// Numbas version: finer_feedback_settings {"name": "Test SimEq Worksheet", "metadata": {"description": "", "licence": "All rights reserved"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": [""], "variable_overrides": [[]], "questions": [{"name": "Simultaneous Equation - Kirchhoff's Law", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Graeme Woodhall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/30583/"}], "tags": [], "metadata": {"description": "

BTEC Unit 3 Maths - Simultaneous Equations

", "licence": "All rights reserved"}, "statement": "

When Kirchhoff’s laws are applied to the two-loop circuit below,
the following simultaneous equations arise (currents in amperes):

\n

\\[
\\begin{aligned}
(R_1 + R_3)\\,I_{1} \\;-\\; R_3\\,I_{2} &= V_1\\\\[6pt]
-\\;R_3\\,I_{1} \\;+\\; (R_2 + R_3)\\,I_{2} &= V_2
\\end{aligned}
\\]

\n

with;

\n

\\( R_1 = \\var{R1}\\,\\Omega,\\;
R_2 = \\var{R2}\\,\\Omega,\\;
R_3 = \\var{R3}\\,\\Omega,\\quad
V_1 = \\var{V1}\\,\\text{V},\\;
V_2 = \\var{V2}\\,\\text{V}. \\)

\n

Calculate \\(I_{1}\\) and \\(I_{2}\\) in amperes, showing all working.

", "advice": "

\n

Worked solution – substitution method

\n

We start from the symbolic loop equations:

\n\n\\begin{aligned}\n\\simplify{-R3+(R2+R3)*(R1+R3)/R3}\\,I_{1}\n- \\simplify{(R2+R3)*V1/R3} &= \\var{V2}\n\\end{aligned}\n\n
\n

1. Insert the numerical values

\n

Equation (1′):

\n\n\\begin{aligned}\n(\\var{R1}+\\var{R3})\\,I_{1} - \\var{R3}\\,I_{2} &= \\var{V1}\n\\end{aligned}\n\n

Equation (2′):

\n\n\\begin{aligned}\n-\\var{R3}\\,I_{1} + (\\var{R2}+\\var{R3})\\,I_{2} &= \\var{V2}\n\\end{aligned}\n\n
\n

2. Rearrange (1′) to make I2 the subject

\n\n\\begin{aligned}\n\\var{R3}\\,I_{2} &= (\\var{R1}+\\var{R3})\\,I_{1} - \\var{V1} \\\\\nI_{2} &= \\frac{(\\var{R1}+\\var{R3})}{\\var{R3}}\\,I_{1} - \\frac{\\var{V1}}{\\var{R3}}\n\\end{aligned}\n\n
\n

3. Substitute (3) into equation (2′) and simplify

\n

Substitution:

\n\n\\begin{aligned}\n-\\var{R3}\\,I_{1} + (\\var{R2}+\\var{R3})\\left(\\frac{(\\var{R1}+\\var{R3})}{\\var{R3}}\\,I_{1} - \\frac{\\var{V1}}{\\var{R3}}\\right) &= \\var{V2}\n\\end{aligned}\n\n

After simplifying the left-hand side:

\n\n\\begin{aligned}\n\\simplify{-3+(5+3)*(5+3)/3}\\,I_{1}\n- \\simplify{(5+3)*(-27)/3} &= \\var{V2}\n\\end{aligned}\n\n

\n

4. Solve for I1

\n\n\\begin{aligned}\nI_{1} &= \\var{I_1}\\;\\text{A}\n\\end{aligned}\n\n
\n

5. Find I2 using (3)

\n\n\\begin{aligned}\nI_{2} &= \\frac{(\\var{R1}+\\var{R3})}{\\var{R3}}\\,(\\var{I_1}) - \\frac{\\var{V1}}{\\var{R3}} \\\\\n&= \\var{I_2}\\;\\text{A}\n\\end{aligned}\n\n
\n

6. Check (optional but good practice)

\n\n\\begin{aligned}\n- \\var{R3}\\times\\var{I_1} + (\\var{R2}+\\var{R3})\\times\\var{I_2} &= \\var{V2}\\quad\\checkmark\n\\end{aligned}\n\n
\n

Result

\n\n\\begin{aligned}\n\\boxed{\\,I_{1}=\\var{I_1}\\;\\text{A},\\quad I_{2}=\\var{I_2}\\;\\text{A}\\,}\n\\end{aligned}\n\n

The negative sign on I2 simply means the real current flows opposite to the assumed loop direction.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"I_1": {"name": "I_1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)\n", "description": "", "templateType": "anything", "can_override": false}, "I_2": {"name": "I_2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)\n", "description": "", "templateType": "anything", "can_override": false}, "R1": {"name": "R1", "group": "Ungrouped variables", "definition": "random(2,3,4,5,6,8,10)\n", "description": "", "templateType": "anything", "can_override": false}, "R2": {"name": "R2", "group": "Ungrouped variables", "definition": "random(1,2,3,4,5,6,8)\n\n\n", "description": "", "templateType": "anything", "can_override": false}, "R3": {"name": "R3", "group": "Ungrouped variables", "definition": "random(1,2,3,4,5)\n", "description": "", "templateType": "anything", "can_override": false}, "V1": {"name": "V1", "group": "Ungrouped variables", "definition": "(R1+R3)*I_1 - R3*I_2\n\n", "description": "", "templateType": "anything", "can_override": false}, "V2": {"name": "V2", "group": "Ungrouped variables", "definition": "-R3*I_1+(R2+R3)*I_2\n", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["I_1", "I_2", "R1", "R2", "R3", "V1", "V2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

I_{1}= [[0]] A
I_{2}= [[1]] A

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "I_1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "I_1", "maxValue": "I_1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "I_2", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "I_2", "maxValue": "I_2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Graeme Woodhall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/30583/"}], "extensions": [], "custom_part_types": [], "resources": []}