// Numbas version: finer_feedback_settings {"name": "Numeracy and A-level skills comprehensive test - University of Hertfordshire", "metadata": {"description": "

DIAGNOSYS is a knowledge-based test of mathematics background knowledge for first-year university students, created by John Appleby at Newcastle University.

\n

The questions have been translated directly into Numbas, with as few changes as possible.

", "licence": "Creative Commons Attribution 4.0 International"}, "duration": 0, "percentPass": "0", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "101, Multiplication of negative numbers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Multiplication of negative numbers", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "skill: 101, Multiplication of negative numbers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [-3,-5],\n [-4,-6],\n [-6,-3],\n [-2,-7],\n [-4,-5]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate: $(\\var{a}) \\times (\\var{b})$

", "minValue": "a*b", "maxValue": "a*b", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": "0", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "102, Multiply negative and positive", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Multiplying a negative and a positive number", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 101, Multiplication of negative numbers", "skill: 102, Multiply negative and positive"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [4,-1.5],\n [5,-0.5],\n [6,-0.5],\n [7,-3],\n [6,-4]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate: $\\var{a} \\times (\\var{b})$

", "minValue": "a*b", "maxValue": "a*b", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "103, Negative Numbers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Negative numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 102, Multiply negative and positive", "leads to: 201, Use of < and > signs", "skill: 103, Negative Numbers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [-3,-4],\n [-5,-6],\n [-6,-8],\n [-2.5,-3.5],\n [-4,-7]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate: $(\\var{a}) + (\\var{b})$

", "minValue": "a+b", "maxValue": "a+b", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "104, Size of decimals", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Size of decimals", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Laura Midgley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18287/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 201, Use of < and > signs", "skill: 104, Size of decimals"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"scenarios": {"name": "scenarios", "group": "Ungrouped variables", "definition": "[\n [\n [\"1/100\", \"0.00099963\",\"0.00997\",\"0.010003\",\"1/150\"],\n [0,0,0,1,0]\n ],\n [\n [\"1/250\",\"0.0049931\",\"0.0050014\",\"0.0009814\",\"1/200\"],\n [0,0,1,0,0]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "scenario": {"name": "scenario", "group": "Ungrouped variables", "definition": "random(scenarios)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "scenario[0]", "description": "", "templateType": "anything", "can_override": false}, "correct_matrix": {"name": "correct_matrix", "group": "Ungrouped variables", "definition": "scenario[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["scenarios", "scenario", "choices", "correct_matrix"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which is the largest of the following?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": "2", "showCellAnswerState": true, "choices": "choices", "matrix": "correct_matrix"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "107, Ratios", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Ratios", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 205, Inverse ratios", "leads to: 206, Cancelling numerical fractions", "skill: 107, Ratios"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"scenarios": {"name": "scenarios", "group": "Ungrouped variables", "definition": "[\n [\n [\"10 : 15\", \"18 : 24\", \"2 : 3\", \"8 : 12\", \"-4 : -6\"],\n [0,1,0,0,0]\n ],\n [\n [\"6 : 8\", \"-3 : -4\", \"15 : 20\", \"9 : 12\", \"12 : 18\"],\n [0,0,0,0,1]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "scenario": {"name": "scenario", "group": "Ungrouped variables", "definition": "random(scenarios)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "scenario[0]", "description": "", "templateType": "anything", "can_override": false}, "choice_marks": {"name": "choice_marks", "group": "Ungrouped variables", "definition": "scenario[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["scenarios", "scenario", "choices", "choice_marks"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following ratios is not equal to the others?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "2", "showCellAnswerState": true, "choices": "choices", "matrix": "choice_marks"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "108, Factors of an integer", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Factors of Integers", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Laura Midgley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18287/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 107, Ratios", "leads to: 206, Cancelling numerical fractions", "leads to: 208, Factors of algebraic products", "skill: 108, Factors of an integer"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"scenarios": {"name": "scenarios", "group": "Ungrouped variables", "definition": "[\n [\n [\n \"15 and 25 are both factors of 75\", \n \"8 is a factor of 100\",\n \"6, 8 and 16 are all factors of 48\",\n \"5, 8 and 12 are all factors of 60\",\n ],\n [1,0,1,0]\n ],\n [\n [\n \"6 and 9 are both factors of 96\",\n \"6, 16 and 24 are all factors of 64\",\n \"3, 8 and 18 are all factors of 72\",\n \"35 is a factor of 105\"\n ],\n [0,0,1,1]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "scenario": {"name": "scenario", "group": "Ungrouped variables", "definition": "random(scenarios)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "scenario[0]", "description": "", "templateType": "anything", "can_override": false}, "correct_matrix": {"name": "correct_matrix", "group": "Ungrouped variables", "definition": "scenario[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["scenarios", "scenario", "choices", "correct_matrix"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following are true?

", "minMarks": 0, "maxMarks": "1", "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "2", "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": "choices", "matrix": "correct_matrix"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "109, Simple fractions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simple fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 216, Add/subtract numerical fractions", "skill: 109, Simple fractions"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [1,2,3,4],\n [1,6,1,3],\n [1,4,1,3],\n [1,2,1,10],\n [1,2,1,6]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Add: $\\simplify[]{ {a}/{b} + {c}/{d}}$ leaving your answer in the simplest possible form.

", "minValue": "a/b+c/d", "maxValue": "a/b+c/d", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": "50", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "201, Use of < and > signs", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Use of < > signs", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Laura Midgley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18287/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 301, Solution of simple inequalities", "skill: 201, Use of < and > signs"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"scenarios": {"name": "scenarios", "group": "Ungrouped variables", "definition": "[\n [\n [\n \"8.9 < 9.1\",\n \"-4 > -5.1\",\n \"2.5 < -13.6\",\n \"-3 < 7\",\n \"19.98 > 20.03\"\n ],\n [2,2,0,2,0]\n ],\n [\n [\n \"-183 > -182\",\n \"0.4991 < 0.5007\",\n \"-11.9 < 10.95\",\n \"0.997 > 1.003\",\n \"-49.601 < -52.48\"\n ],\n [0,3,3,0,0]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "scenario": {"name": "scenario", "group": "Ungrouped variables", "definition": "random(scenarios)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "scenario[0]", "description": "", "templateType": "anything", "can_override": false}, "correct_matrix": {"name": "correct_matrix", "group": "Ungrouped variables", "definition": "scenario[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["scenarios", "scenario", "choices", "correct_matrix"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Select all of the following that are true.

", "minMarks": 0, "maxMarks": "1", "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "2", "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": "choices", "matrix": "correct_matrix"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "205, Inverse ratios", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Inverse ratios", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "skill: 205, Inverse ratios"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"scenarios": {"name": "scenarios", "group": "Ungrouped variables", "definition": "[\n [5,80,25,16],\n [15,40,75,8],\n [6,50,120,2.5],\n [12,40,16,30],\n [20,26,10,52]\n]", "description": "", "templateType": "anything"}, "scenario": {"name": "scenario", "group": "Ungrouped variables", "definition": "random(scenarios)", "description": "", "templateType": "anything"}, "hours1": {"name": "hours1", "group": "Ungrouped variables", "definition": "scenario[0]", "description": "", "templateType": "anything"}, "speed1": {"name": "speed1", "group": "Ungrouped variables", "definition": "scenario[1]", "description": "", "templateType": "anything"}, "speed2": {"name": "speed2", "group": "Ungrouped variables", "definition": "scenario[2]", "description": "", "templateType": "anything"}, "hours2": {"name": "hours2", "group": "Ungrouped variables", "definition": "scenario[3]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["scenarios", "scenario", "hours1", "speed1", "speed2", "hours2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If a car takes {hours1} hours for a journey travelling at {speed1} miles per hour (mph), how many hours would it take if it travelled at {speed2} mph?

", "minValue": "hours2", "maxValue": "hours2", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "206, Cancelling numerical fractions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Cancelling Numerical Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 207, Multiply algebraic fractions", "leads to: 216, Add/subtract numerical fractions", "leads to: 303, Simplification of fractions with powers", "skill: 206, Cancelling numerical fractions"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [72,90],\n [36,60],\n [48,18],\n [30,24],\n [60,45]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Cancel all possible common factors to leave the fraction in its simplest form.

\n

$\\frac{\\var{a}}{\\var{b}} =$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a/b", "maxValue": "a/b", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": "50", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "216, Add/subtract numerical fractions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Addition + Subtraction of Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 308, Add/subtract algebraic fractions", "skill: 216, Add/subtract numerical fractions"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [5,6,7,15],\n [5,4,7,6],\n [7,12,3,8],\n [7,6,5,9],\n [5,4,11,14]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate $\\simplify[]{ {a}/{b} - {c}/{d} }$.

\n

Enter your answer in the simplest possible form.

", "minValue": "a/b-c/d", "maxValue": "a/b-c/d", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": "50", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "301, Solution of simple inequalities", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Solve simple inequalities", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "skill: 301, Solution of simple inequalities"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [3,2,4,3],\n [3,3,7,5],\n [4,3,7,5],\n [8,5,2,2],\n [6,4,1,2]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The following inequality can be solved to give $x < a$.

\n

\\[ \\simplify[]{ {a}-{b} < {c} - {d}x } \\]

\n

Enther the number $a$.

", "minValue": "(c-a+b)/d", "maxValue": "(c-a+b)/d", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "105, Decimal places", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Decimal places", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 202, Significant figures", "skill: 105, Decimal places"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [251.49251,3],\n [107.36612,2],\n [61.24416,4],\n [17.00361,3],\n [99.9876,2]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "dp": {"name": "dp", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "n", "dp"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter the number $\\var{n}$ rounded to {dp} decimal places.

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "dp", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "106, Definition of positive powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Definition of positive powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "leads to: 203, Definition of negative powers", "leads to: 204, Rules for positive powers", "skill: 106, Definition of positive powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [3,3],\n [2,4],\n [5,3],\n [10,3],\n [2,5]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter the value of $\\var{a}^\\var{b}$.

", "minValue": "a^b", "maxValue": "a^b", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "202, Significant figures", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Significant figures", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 302, Scientific Notation", "skill: 202, Significant figures"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [-173.26148,4],\n [0.0431858,3],\n [1467.2,2],\n [304.271,4],\n [0.0030456,3]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "sf": {"name": "sf", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "n", "sf"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter the number $\\var{n}$ rounded to {sf} significant figures.

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "sf", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "203, Definition of negative powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Definition of negative powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "leads to: 302, Scientific Notation", "leads to: 304, Rules for negative powers", "leads to: 306, Definition of fractional powers", "skill: 203, Definition of negative powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [3,2],\n [2,3],\n [4,2],\n [3,3],\n [2,4]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter (as a fraction) the number given by $\\var{a}^{\\var{-b}}$.

", "minValue": "a^-b", "maxValue": "a^-b", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "204, Rules for positive powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Rules for positive powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "leads to: 304, Rules for negative powers", "skill: 204, Rules for positive powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"x\",2,4,2],\n [\"u\",3,5,2],\n [\"y\",4,2,3],\n [\"z\",3,7,5],\n [\"t\",6,4,2]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "name(group[0])", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "x", "a", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\simplify[]{ {x}^{a} * {x}^{b} = ({x}^{c})^n}$, what is the number $n$?

", "minValue": "(a+b)/c", "maxValue": "(a+b)/c", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "302, Scientific Notation", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Scientific notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 401, Simplify with scientific notation", "skill: 302, Scientific Notation"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"numbers": {"name": "numbers", "group": "Ungrouped variables", "definition": "[\n 0.00736,\n 0.000438,\n 0.00301,\n 340.62,\n 4107.2\n]", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(numbers)", "description": "", "templateType": "anything"}, "significand": {"name": "significand", "group": "Ungrouped variables", "definition": "n/10^power", "description": "", "templateType": "anything"}, "power": {"name": "power", "group": "Ungrouped variables", "definition": "floor(log(n,10))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["numbers", "n", "power", "significand"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We can write the number $\\var{n}$ in the form $\\var{significand} \\times 10^n$. Enter the number $n$.

", "minValue": "power", "maxValue": "power", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "303, Simplification of fractions with powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simplify fractions and powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "leads to: 401, Simplify with scientific notation", "skill: 303, Simplification of fractions with powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"exprs": {"name": "exprs", "group": "Ungrouped variables", "definition": "[\n \"(4^-2 * 2^6) / (2^-3 * 4^3)\",\n \"(9^-1 * 3^2) / (3^-2 * 9^2)\",\n \"(2^3 * 4^-1) / (4^2 * 2^-2)\",\n \"(3^-2 * 9^3) / (9^4 * 3^-1)\",\n \"(5^-1 * 25^2) / (25^4 * 5^-3)\"\n]", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(random(exprs))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["exprs", "expr"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Express the following in its simplest form (without powers/indices):

\n

\\[ \\var{expr} \\]

", "minValue": "eval(expr)", "maxValue": "eval(expr)", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "304, Rules for negative powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Rules for negative Powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "leads to: 303, Simplification of fractions with powers", "leads to: 305, Rules for fractional powers", "leads to: 402, Logs", "leads to: 403, Arbitrary factors", "skill: 304, Rules for negative powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"p^-3 * p^-4 = p^n\",-7],\n [\"(q^-3)^2 = q^n\",-6],\n [\"x^-2 * x^-5 = x^n\",-7],\n [\"(y^-2)^4 = y^n\",-8],\n [\"s^-4 * s^-2 = s^n\",-6]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\var{expr}$, what is the value of $n$?

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "305, Rules for fractional powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Rules for fractional powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "skill: 305, Rules for fractional powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"x^(1/2) * x^(1/3) = (x^5)^a\",1/6],\n [\"(y^4)^(1/6) = y^(1/2) * y^a\",1/6],\n [\"p^(1/4) * p^(5/4) = (p^3)^a\",1/2],\n [\"(q^3)^(1/2) = q^2 * q^a\",-1/2],\n [\"t^(2/3) * t^(1/2) = (t^7)^a\",1/6]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\var[fractionnumbers]{expr}$ give the value of $a$.

", "minValue": "a", "maxValue": "a", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "306, Definition of fractional powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Definition of Fractional Powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "leads to: 305, Rules for fractional powers", "skill: 306, Definition of fractional powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [8,1/3],\n [16,1/2],\n [25,1/2],\n [27,1/3],\n [16,1/4]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Give the value of $\\simplify[fractionnumbers,flatfractions]{ {a}^{b} }$.

", "minValue": "a^b", "maxValue": "a^b", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "401, Simplify with scientific notation", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simplify + Scientific notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "skill: 401, Simplify with scientific notation"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [-2.5,-2,0.2,-3],\n [24,3,-0.3,-1],\n [7,-1,0.2,2],\n [180,2,0.6,5],\n [5,-1,-20,-4]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}, "prod": {"name": "prod", "group": "Ungrouped variables", "definition": "(a*10^b) / (c*10^d)", "description": "", "templateType": "anything"}, "power": {"name": "power", "group": "Ungrouped variables", "definition": "floor(log(abs(prod)))", "description": "", "templateType": "anything"}, "significand": {"name": "significand", "group": "Ungrouped variables", "definition": "prod/10^power", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "a", "b", "c", "d", "prod", "power", "significand"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The number $\\frac{\\var{a} \\times 10^{\\var{b}}}{\\var{c} \\times 10^{\\var{d}}}$ can be simplified to give $\\var{significand} \\times 10^n$.

\n

Enter the value of $n$.

", "minValue": "power", "maxValue": "power", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "402b, Log rules", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Logarithms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "skill: 402, Logs"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [1,4,2,6],\n [1,25,2,10],\n [3,2,2,3],\n [2,4,1,5],\n [1,9,3,3]\n]", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "b^a/d^c", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "b", "a", "c", "d", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\simplify{ {a}ln({b}) - {c}ln({d})} = \\ln(a)$, give the number $a$.

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "403, Arbitrary factors", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Arbitrary Factors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: powers", "skill: 403, Arbitrary factors"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [3,\"4w^2 + w^3 = w^3(1+4w^n)\",1],\n [2,\"2+w^2 = w^2(2w^n + 1)\",-2],\n [-1,\"w+3/w = w^-1(3+w^n)\",2],\n [3,\"4w-3w^3=w^3(4w^n-3)\",-2],\n [-2,\"1/w + 1/w^2 = w^-2(w^n+1)\",1]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(group[1])", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "a", "expr", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

In the following, the factor $w^\\var{a}$ has been taken out of the left-hand side to give the right-hand side.

\n

\\[ \\var{expr} \\]

\n

Enter the value of the number $n$.

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "110, Collect terms (simple)", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "Collect terms (simple)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 211, Collecting terms", "leads to: 312, Expanding two brackets", "leads to: 317, Complex numbers", "skill: 110, Collect terms (simple)"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"2x-3y+1+y+4x\",\"6x-2y-4\"],\n [\"y-3x-5y+3+x-2\",\"1-2x-4y\"],\n [\"3u-2-u+4v-3-2v\",\"2u+2v-5\"],\n [\"1-3p-4-q+4p+3q\",\"p+2q-3\"],\n [\"-g-3h+7-4g+5+2h\",\"12-5g-h\"]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Collect terms in the following expression

\n

\\[ \\var{expr} \\]

\n

leaving your answer in the simplest possible form.

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "[\"n\": `+-$n`?] `@ ((n*x)`? + (n*y)`? + (n*u)`? + (n*v)`? + (n*p)`? + (n*q)`? + (n*g)`? + (n*h)`? + n)", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}, {"name": "Collecting like terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["algebra", "Algebra", "collecting like terms", "like terms", "simplifying"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Simplify the following by collecting like terms.

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10)+[0,0])[0..3]", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10)+[0,0])[0..2]", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10))[0..2]", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10))[0..2]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10))[0..3]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10)+[0,0,0,0])[0..3]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "f", "g"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[!collectnumbers]{{a[1]}x+{b[1]}y+{c[1]}z+{b[2]}y+{a[2]}x+{c[2]}z+{a[0]}x+{c[0]}z+{b[0]}y}$ = [[0]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Like terms are terms where the variable part is the same. For example, $4x$ and $-x$ have the same variable part $x$. However, $3x$ and $-2y$ have different variable parts and are therefore unlike terms (or not like terms). 

\n

We can only collect like terms! Just like we can't say 2 m + 3 cm equals 5 m or 5 cm, we can't say $2x+3y$ equals $5x$ or $5y$! We can, however, say $2a+3a=5a$.

\n

In our question we look at all the terms with a variable part of $x$ and add up all the corresponding coefficients, we do the same for the $y$ terms and the $z$ terms:

\n

\\[\\begin{align}
&\\simplify[!collectnumbers]{{a[1]}x+{b[1]}y+{c[1]}z+{b[2]}y+{a[2]}x+{c[2]}z+{a[0]}x+{c[0]}z+{b[0]}y}\\\\
&=\\simplify[basic]{({a[1]}+{a[2]}+{a[0]})x+({b[1]}+{b[2]}+{b[0]})y+({c[1]}+{c[2]}+{c[0]})z}\\end{align}\\]

\n

We present this as the sum of three unlike terms:

\n

\\[\\simplify{{sum(a)}x+{sum(b)}y+{sum(c)}z}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum(a)}*x+{sum(b)}*y+{sum(c)}*z", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "14", "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}, {"name": "z", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[!collectnumbers]{{d[1]}x^2+{f[1]}x+{g[1]}+{d[0]}x^2+{f[0]}x+{g[0]}}$ = [[0]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Like terms are terms where the variable part is the same. For example, $4x$ and $-x$ have the same variable part $x$. However, $3x^2$ and $-2x$ have different variable parts and are therefore unlike terms (or not like terms). 

\n

We can only collect like terms! Just like we can't say 2 m + 3 cm equals 5 m or 5 cm, we can't say $2x^2+3x$ equals $5x^2$ or $5x$! We can, however, say $2x^2+3x^2=5x^2$.

