// Numbas version: finer_feedback_settings {"name": "CIV 2025/26", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], "questions": [{"name": "AC08 Collecting terms (higher powers)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Simple exercise in collecting terms in different powers of \\(x\\)

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Simplify the following expression by combining \"like\" terms.

", "advice": "

First we expand the minus sign in the bracket.

\n

\\[\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4-({f}x+{e}x^3)}=\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4+{-f}x+{-e}x^3}\\]

\n

The idea is to collect together and combine any terms that are the same kind of term so:

\n

$\\var{b}x$ and $\\var{-f}x$ both have an $x$ term. We can combine them to get $\\var{b-f}x$

\n

We can combine $\\var{a}x^4$ and $\\var{d}x^4$ to get $\\var{a+d}x^4$.

\n

We combine $\\var{c}x^3$ and $\\var{-e}x^3$ to get $\\var{c-e}x^3$. So our answer is:

\n

$\\simplify{{a+d}x^4+{c+e}x^3+{b+f}}$

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(-5..10 except 0 except b)", "description": "", "templateType": "anything", "can_override": false}, "e": {"name": "e", "group": "Ungrouped variables", "definition": "random(-5..10 except 0 except c)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "f", "e"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify[!collectNumbers]{{a}x^4+{b}x+{c}x^3+{d}x^4-({f}x+{e}x^3)}$

", "answer": "({a}+{d})x^4+({c}-{e})x^3+({b}-{f})x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n`?*x^4+`+-$n`?*x^3+`+-$n`?*x", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC13 Expand Double Brackets (Hard)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Poppy Jeffries", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21275/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Expand two brackets involving powers of $x$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Expand the brackets and simplify

", "advice": "

To expand the brackets $\\simplify{({a[1]}x^{b[1]}+{a[2]}x^{b[2]})({a[3]}x^{b[3]}+{c[1]}x^{b[4]})}$ We first multiply all the terms in the left bracket by all the terms in the right bracket. This gives us

\n

\\[\\var{a[1]}x^\\var{b[1]}\\times\\var{a[3]}x^\\var{b[3]}+\\var{a[1]}x^\\var{b[1]}\\times\\var{c[1]}x^\\var{b[4]}+\\var{a[2]}x^\\var{b[2]}\\times\\var{a[3]}x^\\var{b[3]}+\\var{a[2]}x^\\var{b[2]}\\times\\var{c[1]}x^\\var{b[4]}\\]

\n

We can then simplify to give us the final answer of

\n

$\\simplify{{a[1]*a[3]}*x^{b[1]+b[3]}+{a[1]*c[1]}*x^{b[1]+b[4]}+{a[2]*a[3]}*x^{b[2]+b[3]}+{a[2]*c[1]}*x^{b[2]+b[4]}}.$

\n


Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(-5..10 except [0]),5\n)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(random([-5,-9/2,-4,7/2,-3,-5/2,-2,-3/2,-1,-1/2,1/2,1,3/2,2,5/2,3,7/2,4,9/2,5]),5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(1..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{({a[1]}x^{b[1]}+{a[2]}x^{b[2]})({a[3]}x^{b[3]}+{c[1]}x^{b[4]})}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a[1]*a[3]}*x^{b[1]+b[3]}+{a[1]*c[1]}*x^{b[1]+b[4]}+{a[2]*a[3]}*x^{b[2]+b[3]}+{a[2]*c[1]}*x^{b[2]+b[4]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC14 HCF of Algebraic Terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Fiind the Highest Common Factor of two algebraic expressions involving a coefficient and powers of $x$ and $y$.

\n

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

What is the highest common factor of $\\var{c[0]}x^\\var{xp[0]}y^\\var{yp[0]}$ and $\\var{c[1]}x^\\var{xp[1]}y^\\var{yp[1]}$?

", "advice": "

In order to find the highest common factor of two single term algebraic expressions you can first find the highest common factor of the coefficients.

\n

\n

In this case the Highest common factor of $\\var{c[0]}$ and $\\var{c[1]}$ is $\\var{cans}$.

