// Numbas version: finer_feedback_settings {"name": "Algebra Quiz", "question_groups": [{"pickingStrategy": "all-ordered", "name": "", "questions": [{"name": "Evaluate f(x)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "parts": [{"type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"maxValue": "{a1}*({a3}^{a2})+{b1}*{a3}-{c1}", "variableReplacements": [], "correctAnswerStyle": "plain", "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "precisionType": "dp", "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "type": "numberentry", "showFeedbackIcon": true, "precisionMessage": "You have not given your answer to the correct precision.", "precision": "2", "minValue": "{a1}*({a3}^{a2})+{b1}*{a3}-{c1}", "showPrecisionHint": true, "allowFractions": false, "showCorrectAnswer": true, "scripts": {}, "mustBeReduced": false, "marks": 1}], "showFeedbackIcon": true, "prompt": "
Evaluate \\(f(\\var{a3})\\)
\n\\(f(\\var{a3})\\) = [[0]]
", "scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "marks": 0}], "rulesets": {}, "functions": {}, "ungrouped_variables": ["a1", "a2", "b1", "c1", "a3"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Evaluating a function
"}, "preamble": {"css": "", "js": ""}, "variable_groups": [], "tags": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a1": {"definition": "random(2..12#1)", "description": "", "group": "Ungrouped variables", "name": "a1", "templateType": "randrange"}, "a3": {"definition": "random(1..6#1)", "description": "", "group": "Ungrouped variables", "name": "a3", "templateType": "randrange"}, "c1": {"definition": "random(1..15#1)", "description": "", "group": "Ungrouped variables", "name": "c1", "templateType": "randrange"}, "a2": {"definition": "random(2..5#1)", "description": "", "group": "Ungrouped variables", "name": "a2", "templateType": "randrange"}, "b1": {"definition": "random(3..12#1)", "description": "", "group": "Ungrouped variables", "name": "b1", "templateType": "randrange"}}, "advice": "\\(f(x)=\\var{a1}x^{\\var{a2}}+\\var{b1}x-\\var{c1}\\)
\n\\(x=\\var{a3}\\)
\n\\(f(\\var{a3})=\\var{a1}*(\\var{a3})^{\\var{a2}}+\\var{b1}*(\\var{a3})-\\var{c1}\\)
\n\\(f(\\var{a3})=\\simplify{{a1}*{a3}^{{a2}}}+\\simplify{{b1}*{a3}}-\\var{c1}\\)
\n\\(f(\\var{a3})=\\simplify{{a1}*{a3}^{{a2}}+{b1}*{a3}-{c1}}\\)
", "statement": "Given the function:
\n\\(f(x)=\\var{a1}x^{\\var{a2}}+\\var{b1}x-\\var{c1}\\)
", "type": "question"}, {"name": "Evaluate a limit", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a", "b"], "tags": [], "advice": "\\(\\displaystyle{\\lim_{x \\to \\var{a}}}\\frac{x-\\var{a}}{x^2-\\simplify{{a}+{b}}x+\\simplify{{a}*{b}}}\\)
\nWe can factorise the denominator
\n\\(\\displaystyle{\\lim_{x \\to \\var{a}}}\\frac{x-\\var{a}}{(x-\\var{a})(x-\\var{b})}\\)
\nCancel out the common factor
\n\\(\\displaystyle{\\lim_{x \\to \\var{a}}}\\frac{1}{x-\\var{b}}\\)
\nInsert the value \\(\\var{a}\\) in for \\(x\\) to evaluate the limit
\n\\(-\\frac{1}{\\simplify{{b}-{a}}}\\)
\n", "rulesets": {}, "parts": [{"prompt": "Input your answer as a fraction.
", "allowFractions": true, "variableReplacements": [], "maxValue": "1/({a}-{b})", "minValue": "1/({a}-{b})", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry"}], "statement": "Evaluate the following limit
\n\\(\\displaystyle{\\lim_{x \\to \\var{a}}}\\frac{x-\\var{a}}{x^2-\\simplify{{a}+{b}}x+\\simplify{{a}*{b}}}\\)
\n", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "aEvaluate a limit", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Solve an exponential equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "advice": "\\(\\var{k}=\\var{a}e^{\\var{m}x+{\\var{c}}}\\)
\n\\(\\frac{\\var{k}}{\\var{a}}=e^{\\var{m}x+\\var{c}}\\)
\n\\(ln\\left(\\frac{\\var{k}}{\\var{a}}\\right)=\\var{m}x+\\var{c}\\)
\n\\(ln\\left(\\frac{\\var{k}}{\\var{a}}\\right)-\\var{c}=\\var{m}x\\)
\n\\(\\frac{ln\\left(\\frac{\\var{k}}{\\var{a}}\\right)-\\var{c}}{\\var{m}}=x\\)
", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Solve an exponential equation
"}, "preamble": {"css": "", "js": ""}, "ungrouped_variables": ["a", "m", "c", "k"], "variable_groups": [], "functions": {}, "statement": "Given the equation \\(f(x)=\\var{a}e^{\\var{m}x+\\var{c}}\\)
\nDetermine the value for \\(x\\) that satisfies the relation \\(f(x)=\\var{k}\\)
", "tags": [], "rulesets": {}, "parts": [{"marks": 0, "prompt": "Input your answer correct to three decimal places.
