\\;c=\\var{b2}$
\n$e^{x}=\\dfrac{\\simplify{-{c2}}\\pm\\sqrt{\\simplify[!collectNumbers,timesDot]{{c2}^{2}-4*{a2}*{b2}}}}{2\\cdot\\var{a2}}=\\dfrac{\\simplify{-{c2}}\\pm\\sqrt{\\simplify{{c2}^2-4*{a2}*{b2}}}}{\\simplify{2*{a2}}}$.
\nVi to løsninger for $e^{x}$: $e^{x}= \\var{x2[0]}\\text{ og } e^{x}=\\var{x2[1]}$.
\n$e^{x}= \\var{x2[0]}\\Rightarrow x=\\ln(\\var{x2[0]})\\approx\\underline{\\underline{\\var{sol2[0]}}}$
\n$e^{x}= \\var{x2[1]}\\Rightarrow x=\\ln(\\var{x2[1]})\\approx\\underline{\\underline{\\var{sol2[1]}}}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-4..4 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(-4..4 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-4..4 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-11..11 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-11..11 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "[precround(1/(2*{a2})*(-{b2}-sqrt({b2}^2-4*{a2}*{c2})),6),precround(1/(2*{a2})*(-{b2}+sqrt({b2}^2-4*{a2}*{c2})),6)]", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "[precround(e^(x[0]),2),precround(e^(x[1]),2)]", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "{b2}^2-4*{a2}*{c2}", "description": "", "templateType": "anything", "can_override": false}, "se1": {"name": "se1", "group": "Ungrouped variables", "definition": "ln(e1)/c1", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "disc2": {"name": "disc2", "group": "Ungrouped variables", "definition": "{c2}^2-4*{a2}*{b2}", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "[precround(1/(2*{a2})*(-{c2}-sqrt({c2}^2-4*{a2}*{b2})),6),precround(1/(2*{a2})*(-{c2}+sqrt({c2}^2-4*{a2}*{b2})),6)]", "description": "", "templateType": "anything", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "[precround(ln(x2[0]),2),precround(ln(x2[1]),2)]", "description": "", "templateType": "anything", "can_override": false}, "logn": {"name": "logn", "group": "Ungrouped variables", "definition": "safe(\"(ln(x))\")", "description": "", "templateType": "long plain string", "can_override": false}}, "variablesTest": {"condition": "disc>=0 and disc2>=0 and iszero(im(sol2[0])) and iszero(im(sol2[1]))", "maxRuns": 100}, "ungrouped_variables": ["a1", "b1", "c1", "a2", "b2", "c2", "x", "sol", "disc", "se1", "e1", "disc2", "x2", "sol2", "logn"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a1} ln(x)+{b1}={c1}}$
\n$x=$[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "exp((c1-b1)/a1)", "maxValue": "exp((c1-b1)/a1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a2}{logn}^{2}+{b2}{logn}+{c2}=0}$
\n(sett inn laveste verdi først:)
\n$x=$[[0]] $\\vee$ $x=$[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "exp(1/(2*{a2})*(-{b2}-sqrt({b2}^2-4*{a2}*{c2})))*0.95", "maxValue": "exp(1/(2*{a2})*(-{b2}-sqrt({b2}^2-4*{a2}*{c2})))*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "exp(1/(2*{a2})*(-{b2}+sqrt({b2}^2-4*{a2}*{c2})))*0.95", "maxValue": "exp(1/(2*{a2})*(-{b2}+sqrt({b2}^2-4*{a2}*{c2})))*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$e^{\\var{c1}x}-\\var{e1}=0$
\n$x=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ln(e1)/c1", "maxValue": "ln(e1)/c1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a2}e^(2*x)+{c2}e^(x)+{b2}=0}$
\n$x=$ [[0]] $\\vee$ $x=$ [[1]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "sol2[0]*0.95", "maxValue": "sol2[0]*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "sol2[1]*0.95", "maxValue": "sol2[1]*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "Derivasjon", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Derivasjon av log og eksp", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "Deriver uttrykkene.