\n

In our question we look at all the terms with a variable part of $x^2$ and add up all the corresponding coefficients (the numbers in front of the variables), we do the same for the $x$ terms and the constant terms (the terms with no variable part):

\n

\\[\\begin{align}&\\simplify[!collectnumbers]{{d[1]}x^2+{f[1]}x+{g[1]}+{d[0]}x^2+{f[0]}x+{g[0]}}\\\\&=\\simplify[basic]{({d[1]}+{d[0]})x^2+({f[1]}+{f[0]})x+({g[1]}+{g[0]})}\\end{align}\\]

\n

We present this as the sum of three unlike terms:

\n

\\[\\simplify[!noleadingminus, basic]{{sum(d)}x^2+{sum(f)}x+{sum(g)}}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum(d)}x^2+{sum(f)}x+{sum(g)}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`?`+-$n*`?(x^2) + `?`+-$n*`?x + `?`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "111, Solving a simple equation", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Solving a simple equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 212, Solving linear equations", "skill: 111, Solving a simple equation"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"3x+1=13\",4],\n [\"4x-3=9\",3],\n [\"5x+2=17\",3],\n [\"3-2x=9\",-3],\n [\"2-5x=-8\",2]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "x"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve the equation, and give the value of $x$:

\n

\\[ \\var{expr} \\]

", "minValue": "x", "maxValue": "x", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "112, Simple calculation", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simple calculation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "leads to: 210, Expanding one bracket", "leads to: 214, Evaluating formula", "leads to: 215, Precedence Rules", "skill: 112, Simple calculation"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [17,3,4],\n [14,2,3],\n [13,4,2],\n [21,5,3],\n [20,4,3]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "a", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify: $\\simplify[]{ {a} - {b}*{c} }$.

", "minValue": "a-b*c", "maxValue": "a-b*c", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "113, Evaluating a simple expression", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Evaluating a simple expression", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 214, Evaluating formula", "skill: 113, Evaluating a simple expression"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [2,3,3,\"x\"],\n [5,2,4,\"x\"],\n [4,5,5,\"y\"],\n [2,4,3,\"z\"],\n [6,2,4,\"p\"]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "name(group[3])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "a", "b", "c", "x"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Evaluate $\\var{a} + \\var{b}\\var{x}$ if $\\var{x} = \\var{c}$.

", "minValue": "a+b*c", "maxValue": "a+b*c", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "207, Multiply algebraic fractions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Multiplication of Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 307, Division of algebraic fractions", "skill: 207, Multiply algebraic fractions"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"6/y\", \"y^2/12\", \"y/2\"],\n [\"4/y^2\", \"3y/2\", \"6/y\"],\n [\"3/y^3\", \"5y^2/6\", \"5/(2y)\"],\n [\"2y/9\", \"3/(4y^2)\",\"1/(6y)\"],\n [\"4/y\", \"y^3/8\",\"y^2/2\"]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[2])", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is $\\var{a} \\times \\var{b}$?

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "($n `| $v^$n`?)/($n`? * $v`?)", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "208, Factors of algebraic products", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Factors of Algebraic Products", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 209, Simple Factorisation", "skill: 208, Factors of algebraic products"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"12x^3y=3x^2y\",\"4x\"],\n [\"15p*q^2=5p*q\",\"3q\"],\n [\"18u^2v^2=6u*v^2\", \"3u\"],\n [\"10g^3h=5g^2\",\"2*g*h\"],\n [\"14m*n^3=2n^2\",\"7m*n\"]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter the other factor in the equation:

\n

\\[ \\var{expr}( ? ) \\]

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "209, Simple Factorisation", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simple Factorisation", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 309, Simple Quadratic equations", "leads to: 311, Factorising a quadratic", "leads to: 412, Difficult linear equation", "skill: 209, Simple Factorisation"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"2z-6z^2\",\"2z*(1-3z)\"],\n [\"10t^2-5t\",\"5t*(2t-1)\"],\n [\"12y-8y^2\",\"4y*(3-2y)\"],\n [\"6p^2-9p\",\"3p*(2p-3)\"],\n [\"14w-6w^2\",\"2w*(7-3w)\"]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Factorise the following, taking out the highest factor possible:

\n

\\[ \\var{expr} \\]

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "$n`? * $v * ?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "210, Expanding one bracket", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", ""], "variable_overrides": [[], []], "questions": [{"name": "Expand one bracket", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 209, Simple Factorisation", "leads to: 312, Expanding two brackets", "skill: 210, Expanding one bracket"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"2x*(x-3x^2)\",\"2x^2-6x^3\"],\n [\"3y*(2y-1)\",\"6y^2-3y\"],\n [\"4z*(z-2z^2)\",\"4z^2-8z^3\"],\n [\"2u*(u^2-3)\",\"2u^3-6u\"],\n [\"3v*(v^3-2v)\",\"3v^4-6v^2\"]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Expand the bracket in:

\n

\\[ \\var{expr} \\]

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "(`+-($n`?*$v^$n`?))`* + $z", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}, {"name": "Distributive law: expanding one set of brackets", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["algebra", "Algebra", "distributive law", "expanding", "Expanding", "expanding brackets"], "metadata": {"description": "

Things like \"expand 4(5a-3)\"

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"nconstant": {"name": "nconstant", "group": "part b", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "nxcoeff": {"name": "nxcoeff", "group": "part b", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "nmult": {"name": "nmult", "group": "part b", "definition": "random(-12..-2)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "x", "y"], "variable_groups": [{"name": "part b", "variables": ["nmult", "nxcoeff", "nconstant"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The expression $\\simplify{{nmult}({nxcoeff}a+{nconstant})}$ is factorised (written as a product). We can expand the expression (so it is written as a sum) to get 

\n

[[0]]$a$ + [[1]]

", "stepsPenalty": "2", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The number in front of the bracket is multiplying the bracketed term, that is, each term in the brackets. Also, recall that a negative multiplied by a negative is a positive.

\n

$\\begin{align*}
\\simplify{{nmult}({nxcoeff}a+{nconstant})}&=\\simplify[!noleadingminus]{{nmult}*{nxcoeff}a+{nmult} * {nconstant}}\\\\&=\\simplify[!noLeadingMinus]{{nmult*nxcoeff}a+{nmult*nconstant}}
\\end{align*}$

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{nmult*nxcoeff}", "maxValue": "{nmult*nxcoeff}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{nmult*nconstant}", "maxValue": "{nmult*nconstant}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "211, Collecting terms", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Collect Terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "skill: 211, Collecting terms"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"2p-4+p^2+11p+2-3p^2\", \"-2+13p-2p^2\"],\n [\"1-3y+4+4y^2-5y+3-y^2\", \"8-8y+3y^2\"],\n [\"2z^2-5-z+7-3z-4z^2\", \"2-4z-2z^2\"],\n [\"-5^2-4t+3t^2+6-t+5\", \"11-5t+2t^2\"],\n [\"4m-2-2m+4m^2+3-2m^2\", \"1+2m+2m^2\"]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Collect the terms in the following expression:

\n

\\[ \\var{expr} \\]

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "(`+- $n`?) + (`+- $n`?*$v) + (`+- $n`? * $v^2)", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "212, Solving linear equations", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Linear Equations", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 309, Simple Quadratic equations", "leads to: 310, Relation between roots and factors", "leads to: 314, Simultaneous Equations", "leads to: 315, Unusual linear equation", "skill: 212, Solving linear equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"7-3c=-5c-4\",\"c\",-5.5],\n [\"2d+3=-4d+18\",\"d\",2.5],\n [\"1-3t=-6t-2\",\"t\",-1],\n [\"4c+4=-2c-5\",\"c\",-1.5],\n [\"3-2n=6n+11\",\"n\",-1]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "latex(pair[1])", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "pair[2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "x", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve the equation:

\n

\\[ \\var{expr} \\]

\n

Enter the value of $\\var{x}$.

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "213, Transposition of formula", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Transposition of formulae", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 315, Unusual linear equation", "skill: 213, Transposition of formula"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"c=a*b/2\",\"b\",\"2c/a\"],\n [\"v=2u/3\",\"u\",\"3v/2\"],\n [\"d=5e/3\",\"e\",\"3d/5\"],\n [\"s=-(3t/5)\",\"t\",\"-5s/3\"],\n [\"x=y*z/4\",\"y\",\"4x/z\"]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(group[0])", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "latex(group[1])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(group[2])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "expr", "x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\var{expr}$ then what is $\\var{x}$?

\n

Enter an expression for $\\var{x}$.

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "214, Evaluating formula", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Evaluation of Formulae", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: basic algebra", "leads to: 316, Use of quadratic formula", "leads to: 410, Substituting into a formula", "skill: 214, Evaluating formula"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"(p^2+2r)/(t-1)\",[p:4,r:-2,t:5]],\n [\"(3a+b)/(2c^2)\",[a:5,b:-3,c:2]],\n [\"(2f-g^3)/(4h)\",[f:7,g:2,h:1.5]],\n [\"(3r^2-2s)/(t+4)\",[r:3,s:6,t:-1]],\n [\"(x^2-3y^2)/(1-3z)\",[x:4,y:-2,z:1]]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "values": {"name": "values", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "eval(expr,values)", "description": "", "templateType": "anything"}, "values_string": {"name": "values_string", "group": "Ungrouped variables", "definition": "latex(join(map(\"{x} = {v}\",[x,v],items(values)),\", \"))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "values", "n", "values_string"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $Q = \\var{expr}$ and $\\var{values_string}$, then what value has $Q$?

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "215, Precedence Rules", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Order of Operations", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Laura Midgley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18287/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: numbers", "skill: 215, Precedence Rules"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\n latex(safe(\"\\\\frac{12}{6 \\\\times 3}\")),\n [\n safe(\"12 \u00f7 (6 \u00d7 3) =\"),\n safe(\"12 \u00f7 6 \u00d7 3 =\"),\n safe(\"(12) \u00f7 (6 \u00d7 3) =\"),\n safe(\"(12 \u00f7 6) \u00d7 3 =\")\n ],\n [0,1,0,0]\n ],\n [\n latex(safe(\"\\\\frac{15+27}{3}\")),\n [\n safe(\"(15+27) \u00f7 3 =\"),\n safe(\"15 + 27 = \u00f7 3 =\"),\n safe(\"15 + 27 \u00f7 3 =\"),\n safe(\"15 \u00f7 3 + 27 \u00f7 3 =\")\n ],\n [0,0,1,0]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "map(\"\"+x+\"\",x,group[1])", "description": "", "templateType": "anything", "can_override": false}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything", "can_override": false}, "correct_matrix": {"name": "correct_matrix", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "expr", "choices", "correct_matrix"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

To calculate $\\var{expr}$ you press a sequence of keys on your calculator.

\n

Which one of the following would give you the WRONG answer?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": "choices", "matrix": "correct_matrix"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "307, Division of algebraic fractions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Division of Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "skill: 307, Division of algebraic fractions"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"12/y\",\"6/y^2\",\"2y\"],\n [\"z^2/4\",\"z/8\",\"2z\"],\n [\"6/u^2\",\"3/u\",\"2/u\"],\n [\"v/4\",\"v^2/8\",\"2/v\"],\n [\"1/(2m)\",\"4/m^2\",\"m/8\"]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "expr1": {"name": "expr1", "group": "Ungrouped variables", "definition": "expression(group[0])", "description": "", "templateType": "anything"}, "expr2": {"name": "expr2", "group": "Ungrouped variables", "definition": "expression(group[1])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(group[2])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "expr1", "expr2", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\var{expr1}$ is divided by $\\var{expr2}$ then the result (when simplified) is:

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "308, Add/subtract algebraic fractions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Addition/Subtraction of Algebraic Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "leads to: 404, L.c.d. of an algebraic fraction", "leads to: 405, Identification of common errors", "skill: 308, Add/subtract algebraic fractions"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"3/(x+1)+2/(x+2)\",\"(x+1)(x+2)\",\"5x+8\"],\n [\"4/(x-1)+3/(x+3)\",\"(x-1)(x+3)\",\"7x+9\"],\n [\"2/(x-2)+3/(x-1)\",\"(x-2)(x-1)\",\"5x-8\"],\n [\"3/(x+3)-1/(x+1)\",\"(x+3)(x+1)\",\"2x\"],\n [\"2/(x-2)-1/(x+2)\",\"(x-2)(x+2)\",\"x+6\"]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(group[0])", "description": "", "templateType": "anything"}, "denom": {"name": "denom", "group": "Ungrouped variables", "definition": "expression(group[1])", "description": "", "templateType": "anything"}, "numerator": {"name": "numerator", "group": "Ungrouped variables", "definition": "expression(group[2])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "expr", "denom", "numerator"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Two fractions are put over a common denominator as shown:

\n

\\[ \\var{expr} = \\frac{?}{\\var{denom}} \\]

\n

Enter the numerator (shown as $?$) in simplified form:

", "answer": "{numerator}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "309, Simple Quadratic equations", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simple Quadratic Equations", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "skill: 309, Simple Quadratic equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\n \"x^2+4x=0\",\n [\n safe(\"has only one solution, $x=-4$\"),\n safe(\"has only one solution, $x=4$\"),\n safe(\"has only one solution, $x=0$\"),\n safe(\"has two solutions, $x=0$ and $x=-4$\"),\n safe(\"has two solutions, $x=0$ and $x=4$\")\n ],\n [0,0,0,1,0]\n ],\n [\n \"3x=x^2\",\n [\n safe(\"has only one solution, $x=3$\"),\n safe(\"has only one solution, $x=-3$\"),\n safe(\"has only one solution, $x=0$\"),\n safe(\"has two solutions, $x=0$ and $x=3$\"),\n safe(\"has two solutions, $x=0$ and $x=-3$\")\n ],\n [0,0,0,1,0]\n ],\n]", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(group[0])", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything", "can_override": false}, "choice_marks": {"name": "choice_marks", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "expr", "choices", "choice_marks"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which one of the following statements about this quadratic equation is true?

\n

\\[ \\var{expr} \\]

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": "choices", "matrix": "choice_marks"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "310, Relation between roots and factors", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Relationship of Roots and Factors", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "skill: 310, Relation between roots and factors"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [-2,1],\n [3,-1],\n [2,-3],\n [1,-4],\n [-3,1]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "-x1-x2", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "x1*x2", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "x1", "x2", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The quadratic equation $x^2+ax+b=0$ has roots $x = \\var{x1}$ and $x=\\var{x2}$.

\n

Enter the values of $a$ and $b$.

\n

$a = $ [[0]]

\n

$b = $ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "$a$", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a", "maxValue": "a", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "$b$", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b", "maxValue": "b", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "311, Factorising a quadratic", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Factorising a Quadratic Function", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "leads to: 310, Relation between roots and factors", "leads to: 407, Quadratics - completing the square", "skill: 311, Factorising a quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"x\",5,-3],\n [\"v\",-4,2],\n [\"y\",1,-3],\n [\"z\",-2,3],\n [\"u\",3,-4]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "name(group[0])", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "simplify(expression(\"{x}^2 + {-a-b}{x} + {a*b}\"),\"all\")", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "simplify(expression(\"({x}-{a})({x}-{b})\"),\"all\")", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "x", "a", "b", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Factorise the following expression into two brackets:

\n

\\[ \\var{expr} \\]

\n

that is, into the form $(\\var{x}\\ldots)(\\var{x}\\ldots)$.

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "(`+- $n`? * $v + `+- $n`?)`* * $z", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "312, Expanding two brackets", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Expanding Two Brackets", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "leads to: 311, Factorising a quadratic", "leads to: 313, Difference of squares", "leads to: 405, Identification of common errors", "leads to: 408, Multiplication of complex numbers", "leads to: 410, Substituting into a formula", "skill: 312, Expanding two brackets"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"(2+v)(3-v)\",\"6+v-v^2\"],\n [\"(r-4)(r+2)\",\"r^2-2r-8\"],\n [\"(t-2)(t+4)\",\"t^2+2t-8\"],\n [\"(1-s)(2+s)\",\"2-s-s^2\"],\n [\"(y+3)(y-5)\",\"y^2-2y-15\"]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Expand the brackets and collect terms:

\n

\\[ \\var{expr} \\]

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-($n`? * $v^2) + `+-($n`? * $v)`? + `+-$n`?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "313, Difference of squares", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Difference of squares", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "skill: 313, Difference of squares"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"4y^2-9\",\"(2y+3)(2y-3)\"],\n [\"9v^2-1\",\"(3v-1)(3v+1)\"],\n [\"4b^2-9\",\"(2b+3)(2b-3)\"],\n [\"9d^2-4\",\"(3d+2)(3d-2)\"],\n [\"25-f^2\",\"(5-f)(5+f)\"]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Factorise the following expression

\n

\\[ \\var{expr} \\]

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "(`+-$n`?*`+-$v + `+-$n`?)`* * $z", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "314, Simultaneous Equations", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simultaneous Equations", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "skill: 314, Simultaneous Equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [2,3,12,3,4,17],\n [2,2,4,4,3,5],\n [3,2,2,2,5,-6],\n [4,2,-10,2,5,-1],\n [3,2,1,2,3,4]\n]", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "group[4]", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "group[5]", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "(y2*c1-y1*c2)/(y2*x1-y1*x2)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "(x2*c1-x1*c2)/(x2*y1-x1*y2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "x1", "y1", "c1", "x2", "y2", "c2", "x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve the simultaneous equations

\n

\\begin{align}
\\simplify{ {x1}x + {y1}y} &=\\var{c1} \\\\
\\simplify{ {x2}x + {y2}y} &= \\var{c2}
\\end{align}

\n

Enter the values for $x$ and $y$:

\n

$x = $ [[0]]

\n

$y = $ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "$x$", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x", "maxValue": "x", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "$y$", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "y", "maxValue": "y", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "315, Unusual linear equation", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Unusual Linear Equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "leads to: 412, Difficult linear equation", "skill: 315, Unusual linear equation"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"3/y=5/(y-1)\",-1.5],\n [\"2/(y+2)=4/(y+3)\",-1],\n [\"2/(1-y)=3/(1+y)\",0.2],\n [\"2/(y+4)=-1/(y+1)\",-2],\n [\"4/(y-3)=1/(y+3)\",-5]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve $\\var{expr}$

\n

Enter the value of $y$.

", "minValue": "y", "maxValue": "y", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "316, Use of quadratic formula", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Formula for Quadratic Equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "leads to: 411, Solutions of a quadratic", "skill: 316, Use of quadratic formula"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [-6,4],\n [-8,5],\n [-4,-2],\n [4,-1],\n [6,2]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "-a/2", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "(a^2-4b)/4", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If we solve the quadratic equation

\n

\\[ \\simplify{ x^2 + {a}x + {b} = 0 } \\]

\n

we obtain two solutions in the form $x=\\var{c} \\pm \\sqrt{n}$.

\n

Enter the value of $n$.

", "minValue": "d", "maxValue": "d", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "317, Complex numbers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Complex numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "leads to: 408, Multiplication of complex numbers", "skill: 317, Complex numbers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [3+2i,4-3i],\n [2-4i,5-5i],\n [1-7i,2-4i],\n [3+4i,2-5i],\n [2-3i,3-2i]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify $(\\var{a}) - (\\var{b})$.

", "answer": "{a-b}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "`+-$n`? + `+-$n*i`?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "404, L.c.d. of an algebraic fraction", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Lowest Common Denominator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "skill: 404, L.c.d. of an algebraic fraction"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"3/(x*(x+1)) + 2/(x+1)^2\",\"x*(x+1)^2\"],\n [\"4/(x-2)^3 + 1/(x*(x-2))\",\"x*(x-2)^3\"],\n [\"1/(x*(x+1)^2) + 3/(x^2(x+1))\",\"x^2(x+1)^2\"],\n [\"2/(x^3(x-2))+3/(x-2)^2\",\"x^3(x-2)^2\"],\n [\"2/(x*(x-3)^2)+4/(x-3)^3\",\"x*(x-3)^3\"]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

When we wish to add these fractions, we put them over a lowest common denominator.

\n

\\[ \\var{expr} \\]

\n

Enter the lowest common denominator (in factorised form):

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "405, Identification of common errors", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Common Errors", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "skill: 405, Identification of common errors"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\n [\n \"(x-1)^2=x^2+1\",\n \"1/(x^2-x)=1/x^2-1/x\",\n \"(x+1/x)^2=2+x^2+1/x^2\",\n \"x^2+2x-8=(x-4)(x+2)\",\n \"(-3x)^2=-9x^2\"\n ],\n [0,0,2,0,0]\n ],\n [\n [\n \"(x^(3/2)-2x)/sqrt(x) = x-2sqrt(x)\",\n \"x^2+6x+1=(x+3)^2+8\",\n \"ln(x+x^2)=ln(x)+ln(x^2)\",\n \"(x-2/x)^2=x^2-4-4/x^2\",\n \"2x^2-x-6=(2x+3)(x-2)\"\n ],\n [1,0,0,0,1]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "map(\"$\"+latex(expression(x))+\"$\",x,pair[0])", "description": "", "templateType": "anything", "can_override": false}, "choice_marks": {"name": "choice_marks", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "choices", "choice_marks"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following are correct?