\n\\(x = \\) [[0]]
", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "type": "gapfill", "gaps": [{"mustBeReducedPC": 0, "precisionPartialCredit": 0, "maxValue": "(ln({k}/{a})-{c})/{m}", "precision": "3", "strictPrecision": false, "precisionMessage": "You have not given your answer to the correct precision.", "correctAnswerFraction": false, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": false, "precisionType": "dp", "notationStyles": ["plain", "en", "si-en"], "showCorrectAnswer": true, "showPrecisionHint": false, "marks": "2", "scripts": {}, "variableReplacements": [], "showFeedbackIcon": true, "minValue": "(ln({k}/{a})-{c})/{m}"}]}], "variables": {"a": {"templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": "", "definition": "random(4..20#1)"}, "c": {"templateType": "randrange", "group": "Ungrouped variables", "name": "c", "description": "", "definition": "random(0.1..3#0.2)"}, "m": {"templateType": "randrange", "group": "Ungrouped variables", "name": "m", "description": "", "definition": "random(0.1..1.5#0.1)"}, "k": {"templateType": "randrange", "group": "Ungrouped variables", "name": "k", "description": "", "definition": "random(100..150#1)"}}, "variablesTest": {"maxRuns": 100, "condition": "c>0 or c<0 "}, "type": "question"}, {"name": "Solve a logarithmic equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "parts": [{"scripts": {}, "marks": 0, "variableReplacements": [], "type": "gapfill", "showCorrectAnswer": true, "prompt": "Calculate the value of \\(x\\) that satisfies the equation when \\(y=\\var{d}\\).
\nInput your answer correct to three decimal places.
\n\\(x = \\) [[0]]
", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "correctAnswerStyle": "plain", "scripts": {}, "maxValue": "((10^(d/a))-c)/b", "mustBeReduced": false, "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "allowFractions": false, "variableReplacements": [], "strictPrecision": false, "marks": "2", "minValue": "((10^(d/a))-c)/b", "precisionType": "dp", "showPrecisionHint": false, "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "precision": "3"}]}], "statement": "Given the following logarithmic equation:
\n\\(y=\\var{a}log(\\var{b}x+\\var{c}))\\)
\n", "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["a", "b", "c", "d"], "functions": {}, "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Solve a logarithmic equation
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\\(\\var{a}log(\\var{b}x+\\var{c})=\\var{d}\\)
\nDivide across by \\(\\var{a}\\)
\n\\(log(\\var{b}x+\\var{c})=\\var{d}/\\var{a}=\\simplify{{d}/{a}}\\)
\n\\(\\var{b}x+\\var{c}=10^{\\simplify{{d}/{a}}}\\)
\n\\(\\var{b}x+\\var{c}=\\simplify{10^{{d}/{a}}}\\)
\n\\(\\var{b}x=\\simplify{10^{{d}/{a}}}-\\var{c}\\)
\n\\(\\var{b}x=\\simplify{10^{{d}/{a}}-{c}}\\)
\n\\(x=\\simplify{(10^{{d}/{a}}-{c})/{b}}\\)
", "preamble": {"css": "", "js": ""}, "variables": {"b": {"name": "b", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(2..6#1)"}, "c": {"name": "c", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(2..10#1)"}, "a": {"name": "a", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(2..8#1)"}, "d": {"name": "d", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(1..6#1)"}}, "type": "question"}, {"name": "Manipulation of formula 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "metadata": {"description": "Manipulation of an exponential function
", "licence": "Creative Commons Attribution 4.0 International"}, "tags": [], "ungrouped_variables": ["k", "c", "m", "d"], "variables": {"c": {"description": "", "definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "c"}, "m": {"description": "", "definition": "random(1.6..5#0.2)", "templateType": "randrange", "group": "Ungrouped variables", "name": "m"}, "k": {"description": "", "definition": "random(2..12#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "k"}, "d": {"description": "", "definition": "random(1..14#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "d"}}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}, "parts": [{"type": "gapfill", "prompt": "\\(x =\\) [[0]]
", "scripts": {}, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"type": "jme", "answer": "(ln((1-y/{k})/{c})-{d})/{m}", "scripts": {}, "showpreview": true, "expectedvariablenames": [], "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showFeedbackIcon": true, "checkvariablenames": false, "showCorrectAnswer": true, "variableReplacements": [], "checkingaccuracy": 0.001, "checkingtype": "absdiff", "vsetrange": [0, 1], "marks": "2"}], "marks": 0, "showFeedbackIcon": true, "variableReplacements": []}], "preamble": {"css": "", "js": ""}, "functions": {}, "advice": "\\(y=\\var{k}(1-\\var{c}e^{\\var{m}x+\\var{d}})\\)
\nWorking from the outside in, we divide across by \\(\\var{k}\\)
\n\\(\\frac{y}{\\var{k}}=1-\\var{c}e^{\\var{m}x+\\var{d}}\\)
\nWe can bring the \\(x\\) variable to the left hand side and move the \\(y\\) variable to the right hand side
\n\\(\\var{c}e^{\\var{m}x+\\var{d}}=1-\\frac{y}{\\var{k}}\\)
\nAgain working from the outside in we divide across by \\(\\var{c}\\)
\n\\(e^{\\var{m}x+\\var{d}}=\\frac{1-\\frac{y}{\\var{k}}}{\\var{c}}\\)
\nTaking the natural log of both sides eliminates the \\(e\\) from the left hand side.
