// Numbas version: finer_feedback_settings {"name": "Blathnaid's copy of Predicates and sets", "feedback": {"allowrevealanswer": true, "showtotalmark": true, "advicethreshold": 0, "intro": "", "feedbackmessages": [], "showanswerstate": true, "showactualmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "allQuestions": true, "shuffleQuestions": false, "percentPass": 0, "duration": 0, "pickQuestions": 0, "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": true, "browse": true, "showfrontpage": true}, "metadata": {"description": "
Questions about logical predicates, and basic set theory concepts.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "exam", "questions": [], "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "set3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"set1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "set(b..c)", "description": "", "name": "set1"}, "b": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(3..8)", "description": "", "name": "b"}, "universal": {"group": "Ungrouped variables", "templateType": "anything", "definition": "set(1..a)", "description": "", "name": "universal"}, "c": {"group": "Ungrouped variables", "templateType": "anything", "definition": "b+random(10..a-b)", "description": "", "name": "c"}, "f": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(2,3,5,6)", "description": "", "name": "f"}, "set3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "set(mod_set(1,a,f))", "description": "", "name": "set3"}, "d": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(5..c-1)", "description": "", "name": "d"}, "a": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(b+10..30)", "description": "", "name": "a"}, "set2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "set(d+1..a)", "description": "", "name": "set2"}}, "ungrouped_variables": ["a", "b", "c", "d", "f", "universal", "set1", "set2", "set3"], "variable_groups": [], "functions": {"mod_set": {"type": "list", "language": "javascript", "definition": "//returns all integers which are divisible by c betweeen a and b\nvar l=[];\nfor(var i=a;iEnumerate the following sets:\na) $A \\cap B=\\;$[[0]]
\nb) $B \\cap C=\\;$[[1]]
\nc) $A \\cap \\overline{C}=\\;$[[2]]
\nd) $(\\overline{A} \\cup C) \\cap B=\\;$[[3]]
\ne) $\\overline{A \\cup C} \\cap \\overline{B}=\\;$[[4]]
\nf) $(A \\cup \\overline{B}) \\cap C=\\;$[[5]]
\n\nNote that you input sets in the form set(a,b,c,..,z)
.
For example set(1,2,3)
gives the set $\\{1,2,3\\}$.
The empty set is input as set()
.
Also some labour saving tips:
\nIf you want to input all integers between $a$ and $b$ inclusive then instead of writing all the elements you can input this as set(a..b)
.
If you want to input all integers between $a$ and $b$ inclusive in steps of $c$ then this is input as set(a..b#c)
. So all odd integers from $-3$ to $28$ are input as set(-3..28#2).
In this question, the universal set is $\\mathcal{U}=\\{x \\in \\mathbb{N}\\; | \\;x \\leq \\var{a}\\}$.
\nLet:
\n$A=\\{x \\in \\mathbb{N}\\;|\\;\\var{b}\\leq x \\leq \\var{c}\\}$.
\n$B=\\{x \\in \\mathbb{N}\\;|\\;x \\gt \\var{d}\\}$.
\n$C=\\{ x \\in \\mathbb{N}\\;|\\; x \\text{ divisible by } \\var{f}\\}$.
\n\n", "tags": [], "rulesets": {}, "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "advice": ""}]}], "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}], "extensions": [], "custom_part_types": [], "resources": []}