", "minMarks": 0, "maxMarks": "1", "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "1", "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": "choices", "matrix": "choice_marks"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "406, Solve quad. by comp. the square", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Solution of quadratic by c.t.s.", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "skill: 406, Solve quad. by comp. the square"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"p\",-4,-21],\n [\"z\",-6,-27],\n [\"y\",-4,-12],\n [\"w\",-8,7],\n [\"m\",-6,-7]\n]", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "name(group[0])", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "sqrt((c1/2)^2-c2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "x", "c1", "c2", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If we solve the equation $\\simplify{{x}^2+{c1}{x}+{c2}=0}$ by completing the square, we get an answer in the form $(\\var{x}-a) = \\pm b$.

\n

Enter the number $b$.

", "minValue": "b", "maxValue": "b", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "407, Quadratics - completing the square", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Completing the square", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "leads to: 406, Solve quad. by comp. the square", "skill: 407, Quadratics - completing the square"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [6,13],\n [-4,9],\n [-6,10],\n [8,13],\n [-8,11]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Put the expression $\\simplify{ x^2 + {b}x + {c}}$ into the form $(\\ldots)^2 + \\text{number}$ by completing the square.

", "answer": "(x+{b/2})^2+{c-b^2/4}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "(`+-$n`? * $v + `+-$n)^2 + `+-$n", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "408, Multiplication of complex numbers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Multiplying complex numbers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "skill: 408, Multiplication of complex numbers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [2+3i,-1-4i],\n [3-2i,-2+5i],\n [4+2i,-3-i],\n [5-i,3+4i],\n [2+6i,1-2i]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the product of complex numbers: $\\simplify[]{ {a}*{b} }$

", "answer": "{a*b}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "`+-$n`? + (`+-$n*i)`?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "410, Substituting into a formula", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Substituting into a formula", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra methods", "skill: 410, Substituting into a formula"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"z^2-2z\",\"2z+3\",\"4z^2+8z+3\"],\n [\"z-2z^2\",\"3z-1\",\"15z-18z^2-3\"],\n [\"3z^2-z\",\"1-2z\",\"12z^2-10z+2\"],\n [\"z^2-3z\",\"2-3z\",\"9z^2-3z-2\"],\n [\"2z^2-4z\",\"2+3z\",\"18z^2+12z\"]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "expression(group[0])", "description": "", "templateType": "anything"}, "val": {"name": "val", "group": "Ungrouped variables", "definition": "expression(group[1])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(group[2])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "f", "val", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $f(z) = \\var{f}$, what is $f(\\var{val})$?

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "411, Solutions of a quadratic", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Solutions to a quadratic equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "leads to: 409, Divide by zero (possible solution)", "skill: 411, Solutions of a quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [3,4],\n [6,9],\n [2,-5],\n [-3,5],\n [-8,16]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}, "discriminant": {"name": "discriminant", "group": "Ungrouped variables", "definition": "b^2-4c", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "switch(\n discriminant<0,0,\n discriminant>0,2,\n 1\n)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "b", "c", "discriminant", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

How many real solutions are there to the equation $\\simplify{x^2+{b}x+{c}}=0$?

", "minValue": "n", "maxValue": "n", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "412, Difficult linear equation", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Difficult Linear Equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: equations", "skill: 412, Difficult linear equation"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"(2T-1)/(1-3T)\",\"(a+1)/(2+3a)\"],\n [\"(1-4T)/(2+4T)\",\"(1-2a)/(4a+4)\"],\n [\"(3T+2)/(3T-2)\",\"(2+2a)/(3a-3)\"],\n [\"(2T-1)/(T-2)\",\"(2a-1)/(a-2)\"],\n [\"(6T+5)/(5-6T)\",\"(5a-5)/(6a+6)\"]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve the following equation for $T$ in terms of the constant $a$:

\n

(i.e. make $T$ the subject of the formula):

\n

\\[ a = \\var{expr} \\]

\n

Enter your expression for $T$.

", "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": true, "answer": "T={answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "T=?;expr", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": [{"name": "t", "value": ""}]}], "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "341, Differentiation of powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Differentiate powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "leads to: 342, Finding Max/Min of a quadratic", "leads to: 441, Product rule", "leads to: 442, Integration of powers", "skill: 341, Differentiation of powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"x\",3],\n [\"y\",4],\n [\"z\",5],\n [\"t\",6],\n [\"s\",7]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "name(pair[0])", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "x", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Differentiate $\\var{x}^\\var{n}$ with respect to $\\var{x}$.

", "answer": "{n}*{x}^{n-1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "342, Finding Max/Min of a quadratic", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Max/Min of quadratics", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "skill: 342, Finding Max/Min of a quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"3x+x^2\",-1.5],\n [\"2x^2-x\",0.25],\n [\"5x^2-2x\",0.2],\n [\"-3x+3x^2\",0.5],\n [\"-4x+x^2\",2]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "x"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What value of $x$ gives the minimum of the function $f(x) = \\var{expr}$?

", "minValue": "x", "maxValue": "x", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "343, Geometric Progression", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Geometric progression", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "skill: 343, Geometric Progression"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [3,-2],\n [-1,3],\n [2,-3],\n [4,-2],\n [-3,2]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "r"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A Geometric Progression has first term $\\var{a}$ and ratio $\\var{r}$.

\n

What is the 4th term?

", "minValue": "a*r^3", "maxValue": "a*r^3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "441, Product rule", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "skill: 441, Product rule"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"x*e^x\",\"x*e^x+e^x\"],\n [\"x*sin(x)\",\"x*cos(x)+sin(x)\"],\n [\"x*cos(x)\",\"cos(x)-x*sin(x)\"],\n [\"x^2*sin(x)\",\"2x*sin(x)+x^2*cos(x)\"],\n [\"x^2*e^x\",\"2x*e^x+x^2*e^x\"]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(pair[0])", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(pair[1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "expr", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Differentiate $\\var{expr}$ with respect to $x$.

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "442, Integration of powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Integrate powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: algebra+calculus", "skill: 442, Integration of powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [2,3],\n [6,2],\n [10,4],\n [6,3],\n [9,2]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\frac{\\mathrm{d}y}{\\mathrm{d}t} = \\simplify{ {a}t^{b} }$ find $y$, given $y=0$ when $t=0$.

\n

Enter $y$.

", "answer": "{a}/{(b+1)}*t^{b+1}", "answerSimplification": "all,fractionnumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "t", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "151, Coordinates", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Coordinates", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: graphs", "leads to: 251, Gradient of a straight line", "skill: 151, Coordinates"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [-1,2],\n [3,-1],\n [2,-1],\n [-3,-2],\n [-2,3]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "x", "y"], "variable_groups": [], "functions": {"graph": {"parameters": [["x", "number"], ["y", "number"]], "type": "html", "language": "javascript", "definition": "// First, make the JSXGraph board.\n// The function provided by the JSXGraph extension wraps the board up in\n// a div tag so that it's easier to embed in the page.\nvar div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox: [-5,5,5,-5],\n axis: true,\n showNavigation: false,\n grid: true\n });\n\n// div.board is the object created by JSXGraph, which you use to\n// manipulate elements\nvar board = div.board;\n\nboard.create('point',[x,y],{fixed:true, name:''});\nboard.removeObject(board.infobox);\n\n// Then do whatever you want with the board....\n\n// and return the container div\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter the $x$ and $y$ coordinates of the point shown:

\n

{graph(x,y)}

\n

( [[0]] , [[1]] )

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "First component", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x", "maxValue": "x", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Second component", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "y", "maxValue": "y", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "251, Gradient of a straight line", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Gradient of straight line", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: graphs", "leads to: 351, Equation of a straight line", "skill: 251, Gradient of a straight line"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [[1,2],[3,8]],\n [[2,0],[6,2]],\n [[-1,-2],[1,2]],\n [[-1,2],[2,-4]],\n [[2,3],[6,1]]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(pair[0])", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(pair[1])", "description": "", "templateType": "anything"}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "(b[1]-a[1])/(b[0]-a[0])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b", "g"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the gradient of the straight line joing the points $\\var[rowvector]{a}$ and $\\var[rowvector]{b}$?

", "minValue": "g", "maxValue": "g", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "351, Equation of a straight line", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Equation of a straight line", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: graphs", "leads to: 451, Recognise formula of quad. graph", "leads to: 452, Recognise formula of recip. graph", "skill: 351, Equation of a straight line"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [[0,2],[3,8]],\n [[2,0],[5,9]],\n [[1,3],[3,11]],\n [[-1,5],[2,-1]],\n [[2,-7],[3,-10]]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(pair[0])", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(pair[1])", "description": "", "templateType": "anything"}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "(b[1]-a[1])/(b[0]-a[0])", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "a[1]-g*a[0]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b", "g", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The equation (in $x$ and $y$) of the straight line joining the points $\\var[rowvector]{a}$ and $\\var[rowvector]{b}$ is $y = ?$

\n

Enter the right-hand side of the equation.

", "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": true, "answer": "y={g}x+{c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "y=?;expr", "partialCredit": 0, "message": "", "nameToCompare": "expr"}, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "answer": "{g}x+{c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "451, Recognise formula of quad. graph", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Quadratic Graphs", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: graphs", "skill: 451, Recognise formula of quad. graph"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\n [\"$x^2-x$\",\"$x^2-1$\",\"$(x-1)^2$\",\"$x^2+x$\",\"$1-x^2$\"],\n [1,0,0,0,0]\n ],\n [\n [\"$(x-3)^2$\",\"$x^2-3x$\",\"$x^2+2$\",\"$4-x^2$\",\"$x^2+2x$\"],\n [0,1,0,0,0]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything", "can_override": false}, "choice_marks": {"name": "choice_marks", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "choices", "choice_marks"], "variable_groups": [], "functions": {"graph": {"parameters": [], "type": "html", "language": "javascript", "definition": "// First, make the JSXGraph board.\n// The function provided by the JSXGraph extension wraps the board up in\n// a div tag so that it's easier to embed in the page.\nvar div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox: [-2,3,3,-1],\n axis: false,\n showNavigation: false,\n grid: false\n });\n\n// div.board is the object created by JSXGraph, which you use to\n// manipulate elements\nvar board = div.board;\n\nboard.create('axis',[[0,0],[1,0]],{ticks:{visible:false}})\nboard.create('axis',[[0,0],[0,1]],{ticks:{visible:false}});\nboard.create('functiongraph',[function(x){return x*x-x}],{fixed:true, name:''});\nboard.removeObject(board.infobox);\n\n// Then do whatever you want with the board....\n\n// and return the container div\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Choose the function whose graph looks like this.

\n

{graph()}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": "choices", "matrix": "choice_marks"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "452, Recognise formula of recip. graph", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Reciprocal Graphs", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: graphs", "skill: 452, Recognise formula of recip. graph"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\n [\"1/x\",\"1/x-1\",\"-(1/-x)\",\"-1/x\",\"1-1/x\"],\n [0,0,0,1,0]\n ],\n [\n [\"2/x\",\"-(2/-x)\",\"2/x-1\",\"2/x-2\",\"-2/x\"],\n [0,0,0,0,1]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "map(\"$\"+latex(expression(x))+\"$\",x,pair[0])", "description": "", "templateType": "anything", "can_override": false}, "choice_marks": {"name": "choice_marks", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "choices", "choice_marks"], "variable_groups": [], "functions": {"graph": {"parameters": [], "type": "html", "language": "javascript", "definition": "// First, make the JSXGraph board.\n// The function provided by the JSXGraph extension wraps the board up in\n// a div tag so that it's easier to embed in the page.\nvar div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox: [-3,3,3,-3],\n axis: false,\n showNavigation: false,\n grid: false\n });\n\n// div.board is the object created by JSXGraph, which you use to\n// manipulate elements\nvar board = div.board;\n\nboard.create('axis',[[0,0],[1,0]],{ticks:{visible:false}})\nboard.create('axis',[[0,0],[0,1]],{ticks:{visible:false}});\nboard.create('functiongraph',[function(x){return x-1/x}],{fixed:true, name:''});\nboard.removeObject(board.infobox);\n\n// Then do whatever you want with the board....\n\n// and return the container div\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Choose the function whose graph looks like this.

\n

{graph()}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": "choices", "matrix": "choice_marks"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "221, Pythagoras", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Pythagoras Theorem", "extensions": ["eukleides"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "leads to: 321, Equation of a circle", "leads to: 322, Sin and Cos formula", "skill: 221, Pythagoras"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"graph": {"name": "graph", "group": "Ungrouped variables", "definition": "eukleides(\"Right-angled triangle\",\n let(\n scale,1/2,\n pa,point(scale*b,0),\n pb,point(scale*b,scale*a),\n pc,point(0,0),\n [\n pa..pb..pc,\n pb..pa label(a),\n pc..pb label(b),\n pa..pc label(\"\u221an\")\n ]\n ),\n [\"a\":a,\"b\":b]\n)", "description": "", "templateType": "anything"}, "pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [4,10],\n [3,6],\n [3,8],\n [3,7],\n [2,5]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}, "cs": {"name": "cs", "group": "Ungrouped variables", "definition": "b*b-a*a", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b", "cs", "graph"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter the number $n$ (under the square root):

\n

{max_width(20,graph)}

", "minValue": "cs", "maxValue": "cs", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "222, Definition of sin and cos", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Sine and Cosine", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "leads to: 322, Sin and Cos formula", "leads to: 422, Sin and Cos as functions", "skill: 222, Definition of sin and cos"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"graph": {"name": "graph", "group": "Ungrouped variables", "definition": "eukleides(\"Right-angled triangle\",\n let(\n scale,1,\n pa,point(4,0),\n pb,point(4,3),\n pc,point(0,0),\n [\n pa..pb..pc,\n pb..pa label(b),\n pc..pb label(c),\n pa..pc label(a),\n angle(pa,pc,pb) label(\"\u03b8\")\n ]\n ),\n [\"a\":a,\"b\":b,\"c\":c]\n)", "description": "", "templateType": "anything", "can_override": false}, "groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"sine\",12,5],\n [\"cosine\",12,5],\n [\"sine\",24,7],\n [\"cosine\",24,7],\n [\"sine\",8,6]\n]", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "fn": {"name": "fn", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "round(sqrt(a^2+b^2))", "description": "", "templateType": "anything", "can_override": false}, "theta": {"name": "theta", "group": "Ungrouped variables", "definition": "if(\n fn=\"cosine\",\n a/c,\n b/c\n)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "fn", "a", "b", "c", "theta", "graph"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter the {fn} of the angle $\\theta$

\n

{max_width(20,graph)}

", "minValue": "theta", "maxValue": "theta", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "223, Percentages", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Percentages", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "leads to: 324, Percentages (advanced)", "skill: 223, Percentages"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [20,60],\n [40,20],\n [60,30],\n [30,70],\n [70,40]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is {a}% of {b}?

", "minValue": "a*b/100", "maxValue": "a*b/100", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "321, Equation of a circle", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Equation of a circle", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "leads to: 421, Deduce radius of circle", "skill: 321, Equation of a circle"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [3,1,0],\n [4,0,3],\n [5,2,0],\n [4,0,1],\n [3,2,0]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "r", "x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A circle with radius $\\var{r}$ with centre at $x=\\var{x}$, $y=\\var{y}$, has equation

\n

\\[ ? = \\var{r^2} \\]

\n

Enter the left-hand side of the equation.

", "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": true, "answer": "(x-{x})^2+(y-{y})^2={r^2}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "?;expr=$n", "partialCredit": 0, "message": "", "nameToCompare": "expr"}, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "answer": "(x-{x})^2+(y-{y})^2", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "322, Sin and Cos formula", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Sine/Cosine Relationships", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "skill: 322, Sin and Cos formula"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following statements are true for all values of $x$?

", "minMarks": 0, "maxMarks": "1", "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": ["$\\sin^2(x) + \\cos^2(x) = 1$", "$\\sin(2x) + \\cos(2x) = 1$", "$\\sin(x) + \\cos(x) = 1$", "$(\\sin(x))^2 + (\\cos(x))^2=1$", "$\\sin(x^2) + \\cos(x^2)=1$"], "matrix": ["1", 0, 0, "1", 0], "distractors": ["", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "323, Definition of radians", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Radians", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "skill: 323, Definition of radians"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [5,6],\n [2,3],\n [1,3],\n [3,4],\n [5,4]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}, "degrees": {"name": "degrees", "group": "Ungrouped variables", "definition": "180*a/b", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "a", "b", "degrees"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Express the angle $\\simplify{ {a}pi/{b} }$ radians in degrees.

", "minValue": "degrees", "maxValue": "degrees", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "324, Percentages (advanced)", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Percentages (advanced)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "skill: 324, Percentages (advanced)"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"car\",10000,\"decreases\",10,\"increases\",10],\n [\"boat\",1000,\"increases\",10,\"decreases\",10],\n [\"car\",20000,\"decreases\",20,\"increases\",20],\n [\"boat\",2000,\"increases\",20,\"decreases\",20],\n [\"car\",10000,\"decreases\",20,\"increases\",10]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "vehicle": {"name": "vehicle", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "price": {"name": "price", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "direction1": {"name": "direction1", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "change1": {"name": "change1", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}, "direction2": {"name": "direction2", "group": "Ungrouped variables", "definition": "group[4]", "description": "", "templateType": "anything"}, "change2": {"name": "change2", "group": "Ungrouped variables", "definition": "group[5]", "description": "", "templateType": "anything"}, "finalprice": {"name": "finalprice", "group": "Ungrouped variables", "definition": "price \n* if(direction1=\"decreases\",100-change1,100+change1)/100\n* if(direction2=\"decreases\",100-change2,100+change2)/100", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "vehicle", "price", "direction1", "change1", "direction2", "change2", "finalprice"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "stripped_studentAnswer:\n match_regex(\"\u00a3?(.*)\",studentAnswer)[1]\n\nstudentNumber (The student's answer, parsed as a number):\n if(settings[\"allowFractions\"],\n parsedecimal_or_fraction(stripped_studentAnswer,settings[\"notationStyles\"])\n ,\n parsedecimal(stripped_studentAnswer,settings[\"notationStyles\"])\n )", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The value of a {vehicle} is initially {currency(price,\"£\",\".\")}. If the value {direction1} by {change1}%, then {direction2} by {change2}%, what is the final value?

", "minValue": "finalprice", "maxValue": "finalprice", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "421, Deduce radius of circle", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Radius of a circle", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "skill: 421, Deduce radius of circle"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [2,0,3],\n [0,3,2],\n [3,0,4],\n [0,2,5],\n [1,0,3]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "xc": {"name": "xc", "group": "Ungrouped variables", "definition": "-2x", "description": "", "templateType": "anything"}, "yc": {"name": "yc", "group": "Ungrouped variables", "definition": "-2y", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "x^2+y^2-r^2", "description": "", "templateType": "anything"}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "x", "y", "r", "xc", "yc", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the radius of a circle with equation $\\simplify{ x^2 + {xc}x + y^2 + {yc}y + {c}}=0$?

", "minValue": "r", "maxValue": "r", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "422, Sin and Cos as functions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Sine and Cosine Functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: miscellaneous", "skill: 422, Sin and Cos as functions"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\"sin\",3],\n [\"cos\",4],\n [\"sin\",5],\n [\"cos\",6],\n [\"cos\",3]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "fn": {"name": "fn", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "scale": {"name": "scale", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}, "expr": {"name": "expr", "group": "Ungrouped variables", "definition": "expression(\"sin({scale}x)\")", "description": "", "templateType": "anything"}, "period": {"name": "period", "group": "Ungrouped variables", "definition": "expression(\"2*pi/{scale}\")", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "fn", "scale", "expr", "period"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the period of the function $\\var{expr}$?