\n\\(\\var{m}x+\\var{d}=ln\\left(\\frac{1-\\frac{y}{\\var{k}}}{\\var{c}}\\right)\\)
\nSubtract \\(\\var{d}\\) from both sides
\n\\(\\var{m}x=ln\\left(\\frac{1-\\frac{y}{\\var{k}}}{\\var{c}}\\right)-\\var{d}\\)
\nand finally divide by \\(\\var{m}\\) to get
\n\\(x=\\frac{ln\\left(\\frac{1-\\frac{y}{\\var{k}}}{\\var{c}}\\right)-\\var{d}}{\\var{m}}\\)
", "statement": "Rearrange the following expression to make \\(x\\) the subject:
\n\\(y=\\var{k}(1-\\var{c}e^{\\var{m}x+\\var{d}})\\)
", "type": "question"}, {"name": "Manipulation of formula 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "metadata": {"description": "Manipulation of algebraic fractions
", "licence": "Creative Commons Attribution 4.0 International"}, "tags": [], "ungrouped_variables": ["a", "b", "c", "d"], "variables": {"c": {"description": "", "definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "c"}, "b": {"description": "", "definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "b"}, "a": {"description": "", "definition": "random(6..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a"}, "d": {"description": "", "definition": "random(8..16#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "d"}}, "variable_groups": [], "variablesTest": {"condition": "{a}*{d}>{c}*{b}", "maxRuns": 100}, "rulesets": {}, "parts": [{"type": "gapfill", "prompt": "Express your answer as a fraction:
\n\\(V =\\) [[0]]
", "scripts": {}, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"type": "jme", "answer": "((5*{b}-{d})R+8)/(({a}*{d}-{b}*{c})R+7*{a}-3*{c})", "scripts": {}, "showpreview": true, "expectedvariablenames": [], "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showFeedbackIcon": true, "checkvariablenames": false, "showCorrectAnswer": true, "variableReplacements": [], "checkingaccuracy": 0.001, "checkingtype": "absdiff", "vsetrange": [0, 1], "marks": "2"}], "marks": 0, "showFeedbackIcon": true, "variableReplacements": []}], "preamble": {"css": "", "js": ""}, "functions": {}, "advice": "When one fraction equals another fraction we can clear both fractions by cross-multiplying:
\n\\((\\var{a}V+1)*(\\var{d}R+7)=(\\var{b}R+3)*(\\var{c}V+5)\\)
\n\\(\\simplify{{a}*{d}}VR+\\simplify{7*{a}}V+\\var{d}R+7=\\simplify{{b}*{c}}VR+\\simplify{5*{b}}R+\\simplify{3*{c}}V+15\\)
\nGathering all the terms involving \\(V\\) to the left hand side and moving all other terms to the right hand side gives
\n\\(\\simplify{{a}*{d}-{b}*{c}}VR+\\simplify{7*{a}-3*{c}}V=\\simplify{5*{b}-{d}}R+8\\)
\nFactoring \\(V\\) out on the left hand side
\n\\(V(\\simplify{{a}*{d}-{b}*{c}}R+\\simplify{7*{a}-3*{c}})=\\simplify{5*{b}-{d}}R+8\\)
\nThus
\n\\(V=\\frac{\\simplify{5*{b}-{d}}R+8}{\\simplify{{a}*{d}-{b}*{c}}R+\\simplify{7*{a}-3*{c}}}\\)
", "statement": "Rearrange the following expression to make V the subject:
\n\\(\\frac{\\var{a}V+1}{\\var{b}R+3}=\\frac{\\var{c}V+5}{\\var{d}R+7}\\)
", "type": "question"}, {"name": "Solving two linear equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "parts": [{"scripts": {}, "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "prompt": "Input the value for \\(x\\) as an exact fraction.
\n\\(x = \\) [[0]]
\nInput the value for \\(y\\) as an exact fraction.
\n\\(y = \\) [[1]]
", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "scripts": {}, "maxValue": "({d}*{r1}-{b}*{r2})/({a}*{d}-{b}*{c})", "mustBeReduced": false, "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": true, "allowFractions": true, "minValue": "({d}*{r1}-{b}*{r2})/({a}*{d}-{b}*{c})", "marks": 1, "variableReplacements": [], "showFeedbackIcon": true}, {"notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "scripts": {}, "maxValue": "(-{c}*{r1}+{a}*{r2})/({a}*{d}-{b}*{c})", "mustBeReduced": false, "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": true, "allowFractions": true, "minValue": "(-{c}*{r1}+{a}*{r2})/({a}*{d}-{b}*{c})", "marks": 1, "variableReplacements": [], "showFeedbackIcon": true}]}], "statement": "Solve the following system of simultaneous equations:
\n\\(\\var{a}x+\\var{b}y=\\var{r1}\\)
\nand
\n\\(\\var{c}x+\\var{d}y=\\var{r2}\\)
", "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["a", "b", "c", "d", "r1", "r2"], "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Solving two simultaneous linear equations
"}, "variablesTest": {"condition": "{a}*{d}>{b}*{c}\n", "maxRuns": 100}, "advice": "equation (i) \\(\\var{a}x+\\var{b}y=\\var{r1}\\)
\nequation (ii) \\(\\var{c}x+\\var{d}y=\\var{r2}\\)
\nIf we decide to eliminate the \\(x\\) variables we need to have the same number of \\(x\\) in both equations
\n\\(\\var{c}\\)*equation (i) \\(\\simplify{{c}*{a}}x+\\simplify{{c}*{b}}y=\\simplify{{c}*{r1}}\\)
\n\\(\\var{a}\\)*equation (ii) \\(\\simplify{{c}*{a}}x+\\simplify{{d}*{a}}y=\\simplify{{a}*{r2}}\\)
\nSubtracting gives:
\n\\(\\simplify{{c}*{b}-{d}*{a}}y=\\simplify{{c}*{r1}-{a}*{r2}}\\)
\n\\(y=\\simplify{({c}*{r1}-{a}*{r2})/({c}*{b}-{d}*{a})}\\)
\nSubstituting this solution for \\(y\\) into equation (i) gives
\n\\(\\var{a}x+\\var{b}*(\\simplify{({c}*{r1}-{a}*{r2})/({c}*{b}-{d}*{a})})=\\var{r1}\\)
\n\\(\\var{a}x=\\var{r1}-\\var{b}*(\\simplify{({c}*{r1}-{a}*{r2})/({c}*{b}-{d}*{a})})\\)
\n\\(\\var{a}x=\\simplify{{r1}-{b}*({c}*{r1}-{a}*{r2})/({c}*{b}-{d}*{a})}\\)
\n\n\\(x=\\simplify{({r1}-{b}*({c}*{r1}-{a}*{r2})/({c}*{b}-{d}*{a}))/{a}}\\)
\n", "preamble": {"css": "", "js": ""}, "variables": {"b": {"name": "b", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(2..12#1)"}, "d": {"name": "d", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(2..12#1)"}, "r1": {"name": "r1", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(10..40#1)"}, "c": {"name": "c", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(2..11#1)"}, "a": {"name": "a", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(1..10#1)"}, "r2": {"name": "r2", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(16..50#1)"}}, "tags": [], "type": "question"}, {"name": "Solving quadratic equations 1(a)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "statement": "There are two values that satisfy the quadratic equation:
\n\\(\\var{a1}x^2+\\simplify{{{a1}*{b1}*{c1}}}=\\simplify{{a1}*{b1}+{a1}{c1}}x\\)
", "rulesets": {}, "variable_groups": [], "tags": [], "functions": {}, "parts": [{"scripts": {}, "marks": 0, "variableReplacements": [], "type": "gapfill", "showCorrectAnswer": true, "prompt": "Type in the greater of the two values that satisfies the equation.
