// Numbas version: finer_feedback_settings {"name": "17. Order of operations (BIDMAS-BODMAS)", "metadata": {"description": "
Practice on arithmetic using the order of operations.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], []], "questions": [{"name": "17.a BIDMAS without a division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing the same sum gets the same answer. In this case the first thing that is in the question is Multiplication.
\nFirst work through the expression from left to right, evaluating any multiplication as you come to them. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[basic,alwaysTimes,noLeadingMinus]{-{b}{c}+{a}}\\]
\n\\[=\\simplify[basic,noLeadingMinus]{-{b*c}+{a}}\\]
\n\\[=\\var{a-b*c}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..8 except [a,b])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-11..11 except a)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n\\[\\simplify[basic,alwaysTimes,noLeadingMinus]{-{b}{c}+{a}}.\\]
", "minValue": "{a-b*c}", "maxValue": "{a-b*c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "17.b BIDMAS with a division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing the same sum gets the same answer. In this case the first thing that is in the question is Division.
\nFirst work through the expression from left to right, evaluating any division as you come to it. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[basic]{{h}-{a2*b2} / {b2}}\\]
\n\\[=\\simplify[basic]{{h}-{a2}}\\]
\n\\[=\\var{h-a2}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(7..15)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["h", "a2", "b2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\[\\simplify[basic]{{h}-{a2*b2} / {b2}}\\]
", "minValue": "{h-a2}", "maxValue": "{h-a2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "17.c BIDMAS with a division 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Applying the order of operators.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "To calculate the following expression you press a sequence of buttons on your calculator.
\n\\begin{align}\\frac{\\var{num}}{\\var{a}\\times\\var{b}}\\end{align}
\nWhich of the following would give the WRONG answer?
\n", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\nThis is the standardized order of operations that we carry out and is part of how the calculator is designed to work. The most effective way to use most modern calculators is to use either the fraction button (on scientific calculators) or as is hinted at in this question, use brackets.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "a*b*3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a<>b", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "num"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\var{num}\\div (\\var{a}\\times\\var{b})$", "$\\var{num} \\div \\var{a} \\times \\var{b}$", "$\\var{num} \\div \\var{a} \\div \\var{b}$"], "matrix": [0, "1", 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "17.d BIDMAS with powers 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing the same sum gets the same answer. In this case the first thing that is in the question is an Index.
\nFirst work through the expression from left to right, evaluating any indicies as you come to them. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[basic,alwaysTimes,noLeadingMinus,unitFactor]{{b}{c}^2+{a}}\\]
\n\\[=\\simplify[basic,noLeadingMinus]{{b*c^2}+{a}}\\]
\n\\[=\\var{a+b*c^2}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..30)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-1,1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n\\[\\simplify[basic,alwaysTimes,noLeadingMinus,unitFactor]{{b}{c}^2+{a}}.\\]
", "minValue": "{a+b*c^2}", "maxValue": "{a+b*c^2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "17.e BIDMAS with powers 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing the same sum gets the same answer. In this case the first thing that is in the question is a Bracket.
\nFirst work through the expression from left to right, evaluating everything inside the brackets as you come to them. You should be left with an expression involving only indices. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[basic,alwaysTimes,noLeadingMinus]{({a}+{b})^{c}}\\]
\n\\[=\\simplify[basic,alwaysTimes,noLeadingMinus]{({a+b})^{c}}\\]
\n\\[=\\var{(a+b)^c}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-(10-a)..(10-a) except 0 except -a)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "c=2 || abs(a+b)<5 || a+b=10 || a+b=-10", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n\\[\\simplify[basic,alwaysTimes,noLeadingMinus]{({a}+{b})^{c}}.\\]
", "minValue": "{(a+b)^c}", "maxValue": "{(a+b)^c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "17.f BIDMAS with roots", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing the same sum gets the same answer. In this case we have a square root. You treat everything inside the square root as a bracket so we evaluate this first.