\n

($\\pi$ should appear in your answer)

", "answer": "{period}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "161, Area of a triangle", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Area of Triangle", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "leads to: 261, Area of trapezium", "leads to: 262, Area and circumference of a circle", "skill: 161, Area of a triangle"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"drawingA": {"name": "drawingA", "group": "Ungrouped variables", "definition": "let(\n p1,point(-3,-2),\n p2,point(2,-2),\n p3,point(3,2),\n maxx,max(map(x(p),p,[p1,p2,p3])),\n minx,min(map(x(p),p,[p1,p2,p3])),\n maxy,max(map(y(p),p,[p1,p2,p3])),\n miny,min(map(y(p),p,[p1,p2,p3])),\n base,x(p2)-x(p1),\n height,maxy-miny,\n eukleides(\"A triangle with base {base} and height {height}\",\n [\n p1..p2..p3,\n point(maxx+0.5,maxy)..point(maxx+0.5,miny) arrows label(height),\n (p2-vector(0,0.5))..(p1-vector(0,0.5)) arrows label(base)\n ]\n )\n)", "description": "", "templateType": "anything", "can_override": false}, "groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [drawingA,10],\n [drawingB,5],\n [drawingC,6]\n]", "description": "", "templateType": "anything", "can_override": false}, "drawingB": {"name": "drawingB", "group": "Ungrouped variables", "definition": "let(\n p1,point(-2,-2),\n p2,point(3,0),\n p3,point(3,2),\n height,x(p2)-x(p1),\n base,y(p3)-y(p2),\n eukleides(\"A triangle with base {base} and height {height}\",\n [\n p1..p2..p3,\n point(3.5,2)..point(3.5,0) arrows label(height),\n point(3,-2.5)..point(-2,-2.5) arrows label(base)\n ]\n )\n)", "description": "", "templateType": "anything", "can_override": false}, "drawingC": {"name": "drawingC", "group": "Ungrouped variables", "definition": "let(\n p1,point(-2,-2),\n p2,point(1,-2),\n p3,point(3,2),\n height,y(p3)-y(p1),\n base,x(p2)-x(p1),\n eukleides(\"A triangle with base {base} and height {height}\",\n [\n p1..p2..p3,\n point(3.5,2)..point(3.5,-2) arrows label(height),\n point(1,-2.5)..point(-2,-2.5) arrows label(base)\n ]\n )\n)", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "drawing": {"name": "drawing", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything", "can_override": false}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["drawingA", "drawingB", "drawingC", "groups", "group", "drawing", "area"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the area of the triangle shown?

\n

{max_width(30,drawing)}

", "minValue": "area", "maxValue": "area", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "261, Area of trapezium", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Area of Trapezium", "extensions": ["eukleides"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "leads to: 363, Area of irregular shapes", "skill: 261, Area of trapezium"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"drawing": {"name": "drawing", "group": "Ungrouped variables", "definition": "let(\np1,point(-2,0),\np2,point(3,0),\np3,point(1,2),\np4,point(-1,2),\neukleides(\"A trapezium with height {height} and parallel sides of length {l1} and {l2}\",\n[\n p1..p2..p3..p4,\n point(-2.3,0)..point(-2.3,2) label(height) arrows,\n p2..p1 label(l1),\n p4..p3 label(l2)\n],\n [\"height\":height,\"l1\":l1,\"l2\":l2]\n))", "description": "", "templateType": "anything"}, "groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [2,5,2],\n [3,7,3],\n [4,9,4],\n [3,8,4],\n [5,13,4]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "l1": {"name": "l1", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "l2": {"name": "l2", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "height": {"name": "height", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "height*(l1+l2)/2", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["drawing", "groups", "group", "l1", "l2", "height", "area"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the area of the trapezium shown?

\n

{max_width(30,drawing)}

", "minValue": "area", "maxValue": "area", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "262, Area and circumference of a circle", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Area and Circumference of a circle", "extensions": ["eukleides"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "leads to: 361, Volume of cylinder", "skill: 262, Area and circumference of a circle"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\"area\",\"diameter\",name(\"d\"),\"(pi*d^2)/4\",drawingA],\n [\"circumference\",\"radius\",name(\"r\"),\"2pi*r\",drawingB],\n [\"area\",\"diameter\",4,\"4pi\",drawingC],\n [\"circumference\",\"radius\",3,\"6pi\",drawingD],\n [\"area\",\"diameter\",6,\"9pi\",drawingE]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "measure1": {"name": "measure1", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "measure2": {"name": "measure2", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "expression(group[3])", "description": "", "templateType": "anything"}, "drawingA": {"name": "drawingA", "group": "Ungrouped variables", "definition": "eukleides(\"A circle with diameter d\",\n[\n circle(origin,2),\n point(0,2)..point(0,-2) arrows label(\"d\") italic\n])", "description": "", "templateType": "anything"}, "drawingB": {"name": "drawingB", "group": "Ungrouped variables", "definition": "eukleides(\"A circle with radius r\",\n[\n circle(origin,2),\n point(0,0)..point(0,-2) arrow label(\"r\") italic\n])", "description": "", "templateType": "anything"}, "drawingC": {"name": "drawingC", "group": "Ungrouped variables", "definition": "eukleides(\"A circle with diameter 4\",\n[\n circle(origin,2),\n point(0,2)..point(0,-2) arrows label(\"4\")\n])", "description": "", "templateType": "anything"}, "drawingD": {"name": "drawingD", "group": "Ungrouped variables", "definition": "eukleides(\"A circle with radius 3\",\n[\n circle(origin,2),\n point(0,0)..point(0,-2) arrow label(\"3\")\n])", "description": "", "templateType": "anything"}, "drawingE": {"name": "drawingE", "group": "Ungrouped variables", "definition": "eukleides(\"A circle with diameter 6\",\n[\n circle(origin,2),\n point(0,2)..point(0,-2) arrows label(\"6\")\n])", "description": "", "templateType": "anything"}, "drawing": {"name": "drawing", "group": "Ungrouped variables", "definition": "group[4]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["drawingA", "drawingB", "drawingC", "drawingD", "drawingE", "groups", "group", "measure1", "measure2", "v", "answer", "drawing"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the {measure1} of a circle with {measure2} $\\var{v}$?

\n

{max_width(20,drawing)}

", "answer": "{answer}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "263, Similar triangles", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Similar triangles", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "leads to: 362, Area/Length relationship", "skill: 263, Similar triangles"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"drawingA": {"name": "drawingA", "group": "Ungrouped variables", "definition": "eukleides(\"Two similar triangles, with sides 4,7,a and 12,b,27\",\nlet(\np1,point(2,2),\np2,point(5,2),\np3,point(7,7),\np4,point(13,2),\np5,point(22,2),\np6,point(28,17),\ns1,label(4),\ns2,label(7),\ns3,label(\"a\") italic,\ns4,label(12),\ns5,label(\"b\") italic,\ns6,label(27),\nstroke,size(4),\n[\n p1..p2..p3 stroke, p4..p5..p6 stroke,\np2..p1 s1 stroke,\np3..p2 s2 stroke,\np1..p3 s3 stroke,\np5..p4 s4 stroke,\np6..p5 s5 stroke,\np4..p6 s6 stroke\n]\n))", "description": "", "templateType": "anything", "can_override": false}, "groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [drawingA,9,21],\n [drawingB,4,24],\n [drawingC,11,24],\n [drawingD,5,21],\n [drawingE,7,25]\n]", "description": "", "templateType": "anything", "can_override": false}, "drawingB": {"name": "drawingB", "group": "Ungrouped variables", "definition": "eukleides(\"Two similar triangles, with sides a,5,6 and 16,20,b\",\nlet(\np1,point(2,2),\np2,point(5,2),\np3,point(7,7),\np4,point(13,2),\np5,point(22,2),\np6,point(28,17),\ns1,label(\"a\") italic,\ns2,label(5),\ns3,label(6),\ns4,label(16),\ns5,label(20),\ns6,label(\"b\") italic,\nstroke,size(4),\n[\n p1..p2..p3 stroke, p4..p5..p6 stroke,\np2..p1 s1 stroke,\np3..p2 s2 stroke,\np1..p3 s3 stroke,\np5..p4 s4 stroke,\np6..p5 s5 stroke,\np4..p6 s6 stroke\n]\n))", "description": "", "templateType": "anything", "can_override": false}, "drawingC": {"name": "drawingC", "group": "Ungrouped variables", "definition": "eukleides(\"Two similar triangles, with sides 5,8,a and 15,b,33\",\nlet(\np1,point(2,2),\np2,point(5,2),\np3,point(7,7),\np4,point(13,2),\np5,point(22,2),\np6,point(28,17),\ns1,label(5),\ns2,label(8),\ns3,label(\"a\") italic,\ns4,label(15),\ns5,label(\"b\") italic,\ns6,label(33),\nstroke,size(4),\n[\n p1..p2..p3 stroke, p4..p5..p6 stroke,\np2..p1 s1 stroke,\np3..p2 s2 stroke,\np1..p3 s3 stroke,\np5..p4 s4 stroke,\np6..p5 s5 stroke,\np4..p6 s6 stroke\n]\n))", "description": "", "templateType": "anything", "can_override": false}, "drawingD": {"name": "drawingD", "group": "Ungrouped variables", "definition": "eukleides(\"Two similar triangles, with sides a,6,7 and 15,18,b\",\nlet(\np1,point(2,2),\np2,point(5,2),\np3,point(7,7),\np4,point(13,2),\np5,point(22,2),\np6,point(28,17),\ns1,label(\"a\") italic,\ns2,label(6),\ns3,label(7),\ns4,label(15),\ns5,label(18),\ns6,label(\"b\") italic,\nstroke,size(4),\n[\n p1..p2..p3 stroke, p4..p5..p6 stroke,\np2..p1 s1 stroke,\np3..p2 s2 stroke,\np1..p3 s3 stroke,\np5..p4 s4 stroke,\np6..p5 s5 stroke,\np4..p6 s6 stroke\n]\n))", "description": "", "templateType": "anything", "can_override": false}, "drawingE": {"name": "drawingE", "group": "Ungrouped variables", "definition": "eukleides(\"Two similar triangles, with sides 3,5,a and 15,b,35\",\nlet(\np1,point(2,2),\np2,point(5,2),\np3,point(7,7),\np4,point(13,2),\np5,point(22,2),\np6,point(28,17),\ns1,label(3),\ns2,label(5),\ns3,label(\"a\") italic,\ns4,label(15),\ns5,label(\"b\") italic,\ns6,label(35),\nstroke,size(4),\n[\n p1..p2..p3 stroke, p4..p5..p6 stroke,\np2..p1 s1 stroke,\np3..p2 s2 stroke,\np1..p3 s3 stroke,\np5..p4 s4 stroke,\np6..p5 s5 stroke,\np4..p6 s6 stroke\n]\n))", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "drawing": {"name": "drawing", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["drawingA", "drawingB", "drawingC", "drawingD", "drawingE", "groups", "group", "drawing", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We have two similar triangles as shown:

\n

{max_width(30,drawing)}

\n

Enter the lengths of sides $a$ and $b$:

\n

$a = $ [[0]]

\n

$b = $ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "$a$", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a", "maxValue": "a", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "$b$", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b", "maxValue": "b", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "361, Volume of cylinder", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Volume of cylinder", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "leads to: 461, Surface area of a cylinder", "skill: 361, Volume of cylinder"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [3,4],\n [2,3],\n [3,5],\n [5,4],\n [4,5]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "r", "h"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the volume of a cylinder with radius {r} and height {h}?

", "answer": "pi*{r^2}*{h}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "362, Area/Length relationship", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Area/Length relationship", "extensions": ["eukleides"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "leads to: 462, Volume Area Length relationships", "skill: 362, Area/Length relationship"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"rs": {"name": "rs", "group": "Ungrouped variables", "definition": "[3,4,5,2,0.5]", "description": "", "templateType": "anything"}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "random(rs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "r^2", "description": "", "templateType": "anything"}, "drawing": {"name": "drawing", "group": "Ungrouped variables", "definition": "eukleides(\"Two similar triangles\",\n[\n point(2,2)..point(5,2)..point(7,7) filled color1,\n point(13,2)..point(22,2)..point(28,17) filled color1\n])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["rs", "r", "a", "drawing"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We have two similar triangles as shown:

\n

{max_width(30,drawing)}

\n

The ratio of the lengths of their sides is $\\var{r}:1$.

\n

The ratio of their areas is $a:1$. Enter the number $a$.

", "minValue": "a", "maxValue": "a", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "363, Area of irregular shapes", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Area of irregular shapes", "extensions": ["eukleides"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "skill: 363, Area of irregular shapes"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"drawing": {"name": "drawing", "group": "Ungrouped variables", "definition": "eukleides(\"A rectangle with a square of side length x removed from the top left corner. The two shortened sides have lengths {a} and {b}. The long sides are not given.\",\nlet(\npoly,point(0,0)..point(3,0)..point(3,2)..point(1,2)..point(1,1)..point(0,1),\nscale,size(0.5),\n[\npoly,\npoly filled color1,\npoint(-0.1,0)..point(-0.1,1) label(a) arrows scale,\npoint(1,2.1)..point(3,2.1) label(b) arrows scale,\npoint(0,1.1)..point(1,1.1) label(\"x\") italic arrows scale,\npoint(1.1,2)..point(1.1,1) label(\"x\") italic arrows scale\n]\n),[\"a\":a,\"b\":b])", "description": "", "templateType": "anything"}, "pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [1,2],\n [2,4],\n [3,6],\n [3,5],\n [2,5]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["drawing", "pairs", "pair", "a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the area of the coloured part in terms of $x$?

\n

{max_width(30,drawing)}

", "answer": "{a+b}*x+{a*b}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "461, Surface area of a cylinder", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Surface area of cylinder", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "skill: 461, Surface area of a cylinder"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [3,4],\n [2,3],\n [3,5],\n [5,4],\n [4,5]\n]", "description": "", "templateType": "anything", "can_override": false}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "r", "h"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the surface area of a cylinder with radius {r} and height {h} (including both ends)?

", "answer": "{2r^2 + 2r*h}*pi", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "462, Volume Area Length relationships", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Volume Area Length relations", "extensions": ["eukleides", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: area+volume", "skill: 462, Volume Area Length relationships"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [\n \"doubled\",\n [\n \"the surface area is doubled\",\n \"the volume is 8 times as great\",\n \"the surface area is multiplied by 4\",\n \"the volume is multiplied by 16\",\n \"the volume is doubled\"\n ],\n [0,1,1,0,0]\n ],\n [\n \"multiplied by three\",\n [\n \"the volume is 27 times as great\",\n \"the surface area is tripled\",\n \"the volume is multiplied by 81\",\n \"the volume is tripled\",\n \"the surface area is multiplied by 9\"\n ],\n [1,0,0,0,1]\n ]\n]", "description": "", "templateType": "anything", "can_override": false}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything", "can_override": false}, "action": {"name": "action", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything", "can_override": false}, "choices": {"name": "choices", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything", "can_override": false}, "choice_marks": {"name": "choice_marks", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "action", "choices", "choice_marks"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If the dimensions of a cube are {action} which of these are true?

", "minMarks": 0, "maxMarks": "1", "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "1", "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": "choices", "matrix": "choice_marks"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "232, Mean of a set of numbers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Mean - discrete", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: statistics", "skill: 232, Mean of a set of numbers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"datas": {"name": "datas", "group": "Ungrouped variables", "definition": "[\n [2,8,3,-4,9],\n [4,-3,6,2,5],\n [7,-2,3,4,-2],\n [8,0,-4,5,-3],\n [-5,-3,-2,6,1]\n]", "description": "", "templateType": "anything"}, "data": {"name": "data", "group": "Ungrouped variables", "definition": "random(datas)", "description": "", "templateType": "anything"}, "mean": {"name": "mean", "group": "Ungrouped variables", "definition": "sum(data)/len(data)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["datas", "data", "mean"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the mean (average) of the numbers given:

\n

{table([data])}

", "minValue": "mean", "maxValue": "mean", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "231, Range of a set of numbers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Range", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: statistics", "skill: 231, Range of a set of numbers"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"datas": {"name": "datas", "group": "Ungrouped variables", "definition": "[\n [8.4,3,-5,1.5,-1,-2,8.3],\n [-1.5,-3,4.2,-7.5,4.5,1.1],\n [-2.5,-3.7,7.3,1.2,5.1,-0.8,7.1],\n [2.7,3.61,10.1,8.2,-0.3,0.6,4],\n [12.2,-4.1,3.6,3.7,-4.2,-1,11]\n]", "description": "", "templateType": "anything"}, "data": {"name": "data", "group": "Ungrouped variables", "definition": "random(datas)", "description": "", "templateType": "anything"}, "range": {"name": "range", "group": "Ungrouped variables", "definition": "max(data)-min(data)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["datas", "data", "range"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the range of the discrete data given?

\n

{table([data])}

", "minValue": "range", "maxValue": "range", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "233, Simple probability (coins)", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Probability-coins", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: statistics", "leads to: 334, Conditional probability", "skill: 233, Simple probability (coins)"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\n \"one head and one tail, in any order\",\n 0.5\n ],\n [\n \"either two heads or two tails\",\n 0.5\n ],\n [\n \"one head or two tails\",\n 0.75\n ],\n [\n \"one tail or two heads\",\n 0.75\n ],\n [\n \"at least one tail\",\n 0.75\n ]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "statement": {"name": "statement", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "statement", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A fair coin is tossed twice with equal probability of 'head' or 'tail'.

\n

What is the probability of obtaining {statement}?

", "minValue": "p", "maxValue": "p", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "234, Venn Diagrams (probability)", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Probability - Venn Diagrams", "extensions": ["eukleides"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: statistics", "leads to: 335, Venn Diagrams (conditional prob.)", "skill: 234, Venn Diagrams (probability)"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"diagram": {"name": "diagram", "group": "Ungrouped variables", "definition": "eukleides(\"A Venn diagram with {justA} in just Mathematics, {justB} in just Physics, {both} in both, and {neither} in neither\",\n[\ncircle(point(0,0),2) color1 filled opacity(0.5),\npoint(-1,2) label(\"Mathematics\",deg(180)),\ncircle(point(3,0),2) color2 filled opacity(0.5),\npoint(4,2) label(\"Physics\",deg(0)),\npoint(0,0) label(justA,deg(180)),\npoint(3,0) label(justB,deg(0)),\npoint(1.5,0) label(both,0),\npoint(6,0) label(neither)\n],\n[\"justA\":justA,\"justB\":justB,\"both\":both,\"neither\":neither]\n)", "description": "", "templateType": "anything"}, "groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [25,30,10,35],\n [20,40,25,15],\n [15,50,20,15],\n [20,35,15,30],\n [10,30,15,45]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "justA": {"name": "justA", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "justB": {"name": "justB", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "both": {"name": "both", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "neither": {"name": "neither", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "(justA+justB)/(justA+justB+both+neither)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "justA", "justB", "both", "neither", "diagram", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The percentage of students on a course with one, both or neither of A-Level Mathematics and A-Level Physics is shown by the diagram below.

\n

{max_width(30,diagram)}

\n

What is the probability that a randomly chosen student has only one of these A-Levels?

", "minValue": "p", "maxValue": "p", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "334, Conditional probability", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Conditional Probability", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: statistics", "skill: 334, Conditional probability"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[\n [\n \"If we know that they are not both girls, what is the probability that both are boys?\",\n 1/3\n ],\n [\n \"If we know that at least one is a boy, what is the probability that both are boys?\",\n 1/3\n ],\n [\n \"If we know that at least one is not a boy, what is the probability that neither is a boy?\",\n 1/3\n ],\n [\n \"If we know that at least one is a boy, what is the probability that at least one is a girl?\",\n 2/3\n ],\n [\n \"If we know that at most one is a girl, what is the probability that the two children are of opposite sex?\",\n 2/3\n ]\n]", "description": "", "templateType": "anything"}, "pair": {"name": "pair", "group": "Ungrouped variables", "definition": "random(pairs)", "description": "", "templateType": "anything"}, "statement": {"name": "statement", "group": "Ungrouped variables", "definition": "pair[0]", "description": "", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "pair[1]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["pairs", "pair", "statement", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A family has two children.

\n

{statement}

", "minValue": "p", "maxValue": "p", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "335, Venn Diagrams (conditional prob.)", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Conditional Probability - Venn Diagrams", "extensions": ["eukleides"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "tags": ["category: statistics", "skill: 335, Venn Diagrams (conditional prob.)"], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[\n [25,30,10,35],\n [20,40,25,15],\n [15,50,20,15],\n [20,35,15,30],\n [10,30,15,45]\n]", "description": "", "templateType": "anything"}, "group": {"name": "group", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "justA": {"name": "justA", "group": "Ungrouped variables", "definition": "group[0]", "description": "", "templateType": "anything"}, "justB": {"name": "justB", "group": "Ungrouped variables", "definition": "group[1]", "description": "", "templateType": "anything"}, "both": {"name": "both", "group": "Ungrouped variables", "definition": "group[2]", "description": "", "templateType": "anything"}, "neither": {"name": "neither", "group": "Ungrouped variables", "definition": "group[3]", "description": "", "templateType": "anything"}, "diagram": {"name": "diagram", "group": "Ungrouped variables", "definition": "eukleides(\"A Venn diagram with {justA} in just Mathematics, {justB} in just Physics, {both} in both, and {neither} in neither\",\n[\ncircle(point(0,0),2) color1 filled opacity(0.5),\npoint(-1,2) label(\"Mathematics\",deg(180)),\ncircle(point(3,0),2) color2 filled opacity(0.5),\npoint(4,2) label(\"Physics\",deg(0)),\npoint(0,0) label(justA,deg(180)),\npoint(3,0) label(justB,deg(0)),\npoint(1.5,0) label(both,0),\npoint(6,0) label(neither)\n],\n[\"justA\":justA,\"justB\":justB,\"both\":both,\"neither\":neither]\n)", "description": "", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "both/(both+justB)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "group", "justA", "justB", "both", "neither", "diagram", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The percentage of students on a course with one, both or neither of A-level Mathematics and A-level Physics is shown by the diagram below.