\nInput your answer correct to three decimal places. \\(x = \\) [[0]]
\nType in the lesser of the two values that satisfies the equation.
\nInput your answer correct to three decimal places. \\(x = \\) [[1]]
", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"notationStyles": ["plain", "en", "si-en"], "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "scripts": {}, "variableReplacements": [], "maxValue": "{b1}", "mustBeReduced": false, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "allowFractions": false, "minValue": "{b1}", "marks": 1, "strictPrecision": false, "precisionType": "dp", "showPrecisionHint": false, "showFeedbackIcon": true, "precision": "3"}, {"notationStyles": ["plain", "en", "si-en"], "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "scripts": {}, "variableReplacements": [], "maxValue": "{c1}", "mustBeReduced": false, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "allowFractions": false, "minValue": "{c1}", "marks": 1, "strictPrecision": false, "precisionType": "dp", "showPrecisionHint": false, "showFeedbackIcon": true, "precision": "3"}]}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Solving quadratic equations using a formula,
"}, "variablesTest": {"condition": "", "maxRuns": "1"}, "advice": "The formula for solving a quadratic equation of the form \\(ax^2+bx+c=0\\) is given by
\n\\(x=\\frac{-b\\pm \\sqrt{b^2-4ac}}{2a}\\)
\nIn this example \\(a=\\var{a1},\\,\\,\\,b=\\simplify{+-{a1}*({b1}+{c1})}\\) and \\(c=\\simplify{{a1}*{b1}*{c1}}\\)
\n\\(x=\\frac{\\var{b}\\pm \\sqrt{(-\\var{b})^2-4*\\var{a1}*\\var{c}}}{2*\\var{a1}}\\)
\n\\(x=\\frac{\\var{b}\\pm \\sqrt{\\simplify{{b}^2-4*{a1}*{c}}}}{\\simplify{2*{a1}}}\\)
\n\\(x=\\simplify{{b}+({b}^2-4*{a1}*{c})^0.5}/\\simplify{2*{a1}}=\\simplify{({b}+({b}^2-4*{a1}*{c})^0.5)/(2*{a1})}\\) or \\(x=\\simplify{{b}-({b}^2-4*{a1}*{c})^0.5}/\\simplify{2*{a1}}=\\simplify{({b}-({b}^2-4*{a1}*{c})^0.5)/(2*{a1})}\\)
\n\n", "ungrouped_variables": ["a1", "b1", "c1", "b", "c"], "preamble": {"css": "", "js": ""}, "variables": {"b": {"name": "b", "templateType": "anything", "definition": "{a1}*({b1}+{c1})", "description": "", "group": "Ungrouped variables"}, "a1": {"name": "a1", "templateType": "randrange", "definition": "random(1..6#1)", "description": "", "group": "Ungrouped variables"}, "c": {"name": "c", "templateType": "anything", "definition": "{a1}*{b1}*{c1}", "description": "", "group": "Ungrouped variables"}, "b1": {"name": "b1", "templateType": "randrange", "definition": "random(11..25#1)", "description": "", "group": "Ungrouped variables"}, "c1": {"name": "c1", "templateType": "randrange", "definition": "random(1..10#1)", "description": "", "group": "Ungrouped variables"}}, "type": "question"}, {"name": "Solving quadratic equations 1(b)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "parts": [{"scripts": {}, "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "prompt": "Type in the greater of the two values that satisfies the equation. Input your answer correct to three decimal places.
\n\\(x\\) = [[0]]
\nType in the lesser of the two values that satisfies the equation. Input your answer correct to three decimal places.