", "advice": "a)
\nHer er det lurt å forenkle uttrykket før vi deriverer. Vi bruker logaritmesetningene:
\n$y=\\simplify{ln(x^{a})+{b}ln({c}x)}=\\simplify{{a}ln(x)}+\\simplify{{b}(ln({c})+ln(x))}=\\simplify{({a}+{b})ln(x)+{b}ln({c})}$.
\nVi kan da derivere leddvis, og får
\n\\[ y'=(\\simplify{({a}+{b})ln(x)})'+(\\var{b}ln(\\var{c}))'=\\simplify{({a}+{b})/x}+0=\\underline{\\underline{\\simplify{({a}+{b})/x}}}\\]
\n\nb)
\nHer bør vi også forenkle først:
\n$y=\\simplify{ln(x^{a}/(sqrt(x)))}=\\ln(x^{\\var{a}}-\\simplify{ln(sqrt(x))}=\\var{a}\\ln(x)-\\ln(x^{\\frac{1}{2}})=\\var{a}\\ln(x)-\\frac{1}{2}\\ln(x)=\\simplify{((2*{a}-1)/2)}\\ln(x)$.
\nDa får vi:
\n\\[y'=(\\simplify{((2*{a}-1)/2)}\\ln(x))'=\\underline{\\underline{\\simplify{((2*{a}-1)/(2x))}}}\\]
\n\nc)
\nDet finnes ingen regler for å forenkle logaritmen når argumentet er en sum.
\nHer lønner det seg å huske \"snarveien\" $\\left(\\ln(u)\\right)=\\dfrac{u'}{u}$. Vi trenger da bare å velge $u$ og regne ut $u'$:
\n$u=\\simplify[unitFactor,!collectNumbers]{x^{d}+{e}x}, \\qquad u'=\\simplify{{d}x^{{d}-1}+{e}}$
\nVi får da at $y'=\\dfrac{u'}{u}=\\underline{\\underline{\\dfrac{\\simplify{{d}x^{{d}-1}+{e}}}{\\simplify{x^{d}+{e}x}}}}$.
\n\nEllers må vi bruke kjerneregelen fullt ut:
\n$u=\\simplify[unitFactor,!collectNumbers]{x^{d}+{e}x}, \\qquad u'=\\simplify{{d}x^{{d}-1}+{e}}$
\n$y(u)=\\ln(u), \\qquad y'(u)=\\dfrac{1}{u}$
\n$y'=y'(u)\\cdot u' = \\dfrac{1}{u}\\cdot\\simplify{{d}x^{{d}-1}+{e}}=\\dfrac{\\simplify{{d}x^{{d}-1}+{e}}}{\\simplify{x^{d}+{e}x}}$
\n\nd)
\nHer må vi bruke kjerneregelen:
\n$u=\\simplify{x^{d}+x^{f}}, \\qquad u'=\\simplify{{d}x^{{d}-1}+{f}x^{{f}-1}}$
\n$y(u)=e^{u}, \\qquad y'(u)=e^{u}$
\n$y'=y'(u)\\cdot u'=e^{u}\\cdot (\\simplify{{d}x^{{d}-1}+{f}x^{{f}-1}})=\\underline{\\underline{(\\simplify{{d}x^{{d}-1}+{f}x^{{f}-1}})e^{\\simplify{x^{d}+x^{f}}}}}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..3 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1..5 except d)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "e", "f"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$y=\\simplify{ln(x^{a})+{b}ln({c}x)}$
\n$y'=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a}+{b})/x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$y=\\simplify{ln(x^{a}/(sqrt(x)))}$
\n$y'=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(2*{a}-1)/(2*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$y=\\simplify[unitFactor,!collectNumbers]{ln(x^{d}+{e}x)}$
\n$y=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({d}*x^({d}-1)+{e})/(x^{d}+{e}x)", "answerSimplification": "all,cancelTerms,cancelFactors", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$y=\\simplify{e^(x^{d}+x^{f})}$
\n$y'=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({d}*x^({d}-1)+{f}*x^({f}-1}))*e^(x^({d})+x^({f}))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "extensions": [], "custom_part_types": [], "resources": []}