\n

{max_width(30,diagram)}

\n

If a randomly chosen student has A-level Physics, what is the probability he/she also has A-level Mathematics?

", "minValue": "p", "maxValue": "p", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "exam"}]}, {"name": "501, Decomposition of function to partial fractions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Partial Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}, {"name": "Krishna Kedia", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25454/"}], "tags": [], "metadata": {"description": "

Rewrite the expression $\\frac{mx^2+nx+k}{(x+a)(x^2+bx+c)}$ as partial fractions in the form $\\frac{A}{x+a}+\\frac{Bx+C}{x^2+bx+c}$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Rewrite the following expression as partial fractions:

\n

\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))}. \\]

\n

", "advice": "

To express \\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} \\] as partial fractions, we want to set this equal to the sum of two fractions with denominators $\\simplify{x+{a}}$ and $\\simplify{x^2+{b}x+{c}}$. Since we have a linear factor and a quadratic factor, this tells us that the form of the partial fractions will be

\n

\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\simplify{A/(x+{a}) + (B*x+C)/(x^2+{b}x+{c})},\\]

\n

where $A$, $B$, and $C$ are constants.

\n

To find the values of $A$, $B$, and $C$, we want to first multiply this equation by the denominator of the left-hand side. This gives

\n

\\[ \\simplify{{m}x^2+{n}x+{k}=A(x^2+{b}x+{c})+B*x(x+{a}) + C(x+{a})}.\\]

\n

(Note: To find $A$, $B$, and $C$, we will use a combination of choosing suitable values of $x$ to eliminate terms, and equating coefficients. It can be solved by only equating coefficients, but this is a more efficient process.)

\n

\n

To find $A$, we can eliminate $B$ and $C$ by setting $x=\\var{-a}$:

\n

\\[ \\simplify{{m*a^2-n*a+k}=A{(a^2-b*a+c)}} \\implies A=\\simplify[fractionNumbers]{{Asol}}.\\]

\n

To find $C$, we can eliminate $B$ by setting $x=0$ and substituting in the result of $A$:

\n

\\[ \\simplify{{k}={c}A+{a}C} \\implies C=\\simplify[all,fractionNumbers]{({k}-{c}A)/{a}}.\\]

\n

Hence,

\n

\\[ C = \\simplify[fractionNumbers]{{Csol}}.\\]

\n

Finally, by equating coefficients of the $x^2$-terms we can find $B$:

\n

\\[ (x^2): \\quad \\var{m} = \\simplify{A+B} \\implies B=\\var{m}-A. \\]

\n

Therefore, \\[ B=\\simplify[fractionNumbers]{{Bsol}}, \\]

\n

and

\n

{check}

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pairs[index][1]", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "if(k=1,random(-1,1)*random([1,3,4,5]),if (k=2,random(-1,1)*random([1,2,4,5]),if(k=3,random(-1,1)*random([1,2,3,5]),if(k=5,random(-1,1)*random([1,2,3,4,5,7]),random(-1,1)*random([1,2,3,4,5,7])))))", "description": "", "templateType": "anything", "can_override": false}, "Asol": {"name": "Asol", "group": "Ungrouped variables", "definition": "(m*a^2-n*a+k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Bsol": {"name": "Bsol", "group": "Ungrouped variables", "definition": "(m*c-m*b*a+n*a-k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Csol": {"name": "Csol", "group": "Ungrouped variables", "definition": "(k*(a-b)-m*a*c+n*c)/(a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(Asol=round(Asol) and Bsol=round(Bsol),'{sol1}',if(simp2=1,'{sol2}','{sol3}'))", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify{{Asol}/(x+{a})+({Bsol}x+{Csol})/(x^2+{b}x+{c})}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({m*c-m*b*a+n*a-k}x+{k*(a-b)-m*a*c+n*c})/({a^2-a*b+c}(x^2+{b}x+{c}))}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "pairs[index][0]", "description": "", "templateType": "anything", "can_override": false}, "simp1": {"name": "simp1", "group": "Ungrouped variables", "definition": "gcd(k*(a-b)-m*a*c+n*c,m*c-m*b*a+n*a-k)", "description": "", "templateType": "anything", "can_override": false}, "simp2": {"name": "simp2", "group": "Ungrouped variables", "definition": "gcd(simp1,a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "sol3": {"name": "sol3", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random([1,2,3,5,7])", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[[1,random(-1,1)*random([1,3,4,5])],[2,random(-1,1)*random([1,2,4,5])],[3,random(-1,1)*random([1,2,3,5])],[5,random(-1,1)*random([1,2,3,4,5,7])],[7,random(-1,1)*random([1,2,3,4,5,7])]]", "description": "", "templateType": "anything", "can_override": false}, "index": {"name": "index", "group": "Ungrouped variables", "definition": "random(0..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a^2-a*b+c>0 or a^2-a*b+c<0", "maxRuns": 100}, "ungrouped_variables": ["a", "pairs", "index", "b", "c", "m", "k", "n", "Asol", "Bsol", "Csol", "check", "sol1", "sol2", "sol3", "simp1", "simp2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(m*a^2-n*a+k)}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`! (((`+-$n`?*x^2+`+-$n`?*x+`+-$n)/((x+`+-$n)(x^2+`+-$n*x+`+-$n))))", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "502, Solve equation using log", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Solving equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "tags": [], "metadata": {"description": "

Solving an equation of the form $a^x=b$ using logarithms to find $x$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve for $x$:

\n

\\[ \\var{a}^x = \\var{b} \\,. \\]

", "advice": "

To solve $\\var{a}^x = \\var{b}$ for $x$, since $x$ is the exponent we want to make use of the following logarithm rule:

\n\n

\n

By taking the logarithm of each side and applying the above rule:

\n

\\[ \\begin{split}\\var{a}^x &\\,= \\var{b} \\\\ \\log_{10}(\\var{a}^x) & \\,= \\log_{10}(\\var{b})\\\\ x \\log_{10}(\\var{a}) &\\,= \\log_{10}(\\var{b}) \\\\\\\\ x&\\,=\\simplify{log({b})/log({a})} \\\\\\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}.  \\end{split} \\]

\n

Use this link to find resources to help you revise how logarithms.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9 except [a,a^2,a^3])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround(log(b)/log(a),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$ [[0]] (Give you answer to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "402, Logs definition", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Logs - definition", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "tags": [], "metadata": {"description": "

Finding $x$ from a logarithmic equation of the form $\\log_ax = b$, where $a$ and $b$ are positive integers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the value of $x$:

\n

\\[ \\log_\\var{a}x = \\var{n} \\]

", "advice": "

To find the value of $x$, recall that $\\log_a(x)=b$ is equivalent to $x=a^b$. 

\n

Therefore, \\[\\log_\\var{a}(x) = \\var{n} \\implies \\simplify[!collectNumbers]{x={a}^{n}}.\\]

\n

Hence, \\[x=\\var{a^n}\\,.\\]

\n

Use this link to find resources to help you revise logarithms.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a^n}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "442b, Integration of Powers, Trig and Exp", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Integration - powers, trig and exp", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "constant of integration", "exponential function", "indefinite integration", "integrals", "integrating powers", "integration", "integration of exponential function", "integration of powers", "integration of trigonometric functions", "standard integrals", "steps", "trigonometric functions"], "advice": "\n

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

\n

Splitting the integral into three parts and using the above information we have:
\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]

\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = {b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3}}$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n

Click on Show steps to get more information. You will not lose any marks by doing so.

\n ", "gaps": [{"notallowed": {"message": "

Input all numbers as integers or fractions and not decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [1.0, 2.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C", "type": "jme"}], "steps": [{"prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "\n

Integrate the following function $f(x)$.

\n

 
Input the constant of integration as $C$.

\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "s1*random(2..5)", "name": "a"}, "b": {"definition": "s2*random(2..9)", "name": "b"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "s5": {"definition": "random(1,-1)", "name": "s5"}, "s4": {"definition": "random(1,-1)", "name": "s4"}, "a1": {"definition": "random(2..5)", "name": "a1"}, "a2": {"definition": "s4*random(3..9)", "name": "a2"}, "b1": {"definition": "s3*random(2..9)", "name": "b1"}, "c3": {"definition": "s5*random(2..8)", "name": "c3"}}, "metadata": {"notes": "\n \t\t

2/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Corrected mistake in formula for integrating $\\sin(ax)$ in Steps and Advice.

\n \t\t

Checked calculation. OK.

\n \t\t

Added decimal point to forbidden strings along with message to user re input of numbers.

\n \t\t

Message about Show steps included. Also another message about including the constant of integration.

\n \t\t

Changed checking range from 0 to 1 to 1 to 2 as we can have negative powers of $x$.

\n \t\t

Improved display of Steps by aligning integral signs.

\n \t\t", "description": "

Find $\\displaystyle \\int ae ^ {bx}+ c\\sin(dx) + px ^ {q}\\;dx$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}, {"name": "443, Definite Integrals", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Definite Integral - Powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "tags": [], "metadata": {"description": "

Calculating the definite integral $\\int_{n_1}^{n_2}a_1x^{b_1}+a_2x^{b_2}+a_3x^{b_3} dx$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Evaluate \\[ \\int_{\\var{n_1}}^{\\var{n_2}}\\simplify[unitFactor, unitPower, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}} \\,dx.\\]

\n

", "advice": "

Integrating a function of the form  \\[ f(x)=x^n \\] has the integral \\[ \\int_a^b x^n dx  =  \\left[\\frac{x^{n+1}}{n+1}\\right]_a^b,\\]

\n

and \\[\\int_a^b kf(x) dx = k \\int_a^b f(x) dx.\\]

\n

Additionally, the integral of the sum or difference of two or more functions is equal to the sum or difference of the integrals of each function: \\[ \\int(f(x)\\pm g(x))\\, dx = \\int f(x)\\, dx  \\pm \\int g(x) \\, dx.\\]

\n

\n

Therefore,

\n

\\[ \\begin{split}\\simplify[unitFactor,unitPower]{defint({a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3},x,{n_1},{n_2})} &\\,= \\simplify{{a_1}defint(x^{b_1},x,{n_1},{n_2})+{a_2}defint(x^{b_2},x,{n_1},{n_2})+{a_3}defint(x^{b_3},x,{n_1},{n_2})} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers]{{a_1}x^{b_1+1}/{b_1+1}+{a_2}x^{b_2+1}/{b_2+1}+{a_3}x^{b_3+1}/{b_3+1}}\\right]_\\var{n_1}^\\var{n_2} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_2^(b_1+1)}/{b_1+1}+{a_2*n_2^(b_2+1)}/{b_2+1}+{a_3*n_2^(b_3+1)}/{b_3+1}}\\right] -\\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_1^(b_1+1)}/{b_1+1}+{a_2*n_1^(b_2+1)}/{b_2+1}+{a_3*n_1^(b_3+1)}/{b_3+1}}\\right] \\\\ &\\,= \\simplify[!collectNumbers]{{eval2a}-{eval1a}} \\\\ &\\,=\\var{sol1} \\end{split} \\]

\n

Use this link to find some resources on areas under curves which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "2", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n_1": {"name": "n_1", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "n_2": {"name": "n_2", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "eval2": {"name": "eval2", "group": "Ungrouped variables", "definition": "a_1*n_2^(b_1+1)/(b_1+1)+a_2*n_2^(b_2+1)/(b_2+1)+a_3*n_2^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval1": {"name": "eval1", "group": "Ungrouped variables", "definition": "a_1*n_1^(b_1+1)/(b_1+1)+a_2*n_1^(b_2+1)/(b_2+1)+a_3*n_1^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval2a": {"name": "eval2a", "group": "Ungrouped variables", "definition": "precround(eval2,3)", "description": "", "templateType": "anything", "can_override": false}, "eval1a": {"name": "eval1a", "group": "Ungrouped variables", "definition": "precround(eval1,3)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "eval2-eval1", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "precround(sol,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b_1>b_2 and b_2>b_3 and n_2>n_1", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "n_1", "n_2", "eval2", "eval1", "eval2a", "eval1a", "sol", "sol1"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]] (Give answers to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "444, Integration by substitution", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Integration - Substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "tags": [], "metadata": {"description": "

Calculating the integral of a function of the form $\\frac{nx^{n-1}}{x^n+a}$ using integration by substitution.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate \\[ \\simplify[all]{int(({n}x^{n-1})/(x^{n}+{a}),x)}\\]

\n

by using the substitution \\[ \\simplify[all]{u=x^{n}+{a}}.\\]

", "advice": "

Since this integral is of the form \\[ \\int g'(x)f(g(x))\\,dx,\\] we can use the method of substitution to calculate the solution. 

\n

Firstly, we must make a change of variables from $x$ to $u$, where $u$ is equal to the 'inner' function $g(x)$.

\n

So, for \\[\\simplify[fractionNumbers]{int(({n}x^{n-1})/((x^{n}+{a})),x)}\\]

\n

let $\\color{red}{u=\\simplify[fractionNumbers]{x^{n}+{a}}}.$

\n

Now, we need to calculate the differential, $du$, where \\[ du = \\left(\\frac{du}{dx}\\right)dx. \\]

\n

Differentiating $u$ with respect to $x$:

\n

\\[ \\frac{du}{dx}= \\simplify[fractionNumbers]{{n}x^{n-1}}.\\]

\n

Therefore, \\[ \\color{blue}{du = \\simplify[fractionNumbers]{{n}x^{n-1}}\\, dx}.\\]

\n

We can now rewrite the original integral in terms of $u$:

\n

\\[ \\int \\frac{\\color{blue}{\\simplify{{n}x^{n-1}}}}{\\color{red}{\\simplify{x^{n}+{a}}}}\\color{blue}{\\text{d}x} = \\int \\frac{1}{\\color{red}{u}}\\color{blue}{\\text{d}u}.\\]

\n

(Note: It is important to see that both the function we are integrating, and the variable we are integrating with respect to, has changed.)

\n

\\[ \\simplify[fractionNumbers]{int(1/u,u) = ln(abs(u)) + c}.\\]

\n

Finally, we must rewrite our solution back in terms of the original variable $x$:

\n

\\[ \\simplify[fractionNumbers]{ln(abs(u)) + c = ln(abs(x^{n}+{a})) + c}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "n"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alternative using brackets", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".

", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a})) + k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using brackets and \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".

", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.

", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a}))", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "ln(abs(x^{n}+{a}))+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "505, Integration by parts", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Integration - by Parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "tags": [], "metadata": {"description": "

Calculating the integral of a function of the form $ax^2 \\cos(bx)$ using integration by parts.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the integral \\[ \\simplify{int({a}x^2 cos({b}x),x)}\\]

", "advice": "

If we have a function of $x$ which is the product of two functions of $x$, to integrate such a function it is often necessary to use Integration by Parts. The formula for Integration by Parts is:

\n

\\[ \\int u(x) \\frac{dv}{dx} dx = u(x)v(x) - \\int v(x) \\frac{du}{dx} dx.\\]

\n

Using this method can be broken down into steps:

\n
    \n
  1. Identify $u(x)$ and $\\tfrac{dv}{dx}$ (The function you pick for each is important, in general you want $u(x)$ to become simpler when differentiating it, and you must be able to integrate $\\tfrac{dv}{dx}$ to find $v(x)$);
  2. \n
  3. Calculate $\\tfrac{du}{dx}$ and $v(x)$;
  4. \n
  5. Put the functions $u(x)$, $v(x)$, and their derivatives into the Integration by Parts formula;
  6. \n
  7. Calculate the integral $\\int v(x) \\tfrac{du}{dx} dx$ (This may require you to use Integration by Parts again, this is OK!);
  8. \n
  9. Simplify your answer where possible and don't forget to add the constant of integration.
  10. \n
\n

\n

For the integral

\n

\\[ \\simplify{int({a}x^2 cos({b}x),x)},\\]

\n

we must first identify $u(x)$ and $\\tfrac{dv}{dx}$. In this case, let \\[ u(x)=\\simplify{{a}x^2},\\quad \\frac{dv}{dx}= \\simplify{cos({b}x)}. \\]

\n

Next, we need to calculate $\\tfrac{du}{dx}$ and $v(x)$:

\n

\\[ \\begin{split} u(x) = \\var{a}x^2 \\quad &\\implies \\frac{du}{dx} = \\simplify{{2a}x}; \\\\ \\frac{dv}{dx} = \\cos(\\var{b}x) &\\implies v(x) = \\simplify[fractionNumbers]{1/{b} sin({b}x)}. \\end{split} \\]

\n

Plugging these 4 terms into the integration by parts formula:

\n

\\[  \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) - int({2a/b}x sin({b}x),x)},  \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x sin({b}x),x)}.\\end{split} \\]

\n

Since the integral on the right-hand side is still the product of two functions of $x$, we need to use integration by parts again. 

\n

So, for 

\n

\\[ \\simplify{int(x sin({b}x),x)}, \\]

\n

 Let $u=x$ and $\\tfrac{dv}{dx} = \\sin(\\var{b}x)$. Therefore, $\\tfrac{du}{dx}=1$ and $v(x)=\\simplify{-1/{b} cos({b}x)}$.

\n

Hence,

\n

\\[ \\begin{split} \\simplify{int(x sin({b}x),x)} &\\,= \\simplify{-1/{b}x cos({b}x)- int(-1/{b} cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify{-1/{b}x cos({b}x)+1/{b^2}sin({b}x)}. \\end{split}\\]

\n

Plugging this back into the original calculation:

\n

\\[  \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}[-1/{b}x cos({b}x)+1/{b^2}sin({b}x)]} \\\\ \\\\ &\\,=\\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) +{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)} + c.\\end{split} \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..7)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(a,b)=1 and b>a", "maxRuns": 100}, "ungrouped_variables": ["a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct Answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alt constant +k", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.

", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+c", "answerSimplification": "fractionNumbers, basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "341b, Differentiation of polynomials", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Differentiation - Polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Jinhua Mathias", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/353/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "functions": {}, "ungrouped_variables": ["ac", "bc", "cc", "dc", "d"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

If $y=ax^n$,

\n

$\\frac{dy}{dx}=anx^{n-1}$ for all rational $n$.

\n

We'll take the following term as an example:

\n

$\\frac{3}{8}x^2$

\n

All we have to do to terms where $x$ is to a power of anything is times the coefficient of $x$ by the original power, and then take one away from the original power.

\n

If you are not familiar with this kind of work, these instructions may sound confusing, but it is much easier once you have seen it in practice.

\n

We take

\n

$\\frac{3}{8}x^2$

\n

and times $\\frac{3}{8}$ by $2$, to get

\n

$(\\frac{3}{8}\\times2)x^2=\\frac{6}{8}x^2=\\frac{3}{4}x^2$.

\n

We then subtract one from the original power, $2$.

\n

This gives us the final answer of

\n

$\\frac{3}{4}x^1=\\frac{3}{4}x$.

\n

\n

Remember, don't be confused if there is no coefficient. The fact the term is there means the coefficient must be $1$, but we don't tend to write it out as, for example $1x$, we just say $x$.

", "rulesets": {}, "parts": [{"vsetrangepoints": 5, "prompt": "

$\\simplify{({ac[0]}/{d[0]})x^3+({bc[0]}/{d[1]})x^2+({cc[0]}/{d[2]})x+({dc[0]}/{d[3]})}$

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3{ac[0]}/{d[0]}x^2+2{bc[0]}/{d[1]}x+{cc[0]}/{d[2]}", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "prompt": "

$\\simplify{({ac[1]}/{d[4]})x^3+({bc[1]}/{d[5]})x^2+({cc[1]}/{d[6]})x+({dc[1]}/{d[7]})}$

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3{ac[1]}/{d[4]}x^2+2{bc[1]}/{d[5]}x+{cc[1]}/{d[6]}", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "prompt": "

$\\simplify{({ac[2]}/{d[8]})x^3+({bc[2]}/{d[9]})x^2+({cc[2]}/{d[10]})x+({dc[2]}/{d[11]})}$

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3{ac[2]}/{d[8]}x^2+2{bc[2]}/{d[9]}x+{cc[2]}/{d[10]}", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "statement": "

Differentiate the following polynomials.

", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"cc": {"definition": "repeat(random(-15..15),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "cc", "description": ""}, "ac": {"definition": "repeat(random(-3..3),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "ac", "description": ""}, "d": {"definition": "repeat(random(1..9),12)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "dc": {"definition": "repeat(random(-30..30),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "dc", "description": ""}, "bc": {"definition": "repeat(random(-10..10),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "bc", "description": ""}}, "metadata": {"description": "

More work on differentiation with fractional coefficients.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}, {"name": "341c, Differentiation of exponential, log, trig functions", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Differentiation - exponentials, log, trig functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lois Rollings", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/326/"}, {"name": "Sid Gurjar", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3870/"}, {"name": "Venkata Lakshmipathi Raju Chinthalapati", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4574/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "tags": ["calculus", "Calculus", "Differentiation", "differentiation"], "metadata": {"description": "

A question to test basic differentiation of functions, including powers of x, trig, log and exponential functions.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following functions with respect to $x$, simplifying your answers where possible.

", "advice": "

This leaflet from Mathcentre will remind you of the rules for differentiating these functions.

\n

", "rulesets": {}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)//Use as a power", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..5 except -1..1)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$x^\\var{a}-\\sin(\\var{b}x)$

", "answer": "{a}x^{a-1}-{b}cos({b}x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\var{a}e^{-\\var{b}x}+\\frac{\\var{c}}{x}$

", "answer": "-{a}{b}e^(-{b}x)-{c}/x^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\var{d}\\ln(\\var{c}x)-\\var{a*b}\\cos(x/\\var{b})$

", "answer": "{d}/x+{a}sin(x/{b})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\var{a}\\sqrt{x}-\\var{c}e^{\\var{d}x}$

", "answer": "{a}/(2sqrt(x))-{c}{d}e^({d}x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\var{d}-\\frac{\\var{b}}{x^2}$

", "answer": "2{b}/x^3", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

$\\var{10*d}\\sin(\\var{c/10}x)+\\var{b}x$

", "answer": "{c}*{d}cos({c}/10*x)+{b}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "valuegenerators": [{"name": "x", "value": ""}]}], "type": "question"}]}, {"name": "503, Chain rule - powers", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Chain rule - powers", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "functions": {}, "ungrouped_variables": ["c"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

This question is the chain rule again.

\n

This time, the function that is being differentiated is the term inside the brackets.

\n

This is another 'chain rule by inspection' kind of question to save time and paper.

\n

Firstly, differentiate everything inside the brackets.

\n

Then multiply the existing coefficient of the bracket by this result.

\n

Finally, multiply by the original magnitude of the power and decrease the power by one.

\n

If these steps confuse you, look back at 'Differentiation - Basic Polynomial Expressions' and make sure you understand fully how to work those types of questions out.

", "rulesets": {}, "parts": [{"prompt": "

$y=(\\var{c[0]}x-1)^3$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*{c[0]}({c[0]}x-1)^2", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=(\\var{c[1]}-x)^5$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-5({c[1]}-x)^4", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=(x^2+\\var{c[2]})^4$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "8x*(x^2+{c[2]})^3", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=(x^3-\\var{c[3]})^2$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "6x^2*(x^3-{c[3]})", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=(1-\\var{c[4]}x^2)^3$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-6{c[4]}x*(1-{c[4]}x^2)^2", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Differentiate the following using the chain rule.

\n

Do not write out $dy/dx$; only input the differentiated right hand side of each equation.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"c": {"definition": "repeat(random(2..9),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}}, "metadata": {"notes": "", "description": "

Using the chain rule with polynomials

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}, {"name": "504, Quotient rule", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Differentiation - Quotient Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "functions": {}, "ungrouped_variables": ["c", "p"], "tags": [], "advice": "

These questions use the quotient rule.

\n

The quotient rule is defined as

\n

$\\frac{dy}{dx}=\\frac{v\\frac{du}{dx}+u\\frac{dv}{dx}}{v^2}$

\n

when $y=\\frac{u}{v}$

\n

Worked example using Part a:

\n

$x$$\\simplify{x+{c[0]}}$

\n

This expression is the result of $x$ divided by ($\\simplify{x+{c[0]}}$).

\n

We can therefore say:

\n

$u=x$

\n

and

\n

$v=\\simplify{x+{c[0]}}$,

\n

Hence meaning that $y=\\frac{u}{v}$.

\n

\n

We already have what $u$ and $v$ equal, so all we have to do is find what $\\frac{du}{dx}$ and $\\frac{dv}{dx}$ are, and then substitute everything into the rule.

\n

Differentiating with respect to $x$, we get:

\n

$\\frac{du}{dx}=1$

\n

and

\n

$\\frac{dv}{dx}=1$.

\n

As there are no powers or coefficients of $x$ that are $>1$, this is a very simple version of the quotient rule, but knowing how to work out this equation formally will make more difficult looking problems just as simple.

\n

Substituting in all the results we've found, we get:

\n

$\\frac{dy}{dx}=\\frac{1(\\simplify{x+{c[0]}})+1(x)}{\\simplify{(x+{c[0]})^2}}$

\n

We then simplify, collecting all the terms, to get our final answer of:

\n

$\\frac{dy}{dx}=\\simplify{((2x+{c[0]}))/(x+{c[0]})^2}$

", "rulesets": {"std": ["all"]}, "parts": [{"variableReplacements": [], "prompt": "

$\\simplify{{c[1]}x+{c[2]}}$$\\simplify{x+{c[3]}}$

", "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({c[1]}*{c[3]}-{c[2]})/(x+{c[3]})^2", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"variableReplacements": [], "prompt": "

$\\simplify{{c[6]}-sqrt(x)}$$\\simplify{({c[7]}+x)^2}$

", "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(-1({c[7]}+x)-4(sqrt(x)*({c[6]}-sqrt(x))))/(2sqrt(x)({c[7]}+x)^3)", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "statement": "

Differentiate the following expressions with respect to $x$ using the quotient rule.

\n

Simplify your answers as much as possible.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "variables": {"p": {"definition": "repeat(random(2..7),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "c": {"definition": "repeat(random(-9..9 except 0),12)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}}, "metadata": {"notes": "", "description": "

An introduction to using the quotient rule

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}, {"name": "240, Poisson Distribution", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Poisson Distribution (Dentist)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}], "tags": [], "metadata": {"description": "

The number of patients arriving at a dentist’s surgery each afternoon follows
a Poisson distribution, with a mean of four patients per hour.
Calculate the probability that in a particular one-hour period

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

The number of patients arriving at a dentist’s surgery each afternoon follows a Poisson distribution, with a mean of $\\var{l}$ patients per hour.

\n

\n

 The Poisson distribution formula: $P(r)=\\frac{\\lambda^re^{-\\lambda}}{r!}$ or $P(r)=e^{-\\lambda}\\left[\\frac{\\lambda^r}{r!}\\right]$

\n

\n

\n

Please give your answer to at least 3 decimal places.

", "advice": "

Part (a)

\n

Remember that for a Poisson random variable:
\\begin{align}
\\operatorname{P}(X=x)&=\\dfrac{\\lambda^x\\times e^{-\\lambda}}{x!}\\\\
\\end{align}

\n

1.\\[ \\begin{eqnarray*}\\operatorname{P}(X = \\var{x}) &=& \\frac{\\var{l} ^ {\\var{x}}e ^ { -\\var{l}}} {\\var{x}!}\\\\& =& \\var{answer1} \\end{eqnarray*} \\] to 3 decimal places.

\n

 

\n

Part (b)

\n

The probability that in a particular one hour period, the number of patients entering the waiting room will be between $\\var{x}$ and $\\var{y}$ inclusive is given by:

\n

$P(\\var{x} \\leq X\\leq\\var{y}) = P(X=\\var{x}) + P(X=\\var{x+1}) +P(X=\\var{y})$

\n

where 

\n

$P(X=\\var{x}) =\\frac{\\var{l}^{\\var{x}}e^{-\\var{l}}}{\\var{x}!}=\\var{prx}$

\n

$P(X=\\var{x+1}) =\\frac{\\var{l}^{\\var{x+1}}e^{-\\var{l}}}{\\var{x+1}!}=\\var{prx1}$

\n

$P(X=\\var{y}) =\\frac{\\var{l}^{\\var{y}}e^{-\\var{l}}}{\\var{y}!}=\\var{pry}$

\n

Hence 

\n

$P(\\var{x} \\leq X \\leq \\var{y})=$ $\\var{prx}+\\var{prx1}+\\var{pry}=\\var{answer2}$

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(10..50#5)", "description": "

time interval

", "templateType": "anything", "can_override": false}, "answer1": {"name": "answer1", "group": "Ungrouped variables", "definition": "((e^-l)*(l^x))/x!", "description": "", "templateType": "anything", "can_override": false}, "prx": {"name": "prx", "group": "Ungrouped variables", "definition": "((e^-l)*(l^x))/x!", "description": "", "templateType": "anything", "can_override": false}, "answer2": {"name": "answer2", "group": "Ungrouped variables", "definition": "((e^-l)*(l^x))/x!+((e^-l)*(l^(x+1)))/(x+1)!+((e^-l)*(l^y))/y!", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "x+2", "description": "

upper value of X

", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(1..5#1)", "description": "

time hour

", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "random(3..12)", "description": "

number of customers entering the shop

", "templateType": "anything", "can_override": false}, "prx1": {"name": "prx1", "group": "Ungrouped variables", "definition": "((e^-l)*(l^(x+1)))/(x+1)!", "description": "", "templateType": "anything", "can_override": false}, "pry": {"name": "pry", "group": "Ungrouped variables", "definition": "((e^-l)*(l^y))/y!", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(5..10#1)", "description": "

average, lambda

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["l", "x", "n", "y", "t", "answer1", "answer2", "prx", "prx1", "pry"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write down the value of $\\lambda$ for one hour.

\n

\n

$\\lambda = $ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "l", "maxValue": "l", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the probability that in a particular one-hour period exactly $\\var{x}$ patients will arrive. Please give your answer to at least 3 decimal places.


\n

$P(r = \\var{x}) =$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "answer1-0.005", "maxValue": "answer1+0.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "answer1-0.001", "maxValue": "answer1+0.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the probability that in a particular one hour period, the number of patients entering the waiting room will be between $\\var{x}$ and $\\var{y}$ inclusive. Please give your answer to at least 3 decimal places.

\n

 

\n

$P(\\var{x}\\leq r \\leq\\var{y}) =$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "answer2 -0.005", "maxValue": "answer2 +0.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "answer2 -0.005", "maxValue": "answer2 +0.005", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "241, Binomial Distribution", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Binomial Distribution (Cycling)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}], "tags": ["binomial", "Binomial", "REBEL", "rebel", "Rebel", "rebelmaths"], "metadata": {"description": "

It is estimated that 30% of all CIT students cycle to college. If a random sample of eight CIT students is chosen, calculate the probability that...

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Please give your answer to at least 3 decimal places.

\n

It is estimated that $\\var{p_perc}$% of all CIT students cycle to college. A random sample of $\\var{n}$ CIT students is chosen.

\n

", "advice": "

Part (a)

\n

If a random variable $X$ follows a binomial distribution with parameters $n$ and $p$. The probability of $r$ successes out of $n$ trials is given by:

\n

$P(X=r)=P(r,n)=C^n_{r}p^{r}q^{n-r}$

\n

where $p$ is the probability of success for each trial and $q$ is the probability of failure for each trial.

\n

The probability that a student cycles to college is $\\var{p}$, therefore $p=\\var{p}$ and $q=1-\\var{p}=\\var{q}$.

\n

We are interested in claculating the probability that none of the sample of $\\var{n}$ students cycle to college so $r=0$ and $n=\\var{n}$

\n

$P(\\var{r0}, \\var{n})= C^\\var{n}_{\\var{r0}}$ $\\var{p}^\\var{r0}$ $\\var{q}^{\\var{n}-\\var{r0}}$ 

\n

$P(\\var{r0}, \\var{n})= \\var{pr0}$

\n

\n

Part (b)

\n

We are interested in claculating the probability that at least $\\var{r}$ of the $\\var{n}$ students cycle to college. Let $X$ represent the number of students that cycle to college. We need to calculate:

\n

$P(X \\geq \\var{r}) = P(X= \\var{r}) + P(X= \\var{r+1})+...+ P(X=\\var{n})$

\n

\n

Since $P(X=\\var{r0})+P(X=\\var{r0+1})+...+P(X=\\var{n})=\\var{r0+1}$ 

\n

We may write 

\n

$P(X \\geq \\var{r}) = 1-P(X= \\var{r0}) - P(X=\\var{r0+1})-...- P(X=\\var{r-1})$

\n

\n

where

\n

$P(X= \\var{r0})=P(\\var{r0}, \\var{n})= C^\\var{n}_{\\var{r0}}$ $\\var{p}^\\var{r0}$ $\\var{q}^{\\var{n}-\\var{r0}}=\\var{pr0}$ 

\n

$P(X=1) =P(1, \\var{n})= C^\\var{n}_{1}$ $\\var{p}^{1}$ $\\var{q}^{\\var{n}-1}$ $=\\var{pr1}$

\n

$P(X=2) = P(2, \\var{n})=$ $C^\\var{n}_{2}$ $\\var{p}^{2}$ $\\var{q}^{\\var{n}-2}$ $=\\var{pr2}$

\n

\n

Then 

\n

$P(X \\geq \\var{r}) = 1-\\var{qn}-\\var{pr1}-\\var{pr2}=\\var{answer2}$

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pr1": {"name": "pr1", "group": "Ungrouped variables", "definition": "n*p*q^(n-1)", "description": "

probability that r = 1

", "templateType": "anything", "can_override": false}, "r0": {"name": "r0", "group": "Ungrouped variables", "definition": "0", "description": "", "templateType": "anything", "can_override": false}, "p_perc": {"name": "p_perc", "group": "Ungrouped variables", "definition": "p*100", "description": "

percentage of students that cycle to college

", "templateType": "anything", "can_override": false}, "pr2": {"name": "pr2", "group": "Ungrouped variables", "definition": "((n*(n-1))/2)*(p^2)*q^(n-2)", "description": "

probability that r = 2

", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "1-p", "description": "

probability tha an individual does not cycle to college

", "templateType": "anything", "can_override": false}, "answer2": {"name": "answer2", "group": "Ungrouped variables", "definition": "1-answer1", "description": "", "templateType": "anything", "can_override": false}, "pr3": {"name": "pr3", "group": "Ungrouped variables", "definition": "((n*(n-1)*(n-2))/6)*(p^3)*(q^(n-3))", "description": "

probability that r = 3

", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "3", "description": "

more than r of the students cycle to college

", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "n-2", "description": "", "templateType": "anything", "can_override": false}, "answer1": {"name": "answer1", "group": "Ungrouped variables", "definition": "if(r=2,pr0+pr1, pr0+pr1+pr2)", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(0.1..0.4#0.05)", "description": "

the probability that an individual student cycles to college

", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(6..12)", "description": "

sample size

", "templateType": "anything", "can_override": false}, "qn": {"name": "qn", "group": "Ungrouped variables", "definition": "q^n", "description": "", "templateType": "anything", "can_override": false}, "pr0": {"name": "pr0", "group": "Ungrouped variables", "definition": "q^n", "description": "

probability that r = 0

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["p", "p_perc", "n", "q", "r", "pr0", "pr1", "pr2", "pr3", "answer1", "answer2", "qn", "r0", "n2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the probability that none of the $\\var{n}$ students in the sample cycle to college.

", "minValue": "(q^n)-0.001", "maxValue": "(q^n)+0.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the probability that at least $\\var{r}$ of the $\\var{n}$ students cycle to college.

", "minValue": "answer2 -0.001", "maxValue": "answer2 +0.001", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "342, Probability Complement rule", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "probability complement rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculate probability using P(A) = 1-P(not A)

", "licence": "None specified"}, "statement": "

Two $\\var{n}$-sided dice, each with sides labelled $1,2...\\var{n}$ are rolled and their scores are added.


", "advice": "

part a)

\n

We are looking for pairs of numbers than total to make $\\var{min[choice]}$ or less, which is quite a small total, so it doesn't take too long to find that the pairs of numbers are:

\n

\\[ \\var{pairstruncate} \\]

\n

so there {isorare} $\\var{pairschoice[choice]+1}$ {event} we are interested in, and therefore the probability is 

\\[ P(\\text{total is} \\leq \\var{min[choice]}) = \\frac{\\var{pairschoice[choice]+1}}{\\var{total}} \\] 

\n

part b)

\n

There are a very large number of ways to totals of $\\var{min[choice]+1}$ or greater, so in this case we use the complement rule;

\\[P(A') = 1-P(A)\\]

\n

which in this case means

\n

\\[P(\\text{total is}\\ge \\var{min[choice]+1}) = 1-P(\\text{total is} \\leq \\var{min[choice]}) = 1-\\frac{\\var{pairschoice[choice]+1}}{\\var{total}} = \\var[fractionnumbers]{1-options[choice]/{total}}\\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"min": {"name": "min", "group": "Ungrouped variables", "definition": "list(2..4)", "description": "", "templateType": "anything", "can_override": false}, "options": {"name": "options", "group": "Ungrouped variables", "definition": "[1,3,6]", "description": "", "templateType": "anything", "can_override": false}, "choice": {"name": "choice", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "total": {"name": "total", "group": "Ungrouped variables", "definition": "n*n", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(5..10)", "description": "", "templateType": "anything", "can_override": false}, "pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[[1,1],[1,2],[2,1],[2,2],[1,3],[3,1]]", "description": "", "templateType": "anything", "can_override": false}, "pairschoice": {"name": "pairschoice", "group": "Ungrouped variables", "definition": "[0,2,5]", "description": "", "templateType": "anything", "can_override": false}, "pairstruncate": {"name": "pairstruncate", "group": "Ungrouped variables", "definition": "pairs[0..pairschoice[choice]+1]", "description": "", "templateType": "anything", "can_override": false}, "event": {"name": "event", "group": "Ungrouped variables", "definition": "if(pairschoice[choice]+1=1,'event','events')", "description": "", "templateType": "anything", "can_override": false}, "isorare": {"name": "isorare", "group": "Ungrouped variables", "definition": "if(pairschoice[choice]+1=1,'is','are')", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["min", "options", "choice", "total", "n", "pairs", "pairschoice", "pairstruncate", "event", "isorare"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the probability that the score is less than or equal to $\\var{min[choice]}$?

\n

\n

[[0]] (Give your answer as a fraction)

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{options[choice]}/{total}", "maxValue": "{options[choice]}/{total}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": "100", "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the probability that the score is $\\var{min[choice]+1}$ or greater?

Hint: It will probably save you time if you use the complement rule.

\n

\n

[[0]]   (Give your answer as a fraction)

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1-{options[choice]}/{total}", "maxValue": "1-{options[choice]}/{total}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "606, Forces", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Vectors: Resolving Forces 2", "extensions": [], "custom_part_types": [], "resources": ["question-resources/force_component_image_4.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Find the $x$ and $y$ components of the resultant force on an object, when multiple forces are applied at different angles.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

\n

$F = \\var{force1} \\, \\mathrm{N}$ at an angle of $\\theta = \\var{theta1}^{\\circ}$ clockwise from the left horizonatal.
$P = \\var{force2} \\, \\mathrm{N}$ vertically upwards.
$Q = \\var{force3} \\, \\mathrm{N}$ at an able of $\\theta^{\\ast} = \\var{theta2}^{\\circ}$ clockwise from the right horizontal. 

\n

Give your answers to the following questions in Newtons to 3 decimal places.

", "advice": "

a) - c)

\n

Resolve each force in the HORIZONTAL:

\n

$P$ doesn't contribute.

\n

The force $F$ is at $\\var{theta1}^{\\circ}$ to the horizontal, therefore has a contribution of $F \\times \\cos \\var{theta1}^{\\circ} = \\var{force1} \\times \\cos \\var{theta1}^{\\circ} = \\var{precround(force1*cos(radians(theta1)),3)}$.  This force is acting to the left.

\n

The force $Q$ is at $\\var{theta2}^{\\circ}$ to the horizontal, therefore has a contribution of $Q \\times cos \\var{theta2}^{\\circ} = \\var{force3} \\times \\cos\\var{theta2}^{\\circ} = \\var{precround(force3*cos(radians(theta2)),3)}$. This is acting to the right.

\n

Therefore the sum of components in the $x$-direction is

\n

forces acting to the right - forces acting to the left

\n

\\[\\var{precround(force3*cos(radians(theta2)),3)} - \\var{precround(-force1*cos(radians(180-theta1)),3)}\\]
\\[= \\var{precround(force1*cos(radians(180-theta1)) + force3*cos(radians(theta2)),3)}\\]

\n

(if this value is positive then it is acting to the right, if it is negative it is acting to the left)

\n

d) - g)

\n

Resolve each force from the VERTICAL:

\n

For the force $P$ this is acting completely in the positive direction, at no angle. Therefore it's contribution is $\\var{force2}$.