\n\\(x\\) = [[1]]
", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "correctAnswerStyle": "plain", "scripts": {}, "maxValue": "-{b1}/(2*{a1})+sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "mustBeReduced": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "allowFractions": false, "strictPrecision": false, "marks": 1, "variableReplacements": [], "precisionType": "dp", "showPrecisionHint": false, "minValue": "-{b1}/(2*{a1})+sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "notationStyles": ["plain", "en", "si-en"], "precision": "3"}, {"precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "correctAnswerStyle": "plain", "scripts": {}, "maxValue": "-{b1}/(2*{a1})-sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "mustBeReduced": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "correctAnswerFraction": false, "allowFractions": false, "strictPrecision": false, "marks": 1, "variableReplacements": [], "precisionType": "dp", "showPrecisionHint": false, "minValue": "-{b1}/(2*{a1})-sqrt({b1}^2-4*{a1}*{c1})/(2*{a1})", "notationStyles": ["plain", "en", "si-en"], "precision": "3"}]}], "statement": "There are two values that satisfy the quadratic function below when \\(y=\\var{c1}\\):
\n\\(y=\\var{a1}x^2+\\var{b1}x\\)
", "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["a1", "b1", "c1"], "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Solving quadratic equations using a formula,
"}, "variablesTest": {"condition": "b1^2>4*a1*c1", "maxRuns": "1"}, "advice": "The formula for solving a quadratic equation of the form \\(ax^2+bx+c=0\\) is given by
\n\\(x=\\frac{-b\\pm \\sqrt{b^2-4ac}}{2a}\\)
\nIn this example \\(a=\\var{a1},\\,\\,\\,b=\\var{b1}\\) and \\(c=\\var{c1}\\)
\n\\(x=\\frac{-\\var{b1}\\pm \\sqrt{\\var{b1}^2-4\\times\\var{a1}\\times\\var{c1}}}{2\\times\\var{a1}}\\)
\n\\(x=\\frac{-\\var{b1}\\pm \\sqrt{\\simplify{{b1}^2-4*{a1}*{c1}}}}{\\simplify{2*{a1}}}\\)
\n\\(x=\\simplify{(-{b1}+ ({b1}^2-4*{a1}*{c1})^0.5)/(2*{a1})}\\) or \\(x=\\simplify{(-{b1}- ({b1}^2-4*{a1}*{c1})^0.5)/(2*{a1})}\\)
", "preamble": {"css": "", "js": ""}, "variables": {"a1": {"name": "a1", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(1..6#1)"}, "b1": {"name": "b1", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(16..25#1)"}, "c1": {"name": "c1", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(1..10#1)"}}, "tags": [], "type": "question"}, {"name": "Solving quadratic equations 1(c)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "rulesets": {}, "functions": {}, "type": "question", "preamble": {"css": "", "js": ""}, "statement": "The following equation can be converted into a quadratic equation:
\n\\(\\var{a1}x+\\frac{\\simplify{{a1}*{b1}*{c1}}}{x}=\\simplify{{a1}*({b1}+{c1})}\\)
", "showQuestionGroupNames": false, "tags": [], "variable_groups": [], "variablesTest": {"maxRuns": "1", "condition": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Solving quadratic equations using a formula
"}, "advice": "\\(\\var{a1}x+\\frac{\\simplify{{a1}*{b1}*{c1}}}{x}=\\simplify{{a1}*({b1}+{c1})}\\)
\nWe clear the fraction in the equation by multiplying across by \\(x\\)
\n\\(\\var{a1}x^2+\\simplify{{a1}*{b1}*{c1}}=\\simplify{{a1}*({b1}+{c1})}x\\)
\nBringing all the terms to the left hand side and putting them in order of their powers of \\(x\\) gives
\n\\(\\var{a1}x^2-\\simplify{{a1}*({b1}+{c1})}x+\\simplify{{a1}*{b1}*{c1}}=0\\)
\nThe formula for solving a quadratic equation of the form \\(ax^2+bx+c=0\\) is given by
\n\\(x=\\frac{-b\\pm \\sqrt{b^2-4ac}}{2a}\\)
\nIn this example \\(a=\\var{a1},\\,\\,\\,b=\\simplify{+-{a1}*({b1}+{c1})}\\) and \\(c=\\simplify{{a1}*{b1}*{c1}}\\)
\n\\(x=\\frac{\\var{b}\\pm \\sqrt{(-\\var{b})^2-4*\\var{a1}*\\var{c}}}{2*\\var{a1}}\\)
\n\\(x=\\frac{\\var{b}\\pm \\sqrt{\\simplify{{b}^2-4*{a1}*{c}}}}{\\simplify{2*{a1}}}\\)
\n\\(x=\\simplify{{b}+({b}^2-4*{a1}*{c})^0.5}/\\simplify{2*{a1}}=\\simplify{({b}+({b}^2-4*{a1}*{c})^0.5)/(2*{a1})}\\) or \\(x=\\simplify{{b}-({b}^2-4*{a1}*{c})^0.5}/\\simplify{2*{a1}}=\\simplify{({b}-({b}^2-4*{a1}*{c})^0.5)/(2*{a1})}\\)
\n\n", "ungrouped_variables": ["a1", "b1", "c1", "b", "c"], "variables": {"a1": {"templateType": "randrange", "definition": "random(1..6#1)", "description": "", "name": "a1", "group": "Ungrouped variables"}, "c1": {"templateType": "randrange", "definition": "random(1..10#1)", "description": "", "name": "c1", "group": "Ungrouped variables"}, "b": {"templateType": "anything", "definition": "{a1}*({b1}+{c1})", "description": "", "name": "b", "group": "Ungrouped variables"}, "b1": {"templateType": "randrange", "definition": "random(11..25#1)", "description": "", "name": "b1", "group": "Ungrouped variables"}, "c": {"templateType": "anything", "definition": "{a1}*{b1}*{c1}", "description": "", "name": "c", "group": "Ungrouped variables"}}, "question_groups": [{"pickingStrategy": "all-ordered", "name": "", "questions": [], "pickQuestions": 0}], "parts": [{"showCorrectAnswer": true, "variableReplacements": [], "scripts": {}, "type": "gapfill", "prompt": "Type in the greater of the two values that satisfies the equation.
\n\\(x = \\) [[0]]
\nType in the lesser of the two values that satisfies the equation.