\n

Then work through each of the variables (letters) in turn and see what powers of each appear. In the first expression there is $x^\\var{xp[0]}$ and the second expression there is $x^\\var{xp[1]}$. So they both have at least $x^\\var{xpans}$ in them. Similarly, the first expression there is $y^\\var{yp[0]}$ and the second expression there is $y^\\var{yp[1]}$. So they both have at least $y^\\var{ypans}$ in them.

\n

Hence, the Highest Common Factor (HCF) of the two expressions is:

\n

\\[\\var{cans}x^\\var{xpans}y^\\var{ypans}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "repeat(2*random(6..25),2)", "description": "", "templateType": "anything", "can_override": false}, "xp": {"name": "xp", "group": "Ungrouped variables", "definition": "repeat(random(1..8),2)", "description": "", "templateType": "anything", "can_override": false}, "yp": {"name": "yp", "group": "Ungrouped variables", "definition": "repeat(random(1..8 except [xp[0],xp[1]]),2)", "description": "", "templateType": "anything", "can_override": false}, "cans": {"name": "cans", "group": "Ungrouped variables", "definition": "GCD(c[0],c[1])", "description": "", "templateType": "anything", "can_override": false}, "xpans": {"name": "xpans", "group": "Ungrouped variables", "definition": "min(xp[0],xp[1])", "description": "", "templateType": "anything", "can_override": false}, "ypans": {"name": "ypans", "group": "Ungrouped variables", "definition": "min(yp[0],yp[1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "xp[0]<>xp[1] AND c[0]<>c[1]", "maxRuns": 100}, "ungrouped_variables": ["c", "xp", "yp", "cans", "xpans", "ypans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{cans}*x^{xpans}*y^{ypans}", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC18 Algebraic Fractions - addition (harder)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Simplify the sum of two algebraic fractions where spotting factorising of both numerators and denominators can reduce the work massively.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ simplifying as much as possible. Your answer should be in the form $\\frac{\\alpha\\var{v}+\\beta}{\\delta\\var{v}^2-\\gamma}.$

", "advice": "

To write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ first factorise as much as possible and look for any cancellations:

\n

\\[\\begin{split}
&\\frac{\\var{a}\\times\\var{b}}{\\var{den1fact}} + \\frac{\\var{num2}}{\\var{den2fact}}\\\\
& = \\frac{\\var{b}}{\\var{den1simp}} + \\frac{1}{\\var{f1c}}.
\\end{split}\\]

\n

Then get a common denominator for the two fractions and combine into a single fraction:

\n

\\[\\begin{split}
&\\frac{\\var{b}}{\\var{den1simp}} + \\frac{\\var{f1}}{\\var{den1simp}}\\\\
& = \\frac{\\var{b}+\\var{f1}}{\\var{den1simp}}\\\\
& = \\var{ans}.
\\end{split}\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Set up", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Set up", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "v": {"name": "v", "group": "Set up", "definition": "random(\"a\",\"b\",\"c\",\"d\",\"f\",\"g\",\"h\",\"k\",\"m\",\"n\",\"p\",\"q\",\"r\",\"s\",\"t\",\"u\",\"v\",\"w\",\"x\",\"y\",\"z\")", "description": "", "templateType": "anything", "can_override": false}, "cf1": {"name": "cf1", "group": "Set up", "definition": "repeat(random(2..4),2)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"+\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "f1c": {"name": "f1c", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"-\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "cf2": {"name": "cf2", "group": "Set up", "definition": "repeat(random(2..5),2)", "description": "", "templateType": "anything", "can_override": false}, "f2": {"name": "f2", "group": "Set up", "definition": "simplify(cf2[0]+\"*\"+v+\"+\"+cf2[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1fact": {"name": "den1fact", "group": "Advice", "definition": "simplify(a+\"*\"+\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}, "num1": {"name": "num1", "group": "Question", "definition": "a*b", "description": "", "templateType": "anything", "can_override": false}, "den2": {"name": "den2", "group": "Question", "definition": "simplify(den2fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Question", "definition": "simplify(f2,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1": {"name": "den1", "group": "Question", "definition": "simplify(den1fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "den2fact": {"name": "den2fact", "group": "Advice", "definition": "simplify(expression(\"(\"+string(f1c)+\")*(\"+string(f2)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansn": {"name": "ansn", "group": "Question", "definition": "simplify(string(f1) + \"+\" + b,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansd": {"name": "ansd", "group": "Question", "definition": "simplify(expression(\"(\"+string(f1)+\")\"+\"*\"+ \"(\"+string(f1c)+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Question", "definition": "simplify(expression(\"(\"+string(ansn)+\")\"+\"/\"+\"(\"+string(ansd)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1simp": {"name": "den1simp", "group": "Advice", "definition": "simplify(\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "f1<>f2 AND f1c<>f2 AND cf1[0]<>cf1[1] AND cf2[0]<>cf2[1]", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Set up", "variables": ["a", "b", "v", "cf1", "f1", "f1c", "cf2", "f2"]}, {"name": "Question", "variables": ["num1", "den1", "num2", "den2", "ansn", "ansd", "ans"]}, {"name": "Advice", "variables": ["den1fact", "den2fact", "den1simp"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "?`+/?`+", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC21 Multiplication of algebraic fractions 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Simplifying first is essential in terms of managing expressions that might need factorising.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Expand and simplify $\\displaystyle{\\var{LeftMul}\\times\\var{RightMul}}.$