\n

The force $F$ is at $\\var{theta1}^{\\circ}$ to the horizontal, therefore has a contribution of $F \\times \\sin \\var{theta1}^{\\circ} = \\var{force1} \\times \\sin \\var{theta1}^{\\circ} = \\var{precround(force1*sin(radians(theta1)),3)}$.  This force is acting upwards.

\n

The force $Q$ is at $\\var{theta2}^{\\circ}$ to the horizontal, therefore has a contribution of $Q \\times cos \\var{theta2}^{\\circ} = \\var{force3} \\times \\cos\\var{theta2}^{\\circ} = \\var{precround(force3*cos(radians(theta2)),3)}$. This is acting to the right.

\n

Therefore the sum of components in the $y$-direction is

\n

forces acting up - forces acting down

\n

\\[\\var{precround(force3*sin(radians(theta2)),3)} - \\var{precround(-force1*sin(radians(180-theta1)),3)}\\]
\\[= \\var{precround(force1*sin(radians(180-theta1)) + force3*sin(radians(theta2)),3)}\\]

\n

(if this value is positive then it is acting to the right, if it is negative it is acting to the left)

\n

\n

 

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f1y": {"name": "f1y", "group": "components", "definition": "force1*sin(radians(theta1))", "description": "", "templateType": "anything", "can_override": false}, "f1x": {"name": "f1x", "group": "components", "definition": "-force1*cos(radians(theta1))", "description": "", "templateType": "anything", "can_override": false}, "f3y": {"name": "f3y", "group": "components", "definition": "-force3*sin(radians(theta2))", "description": "", "templateType": "anything", "can_override": false}, "f3x": {"name": "f3x", "group": "components", "definition": "force3*cos(radians(theta2))", "description": "", "templateType": "anything", "can_override": false}, "force2": {"name": "force2", "group": "Ungrouped variables", "definition": "random(2 .. 7#0.25)", "description": "", "templateType": "randrange", "can_override": false}, "theta2": {"name": "theta2", "group": "Ungrouped variables", "definition": "random(5 .. 85#1)", "description": "", "templateType": "randrange", "can_override": false}, "theta1": {"name": "theta1", "group": "Ungrouped variables", "definition": "random(2 .. 88#1)", "description": "", "templateType": "randrange", "can_override": false}, "force3": {"name": "force3", "group": "Ungrouped variables", "definition": "random(2 .. 10#0.5)", "description": "", "templateType": "randrange", "can_override": false}, "force1": {"name": "force1", "group": "Ungrouped variables", "definition": "random(3 .. 15#1)", "description": "", "templateType": "randrange", "can_override": false}, "yangle1": {"name": "yangle1", "group": "Ungrouped variables", "definition": "90-theta1", "description": "", "templateType": "anything", "can_override": false}, "yangle2": {"name": "yangle2", "group": "Ungrouped variables", "definition": "90+theta2", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["force1", "force2", "force3", "theta1", "theta2", "yangle1", "yangle2"], "variable_groups": [{"name": "components", "variables": ["f1x", "f1y", "f3x", "f3y"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the component of $F$ in the $x$-direction

", "minValue": "f1x", "maxValue": "f1x", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "

You have not given your answer to the correct precision.

", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the component of $Q$ in the $x$-direction.

", "minValue": "f3x", "maxValue": "f3x", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [{"variable": "f1x", "part": "p0", "must_go_first": false}, {"variable": "f3x", "part": "p1", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the resultant force in the $x$-direction.

", "minValue": "f1x+f3x", "maxValue": "f1x+f3x", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the component of $P$ in the $y$-direction.

", "minValue": "force2", "maxValue": "force2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the component of $F$ in the $y$-direction.

", "minValue": "f1y", "maxValue": "f1y", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the component of $Q$ in the $y$-direction.

", "minValue": "f3y", "maxValue": "f3y", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [{"variable": "f1y", "part": "p4", "must_go_first": false}, {"variable": "f3y", "part": "p5", "must_go_first": false}, {"variable": "force2", "part": "p3", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the resultant force in the $y$-direction.

", "minValue": "f1y+force2+f3y", "maxValue": "f1y+force2+f3y", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "605, Forces (easy)", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Vectors: Resolving forces 1a", "extensions": [], "custom_part_types": [], "resources": ["question-resources/force_component_image.png", "question-resources/force_component_image_PgpiR1U.png", "question-resources/Picture2_7CTf2tv.png", "question-resources/Picture2_4njOTSR.png", "question-resources/Picture1_kv6rtT4.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Find the $x$ and $y$ components of a force which is applied at an angle to a particle. Resolve using $F \\cos \\theta$. The force acts in the positive $x$ and positive $y$ direction.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

\n

In the above diagram the force $F=\\var{force} \\ \\mathrm{N}$ and the angle $\\theta = \\var{angle}^{\\circ}$.

", "advice": "

\n

\n

a)

\n

The component of force in the $x$-direction can be found using $\\cos\\theta \\times F$. Remember to set your calculator to use degrees and not radians.

\n

\\begin{align} \\text{component in the }x \\text{-direction } & = F \\cos \\theta \\\\
                    & = \\var{force} \\times \\cos \\var{angle} \\\\
                     & = \\var{precround(force*cos(radians(angle)),3)}\\end{align}

\n

b)

\n

This time we are using sin

\n

\\begin{align} \\text{component in the y-direction } & = F \\sin \\theta \\\\
                    & = \\var{force} \\times \\sin \\var{angle} \\\\
                     & = \\var{precround(force*sin(radians(angle)),3)}\\end{align}

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"yangle": {"name": "yangle", "group": "Ungrouped variables", "definition": "90-angle", "description": "", "templateType": "anything", "can_override": false}, "force": {"name": "force", "group": "Ungrouped variables", "definition": "random(3 .. 15#0.5)", "description": "", "templateType": "randrange", "can_override": false}, "angle": {"name": "angle", "group": "Ungrouped variables", "definition": "random(1 .. 89#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["force", "angle", "yangle"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the component of the force in the $x$-direction, in Newtons to 3 decimal places.

", "minValue": "force*cos(radians(angle))", "maxValue": "force*cos(radians(angle))", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the component of the force in the $y$-direction, in Newtons to 3 decimal places.

", "minValue": "force*cos(radians(yangle))", "maxValue": "force*cos(radians(yangle))", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "604, Vector magnitude", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Vectors: Magnitude 2b", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculate the magnitude of a 3-dimensional vector $\\mathbf v$, where $\\mathbf v$ is written in the form $v_1 \\mathbf i+v_2 \\mathbf j + v_3 \\mathbf k$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the magnitude of the vector $\\mathbf v =\\simplify[all,!noLeadingMinus]{{vi}*mathbf:i+{vj}*mathbf:j+{vk}*mathbf:k}$ .

", "advice": "

For a vector of the form $\\mathbf a = \\simplify{a_1*mathbf:i+a_2*mathbf:j+a_3*mathbf:k}$, the magnitude is found by calculating the square root of the sum of the components squared:

\n

\\[ |\\mathbf a| = \\sqrt{a_1^2+a_2^2+a_3^2}.\\]

\n

Therefore, for the vector $\\mathbf v =\\simplify[!noLeadingMinus]{{vi}*mathbf:i+{vj}*mathbf:j+{vk}*mathbf:k}$,

\n

\\[ \\begin{split} |\\mathbf v| &\\,= \\simplify[!collectNumbers]{sqrt({vi}^2+{vj}^2+{vk}^2)} \\\\ &\\,= \\sqrt{\\var{vi^2+vj^2+vk^2}} \\\\ &\\, = \\var{magv} .\\end{split} \\]

\n

\\[ \\begin{split} |\\mathbf v| &\\,= \\simplify[!collectNumbers]{sqrt({vi}^2+{vj}^2+{vk}^2)} \\\\ &\\,= \\sqrt{\\var{vi^2+vj^2+vk^2}} \\\\ &\\, = \\var{magv2} \\text{ (2 d.p.)} \\end{split} \\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"vi": {"name": "vi", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "vj": {"name": "vj", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "magv": {"name": "magv", "group": "Ungrouped variables", "definition": "(vi^2+vj^2+vk^2)^0.5", "description": "", "templateType": "anything", "can_override": false}, "magv2": {"name": "magv2", "group": "Ungrouped variables", "definition": "precround(magv,2)", "description": "", "templateType": "anything", "can_override": false}, "vk": {"name": "vk", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "magv_dp": {"name": "magv_dp", "group": "Ungrouped variables", "definition": "if(countdp(string(magv))<3,0,1)", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "if(magv_dp=0,magv,magv2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["vi", "vj", "vk", "magv", "magv2", "magv_dp", "ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$|\\mathbf v |= $[[0]]

\n

(Give your answer to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "603, Vectors linear combination", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Vectors: Linear Combinations 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Given 3 vectors $\\mathbf v$, $\\mathbf a$ and $\\mathbf b$, find the constants $c_1$ and $c_2$ such that $\\mathbf v = c_1 \\mathbf a + c_2 \\mathbf b$ .

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the values of the constants $c_1$ and $c_2$ such that the vector $\\mathbf v = \\var{v}$ is a linear combination of the vectors $\\mathbf a=\\var{a}$ and $\\mathbf b=\\var{b}$: \\[ \\mathbf v = c_1 \\mathbf a + c_2 \\mathbf b. \\]

", "advice": "

We are trying to find the constants $c_1$ and $c_2$ such that we can express $\\mathbf v$ as a linear combination of the vectors $\\mathbf a$ and $\\mathbf b$:

\n

\\[ \\var{v} = c_1 \\var{a} + c_2 \\var{b} ,\\]

\n

\n

We can calculate $c_1$ and $c_2$ by solving the simultaneous equations

\n

\\[ \\begin{split} \\var{v[0]} &\\,= \\simplify[all,!noLeadingMinus]{{a[0]}c_1 + {b[0]} c_2}  \\\\ \\var{v[1]} &\\,= \\simplify[all,!noLeadingMinus]{{a[1]}c_1 + {b[1]} c_2} . \\end{split} \\]

\n

\n

We find $c_1 = \\var{c1}$ and $c_2 = \\var{c2}$, and therefore,

\n

\\[\\var{v} = \\simplify[!noLeadingMinus,unitFactor]{{c1}{a}+{c2}{b}}. \\]

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(repeat(random(-5..5 except 0),2))", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(random(-5..-1),random(-5..5))", "description": "", "templateType": "anything", "can_override": false}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "c1*a+c2*b", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-4..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-5..6 except [0,c1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "v", "c1", "c2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$c_1= $[[0]]

\n

$c_2= $[[1]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "602, Vector addition and scalars", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Vectors: Scalars and Addition 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculating several linear combinations of three 2-dimensional vectors. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Given three vectors,

\n

\\[ \\mathbf a = \\var{a},\\quad \\mathbf b = \\var{b}, \\quad \\mathbf c = \\var{c}, \\]

\n

calculate the following:

", "advice": "

When multiplying a vector by a scalar, and when adding or subtracting vectors, we must use the following rules:

\n

For the vectors $\\mathbf v = \\begin{pmatrix} v_1 \\\\ v_2 \\end{pmatrix}$ and $\\mathbf w = \\begin{pmatrix} w_1 \\\\ w_2 \\end{pmatrix}$, 

\n\n

\n\n

Combining these rules:

\n

\\[ \\alpha \\,\\mathbf v \\pm \\beta \\, \\mathbf w= \\begin{pmatrix} \\alpha \\,v_1 \\\\ \\alpha \\, v_2 \\end{pmatrix} \\pm \\begin{pmatrix} \\beta \\, w_1 \\\\ \\beta \\, w_2 \\end{pmatrix} = \\begin{pmatrix} \\alpha \\,v_1 \\pm \\beta \\, w_1 \\\\ \\alpha \\, v_2 \\pm \\beta \\, w_2 \\end{pmatrix}. \\]

\n

\n

Part a)

\n

\\[ \\begin{split} \\simplify{{m1}*mathbf:a +{n1}*mathbf:b} \\, &\\,= \\simplify[!collectNumbers]{{m1}*{a}+{n1}*{b}} \\\\ &\\,= \\simplify[!collectNumbers]{{m1*a}+{n1*b}} \\\\ &\\,= \\var{sola} \\end{split} \\]

\n

\\[ \\begin{split} \\simplify{{m1}*mathbf:a +{n1}*mathbf:b} \\, &\\,= \\simplify[!collectNumbers]{{m1}*{a}+{n1}*{b}} \\\\ &\\,= \\simplify[!collectNumbers]{{m1*a}-{abs(n1)*b}} \\\\ &\\,= \\var{sola} \\end{split} \\]

\n

\n

Part b)

\n

\\[ \\begin{split} \\simplify{{m2}*mathbf:a +{p1}*mathbf:c} \\, &\\,= \\simplify[!collectNumbers]{{m2}*{a}+{p1}*{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{m2*a}+{p1*c}} \\\\ &\\,= \\var{solb} \\end{split} \\]

\n

\\[ \\begin{split} \\simplify{{m2}*mathbf:a +{p1}*mathbf:c} \\, &\\,= \\simplify[!collectNumbers]{{m2}*{a}+{p1}*{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{m2*a}-{abs(p1)*c}} \\\\ &\\,= \\var{solb} \\end{split} \\]

\n

\n

Part c)

\n

\\[ \\begin{split} \\simplify{{n2}*mathbf:b +{p2}*mathbf:c} \\, &\\,= \\simplify[!collectNumbers]{{n2}*{b}+{p2}*{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{n2*b}+{p2*c}} \\\\ &\\,= \\var{solc} \\end{split} \\]

\n

\\[ \\begin{split} \\simplify{{n2}*mathbf:b +{p2}*mathbf:c} \\, &\\,= \\simplify[!collectNumbers]{{n2}*{b}+{p2}*{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{n2*b}-{abs(p2)*c}} \\\\ &\\,= \\var{solc} \\end{split} \\]

\n

\n

Part d)

\n

\\[ \\begin{split} \\simplify{{k}*(mathbf:a+mathbf:b) +{p3}*mathbf:c} \\, &\\,= \\simplify[!collectNumbers]{{k}*({a}+{b})+{p3}*{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{k}*{a+b}+{p3}*{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{k*(a+b)}+{p3*c}} \\\\ &\\,= \\var{sold} \\end{split} \\]

\n

\\[ \\begin{split} \\simplify{{k}*(mathbf:a+mathbf:b) +{p3}*mathbf:c} \\, &\\,= \\simplify[!collectNumbers]{{k}*({a}+{b})+{p3}*{c}} \\\\ &\\,=\\simplify[!collectNumbers]{{k}*{a+b}+{p3}*{c}} \\\\&\\,= \\simplify[!collectNumbers]{{k*(a+b)}-{abs(p3)*c}} \\\\ &\\,= \\var{sold} \\end{split} \\]

\n

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(repeat(random(-5..10),2))", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(random(-5..10 except 0),random(-5..10))", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "vector(random(-5..10),random(-5..10 except 0))", "description": "", "templateType": "anything", "can_override": false}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(1,-1)*random(2..6 except m1)", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "p1": {"name": "p1", "group": "Ungrouped variables", "definition": "random(1,-1)*random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "p2": {"name": "p2", "group": "Ungrouped variables", "definition": "random(1,-1)*random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "solb": {"name": "solb", "group": "Ungrouped variables", "definition": "m2*a+p1*c", "description": "", "templateType": "anything", "can_override": false}, "solc": {"name": "solc", "group": "Ungrouped variables", "definition": "n2*b+p2*c", "description": "", "templateType": "anything", "can_override": false}, "sold": {"name": "sold", "group": "Ungrouped variables", "definition": "k*(a+b)+p3*c", "description": "", "templateType": "anything", "can_override": false}, "p3": {"name": "p3", "group": "Ungrouped variables", "definition": "random(1,-1)*random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "sola": {"name": "sola", "group": "Ungrouped variables", "definition": "vector(m1*a+n1*b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a[1]>0 ", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "m1", "m2", "n1", "n2", "p1", "p2", "p3", "k", "sola", "solb", "solc", "sold"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{{m1}*mathbf:a+{n1}*mathbf:b}=$ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(sola[0],sola[1])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{{m2}*mathbf:a+{p1}*mathbf:c}=$ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": true, "customName": "Gap 1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(solb[0],solb[1])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{{n2}*mathbf:b+{p2}*mathbf:c}=$ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": true, "customName": "Gap 2", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(solc[0],solc[1])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{{k}*(mathbf:a+mathbf:b)+{p3}*mathbf:c}=$ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": true, "customName": "Gap 3", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(sold[0],sold[1])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"name": "601, Vector between points", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Vectors: Finding Vectors Between Points 1", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Given the coordinates of three 2-dimensional points $A$, $B$ and $C$, find the vectors $\\vec{AB}$, $\\vec{AC}$ and $\\vec{CB}$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The points A, B and C have coordinates $(\\var{a[0]},\\, \\var{a[1]})$, $(\\var{b[0]},\\, \\var{b[1]})$, and $(\\var{c[0]},\\, \\var{c[1]})$ respectively. 

\n

Find:

", "advice": "

To find the vector between two points, it can help to mark the points and their corresponding position vectors on a graph. In this case, let $\\bf a$, $\\bf b$ and $\\bf c$ be the position vectors of $A$, $B$, and $C$, such that 

\n

\\[ \\mathbf a = \\var{a}, \\quad \\mathbf b = \\var{b}, \\quad \\mathbf c = \\var{c}.\\]

\n

{geogebra_applet('https://www.geogebra.org/m/jrrcctdj',defs)}

\n

To find the vector $\\vec{AB}$, consider how you can get between $A$ and $B$ only 'travelling' along the position vectors. Firstly, we need to go from $A$ to the origin $O$, which is the vector $\\mathbf{-a}$, and then from the $O$ to $B$, which is the vector $\\mathbf b$. Therefore, $\\vec{AB} = \\mathbf{-a}+\\mathbf{b}$, or more simply, \\[ \\vec{AB} = \\mathbf {b} - \\mathbf{a}.\\] The same method applies for finding the vectors $\\vec{AC}$ and $\\vec{CB}$.

\n

Therefore,

\n

\\[ \\vec{AB} = \\mathbf{b}-\\mathbf{a} = \\var{sola}, \\]

\n

\\[ \\vec{AC} = \\mathbf{c}-\\mathbf{a} = \\var{solb}, \\]

\n

\\[ \\vec{CB} = \\mathbf{b}-\\mathbf{c} = \\var{solc}, \\]

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(random(-5..-3),random(2..3))", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(random(2..5),random(3..4 except a[1]))", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "vector(random(1..2),random(-2..-4))", "description": "", "templateType": "anything", "can_override": false}, "sola": {"name": "sola", "group": "Ungrouped variables", "definition": "b-a", "description": "", "templateType": "anything", "can_override": false}, "solb": {"name": "solb", "group": "Ungrouped variables", "definition": "c-a", "description": "", "templateType": "anything", "can_override": false}, "solc": {"name": "solc", "group": "Ungrouped variables", "definition": "b-c", "description": "", "templateType": "anything", "can_override": false}, "defs": {"name": "defs", "group": "Ungrouped variables", "definition": "[\n ['A',a],\n ['B',b],\n ['C',c]\n]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "sola", "solb", "solc", "defs"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\vec{AB}$

\n

[[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(sola[0],sola[1])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\vec{AC}$

\n

[[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(solb[0],solb[1])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\vec{CB}$

\n

[[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "vector(solc[0],solc[1])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}, {"name": "505, Chain rule - trigonometry", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Chain rule - trigonometry", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}], "tags": [], "metadata": {"description": "

More work on differentiation with trigonometric functions

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following trigonometric functions using the chain rule.

\n

Do not write out $dy/dx$; only input the differentiated right hand side of each equation.

", "advice": "

If you don't know how to differentiate trigonometric functions, please see 'Differentiation 4 - Trigonometric Functions'.

\n

\n

These questions use the chain rule.

\n

The earlier questions are easy to do by inspection, e.g using Part a:

\n

$y=sin(\\var{c[0]}x)$.

\n

We differentiate the term(s) inside the function, here the term is $\\var{c[0]}x$.

\n

Then we derive $sin$ of any function, giving us $cos$.

\n

Putting our results together, we get

\n

$\\var{c[0]}cos(\\var{c[0]}x)$.

\n

\n

\n

\n

We will now go through an entire worked example of the formal method of the chain rule using Part e.

\n

The expression we will be differentiating here is

\n

$y=tan^\\var{p[0]}(x)$.