\n\\(x = \\) [[1]]
", "marks": 0, "gaps": [{"variableReplacements": [], "marks": 1, "scripts": {}, "allowFractions": false, "showCorrectAnswer": true, "minValue": "{b1}", "strictPrecision": false, "type": "numberentry", "correctAnswerFraction": false, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{b1}", "precisionPartialCredit": 0, "precision": "3", "showPrecisionHint": true, "precisionType": "dp", "variableReplacementStrategy": "originalfirst"}, {"variableReplacements": [], "marks": 1, "scripts": {}, "allowFractions": false, "showCorrectAnswer": true, "minValue": "{c1}", "strictPrecision": false, "type": "numberentry", "correctAnswerFraction": false, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "{c1}", "precisionPartialCredit": 0, "precision": "3", "showPrecisionHint": true, "precisionType": "dp", "variableReplacementStrategy": "originalfirst"}], "variableReplacementStrategy": "originalfirst"}]}, {"name": "Solving a Linear and a Non-linear system of equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "metadata": {"description": "Solving a Linear and a Non-linear system of equations
", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {}, "statement": "Given two equations:
\n\\(\\var{a1}x+\\var{b1}y=\\var{r1}\\)
\nand
\n\\(\\var{c1}x^2+\\var{d1}y^2=\\var{r2}\\)
\nThere are two solutions for \\(x\\) that satisfy both of these equations and for each \\(x\\) value there exists a corresponding \\(y\\) value that forms a solution pair.
", "preamble": {"js": "", "css": ""}, "functions": {}, "variable_groups": [], "variables": {"a1": {"name": "a1", "definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "r1": {"name": "r1", "definition": "random(10..20#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "c1": {"name": "c1", "definition": "random(1..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "r2": {"name": "r2", "definition": "random(20..50#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "b1": {"name": "b1", "definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}, "d1": {"name": "d1", "definition": "random(2..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": ""}}, "variablesTest": {"condition": "(2*{a1}*{d1}*{r1})^2>4*({b1}^2*{c1}+{d1}*{a1}^2)*({d1}*{r1}^2-{b1}^2*{r2})", "maxRuns": 100}, "advice": "To solve a system that involves a linear equation and a non-linear equation we must use the substitution method.
\n\\(\\var{a1}x+\\var{b1}y=\\var{r1}\\)
\n\\(\\var{c1}x^2+\\var{d1}y^2=\\var{r2}\\)
\nThe first equation is a linear equaton, we use this to write one variable in terms of the other.
\nFor example, we could make y the subject of this equation
\n\\(y=\\frac{\\var{r1}-\\var{a1}x}{\\var{b1}}\\)
\nWe can then insert this for every \\(y\\) in the non-linear equation to get
\n\\(\\var{c1}x^2+\\var{d1}*\\left(\\frac{\\var{r1}-\\var{a1}x}{\\var{b1}}\\right)^2=\\var{r2}\\)
\n\\(\\var{c1}x^2+\\var{d1}*\\frac{(\\var{r1}-\\var{a1}x)^2}{\\var{b1}^2}=\\var{r2}\\)
\nMultiplying across by \\(\\simplify{{b1}^2}\\) gives
\n\\(\\simplify{{c1}*{b1}^2}x^2+\\var{d1}(\\var{r1}-\\var{a1}x)^2-\\simplify{{r2}*{b1}^2}=0\\)
\n\\(\\simplify{{c1}*{b1}^2}x^2+\\var{d1}\\left(\\simplify{{r1}^2}-\\simplify{2*{r1}*{a1}}x+\\simplify{{a1}^2}x^2\\right)-\\simplify{{r2}*{b1}^2}=0\\)
\nGathering the like terms together gives
\n\\(\\simplify{({c1}*{b1}^2+{d1}*{a1}^2)x^2-(2*{a1}*{d1}*{r1})x+({d1}*{r1}^2-{r2}*{b1}^2)}=0\\)
\nThis is a quadratic equation.
\nRecall the formula for solving a quadratic equation of the form \\(ax^2+bx+c=0\\) is given by
\n\\(x=\\frac{-b\\pm \\sqrt{b^2-4ac}}{2a}\\)
\nIn this example \\(a = \\simplify{({c1}*{b1}^2+{d1}*{a1}^2)}, b = \\simplify{-(2*{a1}*{d1}*{r1})}\\) and \\(c = \\simplify{{d1}*{r1}^2-{r2}*{b1}^2}\\)
\nOnce we have each \\(x\\) value we insert it into \\(y=\\frac{\\var{r1}-\\var{a1}x}{\\var{b1}}\\) to find the corresponding \\(y\\) value.