", "advice": "

Before we multiply the fractions together first lets check if we can do any cancellation. Notice that $\\var{RightMulBottom}$ has a factor of $\\var{Num}$ so we can cancel this straight away.

\n

We also have a factor of $x$ in both $\\var{QuadCoeff[0]}x^2+\\var{QuadCoeff[1]}x$ and $\\var{RightMulTop}$ so we're now left with multiplying

\n

\\[\\frac1{\\var{QuadCoeff[0]}x+\\var{QuadCoeff[1]}}\\times\\frac{\\simplify[all,expandBrackets]{(x+{Lin1Coeff})*({QuadCoeff[0]}x+{QuadCoeff[1]})}}{\\var{Lin2Coeff[0]}x+\\var{Lin2Coeff[1]}}.\\]

\n

We're not necesserily done with cancellation though! To make sure that a fraction with a quadratic is simplified we have to factorise it to make sure there are no linear factors we can cancel. In this case we have
\\[\\simplify[all,expandBrackets]{(x+{Lin1Coeff})*({QuadCoeff[0]}x+{QuadCoeff[1]})}={(x+\\var{Lin1Coeff})(\\var{QuadCoeff[0]}x+\\var{QuadCoeff[1]})}.\\]

\n

This gives us one last factor to cancel and then we can finally multiply whats left of each fraction to give us a final answer of

\n

\\[\\var{ans}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"QuadCoeff": {"name": "QuadCoeff", "group": "Ungrouped variables", "definition": "[random(1..6),random(1..6)]", "description": "", "templateType": "anything", "can_override": false}, "Num": {"name": "Num", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "Lin2Coeff": {"name": "Lin2Coeff", "group": "Ungrouped variables", "definition": "[random(1..6),random(1..6)]", "description": "", "templateType": "anything", "can_override": false}, "Lin1Coeff": {"name": "Lin1Coeff", "group": "Ungrouped variables", "definition": "random(1..6 except Lin2Coeff[1]/Lin2Coeff[0])", "description": "", "templateType": "anything", "can_override": false}, "Lin1": {"name": "Lin1", "group": "Ungrouped variables", "definition": "\"x\"+\"+\"+Lin1Coeff", "description": "", "templateType": "anything", "can_override": false}, "Lin2": {"name": "Lin2", "group": "Ungrouped variables", "definition": "Lin2Coeff[0]+\"x\"+\"+\"+Lin2Coeff[1]", "description": "", "templateType": "anything", "can_override": false}, "Quad": {"name": "Quad", "group": "Ungrouped variables", "definition": "QuadCoeff[0]+\"x^2+\"+QuadCoeff[1]+\"x\"", "description": "", "templateType": "anything", "can_override": false}, "LeftMul": {"name": "LeftMul", "group": "Ungrouped variables", "definition": "expression(Num+\"/(\"+Quad+\")\")", "description": "", "templateType": "anything", "can_override": false}, "RightMulTop": {"name": "RightMulTop", "group": "Ungrouped variables", "definition": "simplify(expression(\"(\"+Quad+\")*(\"+Lin1+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "RightMulBottom": {"name": "RightMulBottom", "group": "Ungrouped variables", "definition": "simplify(expression(Num+\"*(\"+Lin2+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "RightMul": {"name": "RightMul", "group": "Ungrouped variables", "definition": "expression(\"(\"+string(RightMulTop)+\")\"+\"/\"+\"(\"+string(RightMulBottom)+\")\")", "description": "", "templateType": "anything", "can_override": false}, "Ans": {"name": "Ans", "group": "Ungrouped variables", "definition": "expression(\"(\"+Lin1+\")/(\"+Lin2+\")\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["QuadCoeff", "Num", "Lin2Coeff", "Lin1Coeff", "Lin1", "Lin2", "Quad", "LeftMul", "RightMulTop", "RightMulBottom", "RightMul", "Ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "(`+-$n`?*x+`+-$n`?)/(`+-$n`?*x+`+-$n`?)", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC22 Partial Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "

Rewrite the expression $\\frac{mx^2+nx+k}{(x+a)(x^2+bx+c)}$ as partial fractions in the form $\\frac{A}{x+a}+\\frac{Bx+C}{x^2+bx+c}$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Rewrite the following expression as partial fractions:

\n

\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))}. \\]

\n

", "advice": "

To express \\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} \\] as partial fractions, we want to set this equal to the sum of two fractions with denominators $\\simplify{x+{a}}$ and $\\simplify{x^2+{b}x+{c}}$. Since we have a linear factor and a quadratic factor, this tells us that the form of the partial fractions will be

\n

\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\simplify{A/(x+{a}) + (B*x+C)/(x^2+{b}x+{c})},\\]

\n

where $A$, $B$, and $C$ are constants.

\n

To find the values of $A$, $B$, and $C$, we want to first multiply this equation by the denominator of the left-hand side. This gives

\n

\\[ \\simplify{{m}x^2+{n}x+{k}=A(x^2+{b}x+{c})+B*x(x+{a}) + C(x+{a})}.\\]

\n

(Note: To find $A$, $B$, and $C$, we will use a combination of choosing suitable values of $x$ to eliminate terms, and equating coefficients. It can be solved by only equating coefficients, but this is a more efficient process.)

\n

\n

To find $A$, we can eliminate $B$ and $C$ by setting $x=\\var{-a}$:

\n

\\[ \\simplify{{m*a^2-n*a+k}=A{(a^2-b*a+c)}} \\implies A=\\simplify[fractionNumbers]{{Asol}}.\\]

\n

To find $C$, we can eliminate $B$ by setting $x=0$ and substituting in the result of $A$:

\n

\\[ \\simplify{{k}={c}A+{a}C} \\implies C=\\simplify[all,fractionNumbers]{({k}-{c}A)/{a}}.\\]

\n

Hence,

\n

\\[ C = \\simplify[fractionNumbers]{{Csol}}.\\]

\n

Finally, by equating coefficients of the $x^2$-terms we can find $B$:

\n

\\[ (x^2): \\quad \\var{m} = \\simplify{A+B} \\implies B=\\var{m}-A. \\]

\n

Therefore, \\[ B=\\simplify[fractionNumbers]{{Bsol}}, \\]