\nFirst work through the expression from left to right, evaluating everything inside the square root. Then we need to apply BIDMAS again. We have no brackets left but we treat square roots like indicies so we evaluate this next. Finally we should be left with just addition and subtraction. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[basic,noLeadingMinus,unitFactor]{{a}+{d}sqrt({c^2+b}-{b})}\\]
\n\\[=\\simplify[basic,noLeadingMinus,unitFactor]{{a}+{d}sqrt({c^2})}\\]
\n\\[=\\simplify[basic,noLeadingMinus,unitFactor]{{a}+{d*c}}\\]
\n\\[=\\var{a+d*c}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-35..35 except 0 except c except -c)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-1,1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n\\[\\simplify[basic,noLeadingMinus,unitFactor]{{a}+{d}sqrt({c^2+b}-{b})}.\\]
", "minValue": "{a+d*c}", "maxValue": "{a+d*c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "17.g BIDMAS sum of multiplication/division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing teh same sum gets the same answer. In this case the first thing that is in the question is Multiplication and Division.
\nFirst work through the expression from left to right, evaluating any multiplication and division as you come to it. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[unitFactor,unitDenominator,alwaysTimes]{{a*b^Bsgn}{b^(1-Bsgn)}/{b^Bsgn}+{c*d^Bsgn}{d^(1-Bsgn)}/{d^Bsgn}}\\]
\n\\[=\\simplify[unitFactor,unitDenominator,alwaysTimes]{{a*b^(1-Bsgn)}+{c*d^(1-Bsgn)}}.\\]
\n\\[=\\var{a*b^(1-Bsgn)+c*d^(1-Bsgn)}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except 0 except 1 except -1)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9 except 0 except 1 except -1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-9..9 except 0 except 1 except -1)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-9..9 except 0 except 1 except -1)", "description": "", "templateType": "anything", "can_override": false}, "Bsgn": {"name": "Bsgn", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "Dsgn": {"name": "Dsgn", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "Bsgn", "Dsgn"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n\\[\\simplify[unitFactor,unitDenominator,alwaysTimes]{{a*b^Bsgn}{b^(1-Bsgn)}/{b^Bsgn}+{c*d^Bsgn}{d^(1-Bsgn)}/{d^Bsgn}}.\\]
", "minValue": "{a*b^(1-Bsgn)+c*d^(1-Bsgn)}", "maxValue": "{a*b^(1-Bsgn)+c*d^(1-Bsgn)}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "17.h BIDMAS - brackets, addition, and multiplication", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nThis is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing the same sum gets the same answer. In this case the first thing that is in the question is Brackets.
\nFirst work through the expression from left to right, evaluating all brackets. Then work through the expression evaluating all indicies. Go through the expression again and evaluate all multiplication and divisions. Finally you should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus,
\n\\[\\simplify[alwaysTimes,unitPower]{{a}+({b}+{c})^{P}*{d}}\\]
\n\\[=\\simplify[alwaysTimes,unitPower]{{a}+({b+c})^{P}*{d}}\\]
\n\\[=\\simplify[alwaysTimes,unitPower]{{a}+{(b+c)^P}*{d}}\\]
\n\\[=\\simplify[alwaysTimes,unitPower]{{a}+{(b+c)^P*d}}\\]
\n\\[=\\var{a+(b+c)^P*d}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-(6+b)..(6-b) except 0 except -b)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9 except 0 except 1 except -1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "if(P=1, random(-12..12 except 0), random(-4..4 except 0))", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "p"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n\\[\\simplify[alwaysTimes,unitPower]{{a}+({b}+{c})^{P}*{d}}.\\]
", "minValue": "{a+(b+c)^P*d}", "maxValue": "{a+(b+c)^P*d}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": false, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": false, "typeendtoleave": false, "startpassword": "", "autoSubmit": false, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": false, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "extensions": [], "custom_part_types": [], "resources": []}