", "parts": [{"showCorrectAnswer": true, "prompt": "Input the larger of the two \\(x\\) values. \\(x = \\) [[0]]
\nInput the \\(y\\) value that corresponds to the previous answer. \\(y = \\) [[1]]
\n\nInput the lesser of the two \\(x\\) values that satisfies both equations. \\(x = \\) [[2]]
\nInput the \\(y\\) value that corresponds to the previous answer. \\(y = \\) [[3]]
", "variableReplacementStrategy": "originalfirst", "scripts": {}, "showFeedbackIcon": true, "marks": 0, "gaps": [{"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "maxValue": "(2*{a1}*{d1}*{r1}+sqrt{(2*{a1}*{d1}*{r1})^2-4*({b1}^2*{c1}+{d1}*{a1}^2)*({d1}*{r1}^2-{b1}^2*{r2})})/(2*({b1}^2*{c1}+{d1}*{a1}^2))", "showPrecisionHint": true, "strictPrecision": false, "type": "numberentry", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showCorrectAnswer": true, "allowFractions": false, "minValue": "(2*{a1}*{d1}*{r1}+sqrt{(2*{a1}*{d1}*{r1})^2-4*({b1}^2*{c1}+{d1}*{a1}^2)*({d1}*{r1}^2-{b1}^2*{r2})})/(2*({b1}^2*{c1}+{d1}*{a1}^2))", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "precision": "3", "marks": 1, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "precisionType": "dp", "precisionPartialCredit": 0}, {"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "maxValue": "(2*{r1}*{b1}*{c1}-sqrt{(2*{r1}*{b1}*{c1})^2-4*({c1}*{b1}^2+{d1}*{a1}^2)*({c1}*{r1}^2-{r2}*{a1}^2)})/(2*({c1}*{b1}^2+{d1}*{a1}^2))", "showPrecisionHint": true, "strictPrecision": false, "type": "numberentry", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showCorrectAnswer": true, "allowFractions": false, "minValue": "(2*{r1}*{b1}*{c1}-sqrt{(2*{r1}*{b1}*{c1})^2-4*({c1}*{b1}^2+{d1}*{a1}^2)*({c1}*{r1}^2-{r2}*{a1}^2)})/(2*({c1}*{b1}^2+{d1}*{a1}^2))", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "precision": "3", "marks": 1, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "precisionType": "dp", "precisionPartialCredit": 0}, {"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "maxValue": "(2*{a1}*{d1}*{r1}-sqrt{(2*{a1}*{d1}*{r1})^2-4*({b1}^2*{c1}+{d1}*{a1}^2)*({d1}*{r1}^2-{b1}^2*{r2})})/(2*({b1}^2*{c1}+{d1}*{a1}^2))", "showPrecisionHint": true, "strictPrecision": false, "type": "numberentry", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showCorrectAnswer": true, "allowFractions": false, "minValue": "(2*{a1}*{d1}*{r1}-sqrt{(2*{a1}*{d1}*{r1})^2-4*({b1}^2*{c1}+{d1}*{a1}^2)*({d1}*{r1}^2-{b1}^2*{r2})})/(2*({b1}^2*{c1}+{d1}*{a1}^2))", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "precision": "3", "marks": 1, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "precisionType": "dp", "precisionPartialCredit": 0}, {"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "maxValue": "(2*{r1}*{b1}*{c1}+sqrt{(2*{r1}*{b1}*{c1})^2-4*({c1}*{b1}^2+{d1}*{a1}^2)*({c1}*{r1}^2-{r2}*{a1}^2)})/(2*({c1}*{b1}^2+{d1}*{a1}^2))", "showPrecisionHint": true, "strictPrecision": false, "type": "numberentry", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "showCorrectAnswer": true, "allowFractions": false, "minValue": "(2*{r1}*{b1}*{c1}+sqrt{(2*{r1}*{b1}*{c1})^2-4*({c1}*{b1}^2+{d1}*{a1}^2)*({c1}*{r1}^2-{r2}*{a1}^2)})/(2*({c1}*{b1}^2+{d1}*{a1}^2))", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "precision": "3", "marks": 1, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "precisionType": "dp", "precisionPartialCredit": 0}], "type": "gapfill", "variableReplacements": []}], "tags": [], "ungrouped_variables": ["a1", "b1", "r1", "c1", "d1", "r2"], "type": "question"}, {"name": "Solve a system of three simultaneous linear equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "tags": [], "preamble": {"css": "", "js": ""}, "ungrouped_variables": ["a1", "b1", "c1", "r1", "r2", "r3"], "variables": {"b1": {"group": "Ungrouped variables", "description": "", "templateType": "randrange", "definition": "random(2..10#1)", "name": "b1"}, "r1": {"group": "Ungrouped variables", "description": "", "templateType": "randrange", "definition": "random(20..42#1)", "name": "r1"}, "a1": {"group": "Ungrouped variables", "description": "", "templateType": "randrange", "definition": "random(2..8#1)", "name": "a1"}, "c1": {"group": "Ungrouped variables", "description": "", "templateType": "randrange", "definition": "random(3..12#1)", "name": "c1"}, "r3": {"group": "Ungrouped variables", "description": "", "templateType": "randrange", "definition": "random(30..60#1)", "name": "r3"}, "r2": {"group": "Ungrouped variables", "description": "", "templateType": "randrange", "definition": "random(18..50#1)", "name": "r2"}}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Solve a system of three simultaneous linear equations
"}, "parts": [{"type": "gapfill", "prompt": "Input the value of \\(x\\) that satisfies the three equations.
\n\\(x = \\) [[0]]
\nInput the value of \\(y\\) that satisfies the three equations.
\n\\(y = \\) [[1]]
\nInput the value of \\(z\\) that satisfies the three equations.