\n

and

\n

{check}

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pairs[index][1]", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "if(k=1,random(-1,1)*random([1,3,4,5]),if (k=2,random(-1,1)*random([1,2,4,5]),if(k=3,random(-1,1)*random([1,2,3,5]),if(k=5,random(-1,1)*random([1,2,3,4,5,7]),random(-1,1)*random([1,2,3,4,5,7])))))", "description": "", "templateType": "anything", "can_override": false}, "Asol": {"name": "Asol", "group": "Ungrouped variables", "definition": "(m*a^2-n*a+k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Bsol": {"name": "Bsol", "group": "Ungrouped variables", "definition": "(m*c-m*b*a+n*a-k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Csol": {"name": "Csol", "group": "Ungrouped variables", "definition": "(k*(a-b)-m*a*c+n*c)/(a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(Asol=round(Asol) and Bsol=round(Bsol),'{sol1}',if(simp2=1,'{sol2}','{sol3}'))", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify{{Asol}/(x+{a})+({Bsol}x+{Csol})/(x^2+{b}x+{c})}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({m*c-m*b*a+n*a-k}x+{k*(a-b)-m*a*c+n*c})/({a^2-a*b+c}(x^2+{b}x+{c}))}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "pairs[index][0]", "description": "", "templateType": "anything", "can_override": false}, "simp1": {"name": "simp1", "group": "Ungrouped variables", "definition": "gcd(k*(a-b)-m*a*c+n*c,m*c-m*b*a+n*a-k)", "description": "", "templateType": "anything", "can_override": false}, "simp2": {"name": "simp2", "group": "Ungrouped variables", "definition": "gcd(simp1,a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "sol3": {"name": "sol3", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random([1,2,3,5,7])", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[[1,random(-1,1)*random([1,3,4,5])],[2,random(-1,1)*random([1,2,4,5])],[3,random(-1,1)*random([1,2,3,5])],[5,random(-1,1)*random([1,2,3,4,5,7])],[7,random(-1,1)*random([1,2,3,4,5,7])]]", "description": "", "templateType": "anything", "can_override": false}, "index": {"name": "index", "group": "Ungrouped variables", "definition": "random(0..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a^2-a*b+c>0 or a^2-a*b+c<0", "maxRuns": 100}, "ungrouped_variables": ["a", "pairs", "index", "b", "c", "m", "k", "n", "Asol", "Bsol", "Csol", "check", "sol1", "sol2", "sol3", "simp1", "simp2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(m*a^2-n*a+k)}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`! (((`+-$n`?*x^2+`+-$n`?*x+`+-$n)/((x+`+-$n)(x^2+`+-$n*x+`+-$n))))", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF03 Shapes of quadratics", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Multiple choice - select the quadratic graph.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Which of the following is the graph $y=x^2$.

", "advice": "

Use this link to find some resources to help you familiarise yourself with these graphs.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{geogebra_applet('https://www.geogebra.org/m/tpfzv3w7')}", "{geogebra_applet('https://www.geogebra.org/m/zftpwq64')}", "{geogebra_applet('https://www.geogebra.org/m/we3gngqa')}", "{geogebra_applet('https://www.geogebra.org/m/cadkup6r')}"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF04 Graphs of trig functions (sin, cos, tan)", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Match the relevant graph (sin, cos, tan) with its equation. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

This is about core knowledge of graphs. You should know the shapes of the fundamental trig graphs, if you don't familiarize yourself with them from the resources linked below. In this setting the $x$-axis is given with a scale in radians but you might also find some where it is given in degrees. You should also be aware of the difference between those two different units of angles.

\n

\n

Use this link to find some resources to help you familiarise yourself with these graphs.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Match the graph to its function.

", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\sin(x)$", "$\\cos(x)$", "$\\tan(x)$"], "matrix": [["1", 0, 0], [0, "1", 0], [0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["{geogebra_applet('https://www.geogebra.org/m/ntqvuwqr')}", "{geogebra_applet('https://www.geogebra.org/m/fsqmnhsc')}", "{geogebra_applet('https://www.geogebra.org/m/yg6f9eqz')}"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF06 Domain and Range", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Determining the range of a function of the form $f = m|x| + a$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

The range is the set of values that can be taken by $f(x)$, i.e. the values on the $y$-axis.

\n

{geogebra_applet('https://www.geogebra.org/m/aqcgkurg',[a: a, m: m])}

\n

Therefore, for $f(x)=\\simplify{{m}x^2+{a}}$, the range is $[\\var{a}, \\infty)$. 