\n

As a reminder, the chain rule is defined as

\n

$\\frac{dy}{dx}=\\frac{dy}{du}\\times\\frac{du}{dx}$.

\n

Now we let $u=tanx$, so then $y=u^\\var{p[0]}$

\n

This becomes an easy differentiation using $\\frac{dy}{du}\\times\\frac{du}{dx}$:

\n

Differentiate $y$ with respect to $u$, giving $\\simplify{{p[0]}u^{{p[0]}-1}}$.

\n

Then differentiate $u$ with respect to $x$, giving $sec^2x$.

\n

Multiply these results together, and substitue $tan$ back in for $u$.

\n

Your final result is therefore

\n

$\\simplify{{p[0]}(tan^{{p[0]}-1}(x))*sec^2(x)}$.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"p": {"name": "p", "group": "Ungrouped variables", "definition": "repeat(random(3..6),2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(2..8)[0..5]", "description": "

coefficients

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\sin(\\var{c[0]}x)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c[0]}cos({c[0]}x)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\cos(\\var{c[1]}x)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{c[1]}sin({c[1]}x)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=-\\sin(\\var{c[2]}x^2)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-2{c[2]}x*cos({c[2]}x^2)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=-5\\cos(\\var{c[3]}x)+\\sin(\\var{c[4]}x)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "5{c[3]}sin({c[3]}x)+{c[4]}cos({c[4]}x)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\tan^\\var{p[0]}(x)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{p[0]}(tan(x)^({p[0]}-1))*sec(x)^2", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\cos(x^\\var{p[1]}-1)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-{p[1]}x^({p[1]}-1)*sin(x^{p[1]}-1)", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": false, "reverse": false, "browse": false, "allowsteps": true, "showfrontpage": true, "navigatemode": "diagnostic", "onleave": {"action": "warnifunattempted", "message": "

You have not attempted this question.

"}, "preventleave": false, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": true, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "never", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": false, "intro": "

The purpose of this test is to establish your background knowledge of mathematics before beginning a university degree course.

\n

The system chooses which questions to ask you based on your answers to previous questions.

\n

If the test feels too long, use the PAUSE button and save the page (don't close the tab!); you can get back to it at a later time.

\n

When the test is over, you will be shown a summary of the system's estimates of your understanding of each of the topics covered in the test.

\n

The test is anonymous and won't appear in any record, so don't be afraid to test your skills!

", "end_message": "

Depending on your results, you may wish to access the Math helpdesk here, or book a one to one appointment with a tutor. They can help you assess the best way to improve your skills and fill in the gaps. Save the page with your results to have a reference on what are your weaker and stronger topics, and bring it to the appointment.

\n

Use the \"print this result summary\" button and save the file, it will contain all your attempted questions with your answers; it will be useful to go through the questions with the tutor.

\n

Click here to book your appointment.

", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": false, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [{"name": "101, Multiplication of negative numbers", "description": "", "depends_on": ["102, Multiply negative and positive"], "learning_objectives": ["Numbers"]}, {"name": "102, Multiply negative and positive", "description": "", "depends_on": ["103, Negative Numbers"], "learning_objectives": ["Numbers"]}, {"name": "103, Negative Numbers", "description": "", "depends_on": [], "learning_objectives": ["Numbers"]}, {"name": "104, Size of decimals", "description": "", "depends_on": [], "learning_objectives": ["Numbers"]}, {"name": "105, Decimal places", "description": "", "depends_on": [], "learning_objectives": ["Numbers"]}, {"name": "106, Definition of positive powers", "description": "", "depends_on": [], "learning_objectives": ["Powers"]}, {"name": "107, Ratios", "description": "", "depends_on": ["108, Factors of an integer"], "learning_objectives": ["Numbers"]}, {"name": "108, Factors of an integer", "description": "

Can the student find the factors of a given integer?

", "depends_on": [], "learning_objectives": ["Numbers"]}, {"name": "109, Simple fractions", "description": "", "depends_on": [], "learning_objectives": ["Numbers"]}, {"name": "201, Use of < and > signs", "description": "", "depends_on": ["103, Negative Numbers", "104, Size of decimals"], "learning_objectives": ["Numbers"]}, {"name": "205, Inverse ratios", "description": "", "depends_on": ["107, Ratios"], "learning_objectives": ["Numbers"]}, {"name": "206, Cancelling numerical fractions", "description": "", "depends_on": ["107, Ratios", "108, Factors of an integer"], "learning_objectives": ["Numbers"]}, {"name": "216, Add/subtract numerical fractions", "description": "", "depends_on": ["109, Simple fractions", "206, Cancelling numerical fractions"], "learning_objectives": ["Numbers"]}, {"name": "301, Solution of simple inequalities", "description": "", "depends_on": ["201, Use of < and > signs"], "learning_objectives": ["Numbers"]}, {"name": "202, Significant figures", "description": "", "depends_on": ["105, Decimal places"], "learning_objectives": ["Numbers"]}, {"name": "203, Definition of negative powers", "description": "", "depends_on": ["106, Definition of positive powers"], "learning_objectives": ["Powers"]}, {"name": "204, Rules for positive powers", "description": "", "depends_on": ["106, Definition of positive powers"], "learning_objectives": ["Powers"]}, {"name": "302, Scientific Notation", "description": "", "depends_on": ["202, Significant figures", "203, Definition of negative powers"], "learning_objectives": ["Numbers"]}, {"name": "303, Simplification of fractions with powers", "description": "", "depends_on": ["206, Cancelling numerical fractions", "304, Rules for negative powers"], "learning_objectives": ["Powers"]}, {"name": "304, Rules for negative powers", "description": "", "depends_on": ["203, Definition of negative powers", "204, Rules for positive powers"], "learning_objectives": ["Powers"]}, {"name": "305, Rules for fractional powers", "description": "", "depends_on": ["304, Rules for negative powers", "306, Definition of fractional powers"], "learning_objectives": ["Powers"]}, {"name": "306, Definition of fractional powers", "description": "", "depends_on": ["203, Definition of negative powers"], "learning_objectives": ["Powers"]}, {"name": "401, Simplify with scientific notation", "description": "", "depends_on": ["302, Scientific Notation", "303, Simplification of fractions with powers"], "learning_objectives": ["Powers"]}, {"name": "402b, Log rules", "description": "", "depends_on": ["304, Rules for negative powers", "402, Logs definition"], "learning_objectives": ["Powers"]}, {"name": "403, Arbitrary factors", "description": "", "depends_on": ["304, Rules for negative powers"], "learning_objectives": ["Powers"]}, {"name": "110, Collect terms (simple)", "description": "", "depends_on": [], "learning_objectives": ["Basic algebra"]}, {"name": "111, Solving a simple equation", "description": "", "depends_on": [], "learning_objectives": ["Basic algebra"]}, {"name": "112, Simple calculation", "description": "", "depends_on": [], "learning_objectives": ["Numbers"]}, {"name": "113, Evaluating a simple expression", "description": "", "depends_on": [], "learning_objectives": ["Basic algebra"]}, {"name": "207, Multiply algebraic fractions", "description": "", "depends_on": ["206, Cancelling numerical fractions"], "learning_objectives": ["Basic algebra"]}, {"name": "208, Factors of algebraic products", "description": "", "depends_on": ["108, Factors of an integer"], "learning_objectives": ["Basic algebra"]}, {"name": "209, Simple Factorisation", "description": "", "depends_on": ["208, Factors of algebraic products", "210, Expanding one bracket"], "learning_objectives": ["Basic algebra"]}, {"name": "210, Expanding one bracket", "description": "", "depends_on": ["112, Simple calculation"], "learning_objectives": ["Basic algebra"]}, {"name": "211, Collecting terms", "description": "", "depends_on": ["110, Collect terms (simple)"], "learning_objectives": ["Basic algebra"]}, {"name": "212, Solving linear equations", "description": "", "depends_on": ["111, Solving a simple equation"], "learning_objectives": ["Basic algebra"]}, {"name": "213, Transposition of formula", "description": "", "depends_on": [], "learning_objectives": ["Basic algebra"]}, {"name": "214, Evaluating formula", "description": "", "depends_on": ["112, Simple calculation", "113, Evaluating a simple expression"], "learning_objectives": ["Basic algebra"]}, {"name": "215, Precedence Rules", "description": "", "depends_on": ["112, Simple calculation"], "learning_objectives": ["Numbers"]}, {"name": "307, Division of algebraic fractions", "description": "", "depends_on": ["207, Multiply algebraic fractions"], "learning_objectives": ["Algebra methods"]}, {"name": "308, Add/subtract algebraic fractions", "description": "", "depends_on": ["216, Add/subtract numerical fractions"], "learning_objectives": ["Algebra methods"]}, {"name": "309, Simple Quadratic equations", "description": "", "depends_on": ["209, Simple Factorisation", "212, Solving linear equations"], "learning_objectives": ["Equations"]}, {"name": "310, Relation between roots and factors", "description": "", "depends_on": ["212, Solving linear equations", "311, Factorising a quadratic"], "learning_objectives": ["Equations"]}, {"name": "311, Factorising a quadratic", "description": "", "depends_on": ["209, Simple Factorisation", "312, Expanding two brackets"], "learning_objectives": ["Algebra methods"]}, {"name": "312, Expanding two brackets", "description": "", "depends_on": ["110, Collect terms (simple)", "210, Expanding one bracket"], "learning_objectives": ["Algebra methods"]}, {"name": "313, Difference of squares", "description": "", "depends_on": ["312, Expanding two brackets"], "learning_objectives": ["Algebra methods"]}, {"name": "314, Simultaneous Equations", "description": "", "depends_on": ["212, Solving linear equations"], "learning_objectives": ["Equations"]}, {"name": "315, Unusual linear equation", "description": "", "depends_on": ["212, Solving linear equations", "213, Transposition of formula"], "learning_objectives": ["Equations"]}, {"name": "316, Use of quadratic formula", "description": "", "depends_on": ["214, Evaluating formula"], "learning_objectives": ["Equations"]}, {"name": "317, Complex numbers", "description": "", "depends_on": ["110, Collect terms (simple)"], "learning_objectives": ["Algebra and calculus"]}, {"name": "404, L.c.d. of an algebraic fraction", "description": "", "depends_on": ["308, Add/subtract algebraic fractions"], "learning_objectives": ["Algebra methods"]}, {"name": "405, Identification of common errors", "description": "", "depends_on": ["308, Add/subtract algebraic fractions", "312, Expanding two brackets"], "learning_objectives": ["Algebra and calculus"]}, {"name": "406, Solve quad. by comp. the square", "description": "", "depends_on": ["407, Quadratics - completing the square"], "learning_objectives": ["Equations"]}, {"name": "407, Quadratics - completing the square", "description": "", "depends_on": ["311, Factorising a quadratic"], "learning_objectives": ["Algebra methods"]}, {"name": "408, Multiplication of complex numbers", "description": "", "depends_on": ["312, Expanding two brackets", "317, Complex numbers"], "learning_objectives": ["Algebra and calculus"]}, {"name": "410, Substituting into a formula", "description": "", "depends_on": ["214, Evaluating formula", "312, Expanding two brackets"], "learning_objectives": ["Algebra methods"]}, {"name": "411, Solutions of a quadratic", "description": "", "depends_on": ["316, Use of quadratic formula"], "learning_objectives": ["Equations"]}, {"name": "412, Difficult linear equation", "description": "", "depends_on": ["209, Simple Factorisation", "315, Unusual linear equation"], "learning_objectives": ["Equations"]}, {"name": "341, Differentiation of powers", "description": "", "depends_on": [], "learning_objectives": ["Algebra and calculus"]}, {"name": "342, Finding Max/Min of a quadratic", "description": "", "depends_on": ["341, Differentiation of powers"], "learning_objectives": ["Algebra and calculus"]}, {"name": "343, Geometric Progression", "description": "", "depends_on": [], "learning_objectives": ["Algebra and calculus"]}, {"name": "441, Product rule", "description": "", "depends_on": ["341, Differentiation of powers"], "learning_objectives": ["Algebra and calculus"]}, {"name": "442, Integration of powers", "description": "", "depends_on": ["341, Differentiation of powers"], "learning_objectives": ["Algebra and calculus"]}, {"name": "151, Coordinates", "description": "", "depends_on": [], "learning_objectives": ["Graphs"]}, {"name": "251, Gradient of a straight line", "description": "", "depends_on": ["151, Coordinates"], "learning_objectives": ["Graphs"]}, {"name": "351, Equation of a straight line", "description": "", "depends_on": ["251, Gradient of a straight line"], "learning_objectives": ["Graphs"]}, {"name": "451, Recognise formula of quad. graph", "description": "", "depends_on": ["351, Equation of a straight line"], "learning_objectives": ["Graphs"]}, {"name": "452, Recognise formula of recip. graph", "description": "", "depends_on": ["351, Equation of a straight line"], "learning_objectives": ["Graphs"]}, {"name": "221, Pythagoras", "description": "", "depends_on": [], "learning_objectives": ["Miscellaneous"]}, {"name": "222, Definition of sin and cos", "description": "", "depends_on": [], "learning_objectives": ["Miscellaneous"]}, {"name": "223, Percentages", "description": "", "depends_on": [], "learning_objectives": ["Miscellaneous"]}, {"name": "321, Equation of a circle", "description": "", "depends_on": ["221, Pythagoras"], "learning_objectives": ["Miscellaneous"]}, {"name": "322, Sin and Cos formula", "description": "", "depends_on": ["221, Pythagoras", "222, Definition of sin and cos"], "learning_objectives": ["Miscellaneous"]}, {"name": "323, Definition of radians", "description": "", "depends_on": [], "learning_objectives": ["Miscellaneous"]}, {"name": "324, Percentages (advanced)", "description": "", "depends_on": ["223, Percentages"], "learning_objectives": ["Miscellaneous"]}, {"name": "421, Deduce radius of circle", "description": "", "depends_on": ["321, Equation of a circle"], "learning_objectives": ["Miscellaneous"]}, {"name": "422, Sin and Cos as functions", "description": "", "depends_on": ["222, Definition of sin and cos"], "learning_objectives": ["Miscellaneous"]}, {"name": "161, Area of a triangle", "description": "", "depends_on": [], "learning_objectives": ["Area and volume"]}, {"name": "261, Area of trapezium", "description": "", "depends_on": ["161, Area of a triangle"], "learning_objectives": ["Area and volume"]}, {"name": "262, Area and circumference of a circle", "description": "", "depends_on": ["161, Area of a triangle"], "learning_objectives": ["Area and volume"]}, {"name": "263, Similar triangles", "description": "", "depends_on": [], "learning_objectives": ["Area and volume"]}, {"name": "361, Volume of cylinder", "description": "", "depends_on": ["262, Area and circumference of a circle"], "learning_objectives": ["Area and volume"]}, {"name": "362, Area/Length relationship", "description": "", "depends_on": ["263, Similar triangles"], "learning_objectives": ["Area and volume"]}, {"name": "363, Area of irregular shapes", "description": "", "depends_on": ["261, Area of trapezium"], "learning_objectives": ["Area and volume"]}, {"name": "461, Surface area of a cylinder", "description": "", "depends_on": ["361, Volume of cylinder"], "learning_objectives": ["Area and volume"]}, {"name": "462, Volume Area Length relationships", "description": "", "depends_on": ["362, Area/Length relationship"], "learning_objectives": ["Area and volume"]}, {"name": "231, Range of a set of numbers", "description": "", "depends_on": [], "learning_objectives": ["Statistics"]}, {"name": "232, Mean of a set of numbers", "description": "", "depends_on": [], "learning_objectives": ["Statistics"]}, {"name": "233, Simple probability (coins)", "description": "", "depends_on": [], "learning_objectives": ["Statistics"]}, {"name": "334, Conditional probability", "description": "", "depends_on": ["233, Simple probability (coins)"], "learning_objectives": ["Statistics"]}, {"name": "234, Venn Diagrams (probability)", "description": "", "depends_on": [], "learning_objectives": ["Statistics"]}, {"name": "335, Venn Diagrams (conditional prob.)", "description": "", "depends_on": ["234, Venn Diagrams (probability)"], "learning_objectives": ["Statistics"]}, {"name": "501, Decomposition of function to partial fractions", "description": "", "depends_on": ["410, Substituting into a formula"], "learning_objectives": ["Algebra methods"]}, {"name": "502, Solve equation using log", "description": "", "depends_on": ["402b, Log rules"], "learning_objectives": ["Powers"]}, {"name": "402, Logs definition", "description": "", "depends_on": ["304, Rules for negative powers"], "learning_objectives": ["Powers"]}, {"name": "442b, Integration of Powers, Trig and Exp", "description": "", "depends_on": ["442, Integration of powers"], "learning_objectives": ["Algebra and calculus"]}, {"name": "443, Definite Integrals", "description": "", "depends_on": ["442b, Integration of Powers, Trig and Exp"], "learning_objectives": ["Algebra and calculus"]}, {"name": "444, Integration by substitution", "description": "", "depends_on": ["442b, Integration of Powers, Trig and Exp"], "learning_objectives": ["Algebra and calculus"]}, {"name": "505, Integration by parts", "description": "", "depends_on": ["444, Integration by substitution"], "learning_objectives": ["Algebra and calculus"]}, {"name": "341b, Differentiation of polynomials", "description": "", "depends_on": ["341, Differentiation of powers"], "learning_objectives": ["Algebra and calculus"]}, {"name": "341c, Differentiation of exponential, log, trig functions", "description": "", "depends_on": ["341b, Differentiation of polynomials"], "learning_objectives": ["Algebra and calculus"]}, {"name": "503, Chain rule - powers", "description": "", "depends_on": ["441, Product rule"], "learning_objectives": ["Algebra and calculus"]}, {"name": "504, Quotient rule", "description": "", "depends_on": ["503, Chain rule - powers"], "learning_objectives": ["Algebra and calculus"]}, {"name": "240, Poisson Distribution", "description": "", "depends_on": ["233, Simple probability (coins)"], "learning_objectives": ["Statistics"]}, {"name": "241, Binomial Distribution", "description": "", "depends_on": ["233, Simple probability (coins)"], "learning_objectives": ["Statistics"]}, {"name": "342, Probability Complement rule", "description": "", "depends_on": ["233, Simple probability (coins)", "335, Venn Diagrams (conditional prob.)"], "learning_objectives": ["Statistics"]}, {"name": "606, Forces", "description": "", "depends_on": ["605, Forces (easy)"], "learning_objectives": ["Vectors"]}, {"name": "605, Forces (easy)", "description": "", "depends_on": ["601, Vector between points"], "learning_objectives": ["Vectors"]}, {"name": "604, Vector magnitude", "description": "", "depends_on": ["601, Vector between points"], "learning_objectives": ["Vectors"]}, {"name": "603, Vectors linear combination", "description": "", "depends_on": ["602, Vector addition and scalars", "601, Vector between points"], "learning_objectives": ["Vectors"]}, {"name": "602, Vector addition and scalars", "description": "", "depends_on": ["601, Vector between points"], "learning_objectives": ["Vectors"]}, {"name": "601, Vector between points", "description": "", "depends_on": [], "learning_objectives": ["Vectors"]}, {"name": "505, Chain rule - trigonometry", "description": "", "depends_on": ["503, Chain rule - powers"], "learning_objectives": ["Algebra and calculus"]}], "learning_objectives": [{"name": "Numbers", "description": ""}, {"name": "Powers", "description": ""}, {"name": "Basic algebra", "description": ""}, {"name": "Algebra methods", "description": ""}, {"name": "Equations", "description": ""}, {"name": "Algebra and calculus", "description": ""}, {"name": "Graphs", "description": ""}, {"name": "Miscellaneous", "description": ""}, {"name": "Area and volume", "description": ""}, {"name": "Statistics", "description": ""}, {"name": "Vectors", "description": ""}]}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Alessandro Palazio", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25453/"}, {"name": "Krishna Kedia", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/25454/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": ["eukleides", "geogebra", "jsxgraph"], "custom_part_types": [], "resources": [["question-resources/force_component_image.png", "/srv/numbas/media/question-resources/force_component_image.png"], ["question-resources/force_component_image_PgpiR1U.png", "/srv/numbas/media/question-resources/force_component_image_PgpiR1U.png"], ["question-resources/force_component_image_4.png", "/srv/numbas/media/question-resources/force_component_image_4.png"], ["question-resources/Picture2_7CTf2tv.png", "/srv/numbas/media/question-resources/Picture2_7CTf2tv.png"], ["question-resources/Picture2_4njOTSR.png", "/srv/numbas/media/question-resources/Picture2_4njOTSR.png"], ["question-resources/Picture1_kv6rtT4.png", "/srv/numbas/media/question-resources/Picture1_kv6rtT4.png"]]}