\n\\(z = \\) [[2]]
", "scripts": {}, "showFeedbackIcon": true, "showCorrectAnswer": true, "gaps": [{"type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "minValue": "((18-{b1}*{c1})*(3*{r1}-{r3})+({c1}-12)*(6*{r2}-{b1}*{r3}))/((3*{a1}-5)*(18-{b1}*{c1})-(12-5*{b1})*(12-{c1}))", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "precision": "3", "showCorrectAnswer": true, "mustBeReducedPC": 0, "allowFractions": false, "strictPrecision": false, "showFeedbackIcon": true, "correctAnswerFraction": false, "variableReplacements": [], "maxValue": "((18-{b1}*{c1})*(3*{r1}-{r3})+({c1}-12)*(6*{r2}-{b1}*{r3}))/((3*{a1}-5)*(18-{b1}*{c1})-(12-5*{b1})*(12-{c1}))", "mustBeReduced": false, "showPrecisionHint": true, "marks": 1, "precisionType": "dp", "correctAnswerStyle": "plain"}, {"type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "minValue": "((15-2*{c1})*(2*{r1}-{a1}*{r2})+(3*{a1}-8)*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "precision": "3", "showCorrectAnswer": true, "mustBeReducedPC": 0, "allowFractions": false, "strictPrecision": false, "showFeedbackIcon": true, "correctAnswerFraction": false, "variableReplacements": [], "maxValue": "((15-2*{c1})*(2*{r1}-{a1}*{r2})+(3*{a1}-8)*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "mustBeReduced": false, "showPrecisionHint": true, "marks": 1, "precisionType": "dp", "correctAnswerStyle": "plain"}, {"type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "minValue": "((12-5*{b1})*(2*{r1}-{a1}*{r2})+(4-{b1}*{a1})*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "precision": "3", "showCorrectAnswer": true, "mustBeReducedPC": 0, "allowFractions": false, "strictPrecision": false, "showFeedbackIcon": true, "correctAnswerFraction": false, "variableReplacements": [], "maxValue": "((12-5*{b1})*(2*{r1}-{a1}*{r2})+(4-{b1}*{a1})*(5*{r2}-2*{r3}))/((4-{a1}*{b1})*(15-2*{c1})-(5*{b1}-12)*(8-3*{a1}))", "mustBeReduced": false, "showPrecisionHint": true, "marks": 1, "precisionType": "dp", "correctAnswerStyle": "plain"}], "marks": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": []}], "functions": {}, "advice": "(i) \\(\\var{a1}x+2y+4z=\\var{r1}\\)
\n(ii) \\(2x+\\var{b1}y+3z=\\var{r2}\\)
\n(iii) \\(5x+6y+\\var{c1}z=\\var{r3}\\)
\nFirst reduce the three equations in three unknowns to a two equations in two unknowns problem by eliminating one of the variables.
\nWe can eliminate \\(x\\) using equations (i) and (ii)
\n2*(i) \\(\\simplify{2*{a1}}x+4y+8z=\\simplify{2*{r1}}\\)
\n\\(\\var{a1}\\)*(ii) \\(\\simplify{2*{a1}}x+\\simplify{{a1}*{b1}}y+\\simplify{3*{a1}}z=\\simplify{{a1}*{r2}}\\)
\nSubtracting gives us a new equation
\n(iv) \\(\\simplify{(4-{a1}{b1})y+(8-3*{a1})z}=\\simplify{2*{r1}-{a1}*{r2}}\\)
\nWe can also eliminate \\(x\\) using equations (ii) and (iii)
\n5*(ii) \\(10x +\\simplify{5*{b1}}y+15z=\\simplify{5*{r2}}\\)
\n2*(iii) \\(10x+12y+\\simplify{2*{c1}}z=\\simplify{2*{r3}}\\)
\nSubtracting gives us another new equation
\n(v) \\(\\simplify{(5*{b1}-12)y+(15-2*{c1})z}=\\simplify{5*{r2}-2*{r3}}\\)
\nWe could then eliminate the \\(y\\) from these two new equations
\n\\(\\simplify{5*{b1}-12}\\)*(iv) \\(\\simplify{(5*{b1}-12)*(4-{a1}{b1})y+(5*{b1}-12)*(8-3*{a1})z}=\\simplify{(5*{b1}-12)*(2*{r1}-{a1}*{r2})}\\)
\n\\(\\simplify{4-{a1}{b1}}\\)*(v) \\(\\simplify{(4-{a1}{b1})*(5*{b1}-12)y+(4-{a1}{b1})*(15-2*{c1})z}=\\simplify{(4-{a1}{b1})*(5*{r2}-2*{r3})}\\)
\nSubtracting gives us
\n\\(\\simplify{(5*{b1}-12)*(8-3*{a1})-(4-{a1}{b1})*(15-2*{c1})}z=\\simplify{(5*{b1}-12)*(2*{r1}-{a1}*{r2})-(4-{a1}{b1})*(5*{r2}-2*{r3})}\\)
\nThus
\n\\(z=\\frac{\\simplify{(5*{b1}-12)*(2*{r1}-{a1}*{r2})-(4-{a1}{b1})*(5*{r2}-2*{r3})}}{\\simplify{(5*{b1}-12)*(8-3*{a1})-(4-{a1}{b1})*(15-2*{c1})}}=\\simplify{decimal{((5*{b1}-12)*(2*{r1}-{a1}*{r2})-(4-{a1}*{b1})*(5*{r2}-2*{r3}))/( (5*{b1}-12)*(8-3*{a1})-(4-{a1}*{b1})*(15-2*{c1}))}}\\)
\nWe can now back substitute this value for \\(z\\) into equation (iv) to find the correct value for \\(y\\) and then back substitute both these values into equation (i) to calculate \\(x\\).
\n", "statement": "Solve the following system of three simultaneous linear equations:
\n\\(\\var{a1}x+2y+4z=\\var{r1}\\)
\nand
\n\\(2x+\\var{b1}y+3z=\\var{r2}\\)
\nand
\n\\(5x+6y+\\var{c1}z=\\var{r3}\\)
", "type": "question"}], "pickQuestions": 0}], "type": "exam", "duration": 3600, "metadata": {"description": "This quiz contains questions on functions, limits, logs, exponential functions, simultaneous equations and quadratic equations.
", "licence": "Creative Commons Attribution 4.0 International"}, "allQuestions": true, "shuffleQuestions": false, "questions": [], "percentPass": "40", "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "warn", "message": "You have 5 minutes to complete this quiz.
"}}, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "showQuestionGroupNames": false, "feedback": {"showtotalmark": true, "advicethreshold": 0, "allowrevealanswer": true, "feedbackmessages": [], "showactualmark": true, "showanswerstate": true, "intro": "", "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "extensions": [], "custom_part_types": [], "resources": []}