\n

Use this link to find some resources to help you revise how to find the domain and range of a function.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..2 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-2..2 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-2,2,-1,3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "n", "m", "b", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $f(x)=\\simplify{{m}x^2+{a}}$

What is the range of $f(x)$?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\mathbb{R}$", "$[\\var{a},\\infty)$", "$\\left[\\simplify{{a}/{m}},\\infty\\right)$", "$(-\\infty,\\var{a}]$", "$(\\var{a},\\infty)$"], "matrix": [0, "1", 0, 0, 0], "distractors": ["", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF07 Inverse functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Finding the inverse of a function of the form $f(x)=\\frac{mx+c}{x+a},\\,x\\neq-a$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

If $f(x)=\\simplify{({m}x+{c})/(x+{a})},\\,x\\neq \\simplify{{-a}}$, find the inverse function, $f^{-1}(x)$.

", "advice": "

To find $f^{-1}x$, it can help to first set $f(x)$ to a different variable, which we will call $y$:

\n

\\[ y = f(x) = \\simplify{({m}x+{c})/(x+{a})}\\]

\n

Since the function $f(x)$ takes us from $x$ to $y$, the inverse function $f^{-1}$ will take us from $y$ to $x$. So to obtain $f^{-1}$, we want to rearrange $y=\\simplify{({m}x+{c})/(x+{a})}$ so that it is $x$ as a function of $y$:

\n

\\[ \\begin{split} y &\\,= \\simplify{({m}x+{c})/(x+{a})} \\\\\\\\ \\simplify{(x+{a})y} &\\,= \\simplify{{m}x+{c}} \\\\\\\\ \\simplify{x*y+{a}y} &\\,= \\simplify{{m}x+{c}} \\\\\\\\ \\simplify{x*y - {m}x} &\\,= \\simplify{{c}- {a}y}   \\\\  \\\\ \\simplify{x(y-{m})} &\\,= \\simplify{{c}-{a}y} \\\\\\\\ x&\\,= \\simplify{({c}-{a}y)/(y-{m})}. \\end{split} \\]

\n

Hence, $f^{-1}(y) =\\simplify{({c}-{a}y)/(y-{m})}$, and therefore \\[ f^{-1}(x) =\\simplify{({c}-{a}x)/(x-{m})}.\\]

\n

(Note: The inverse is valid for all values of $x$ except $x=\\var{m}$, since this would make the denominator equal to 0.)

\n

Use this link to find resources to help you revise how to find the inverse of functions.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-8..8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(m)-abs(c)>0 or abs(m)-abs(c)<0", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f^{-1}(x)=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({c}-{a}x)/(x-{m})", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF08 Composite functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Finding composite functions of 2 linear functions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

If $f(x)=\\simplify{{m}x+{c}}$ and $g(x)=\\simplify{{n}x+{d}}$, find expressions for $f\\circ g(x)$ and $g \\circ f(x)$.

\n

\n

Recall: $f \\circ g(x) \\equiv f(g(x))$ and $g \\circ f(x) \\equiv g(f(x))$.

", "advice": "

\n

To find the composition $f \\circ g(x)$ we are substituting the expression for $g(x)$ into the function $f(x)$, replacing the $x$-terms with the function $g(x)$. Similarly, to find the composition $g \\circ f(x)$ we are substituting the expression for $f(x)$ into the function $g(x)$, replacing the $x$-terms with the function $f(x)$.

\n

So, for $f(x)=\\simplify{{m}x+{c}}$ and $g(x)=\\simplify{{n}x+{d}}$,

\n

\\[ \\begin{split} f \\circ g(x) \\equiv f(g(x)) &\\,=  \\simplify{{m}({n}x+{d})+{c}} \\\\ &\\,=\\simplify[!collectNumbers,unitFactor]{{m*n}x+{m*d}+{c}} \\\\ &\\,=\\simplify{{m*n}x+{m*d+c}}, \\end{split} \\]

\n

and 

\n

\\[ \\begin{split} g \\circ f(x) \\equiv g(f(x)) &\\,=  \\simplify{{n}({m}x+{c})+{d}} \\\\ &\\,=\\simplify[!collectNumbers,unitFactor]{{m*n}x+{n*c}+{d}} \\\\ &\\,=\\simplify{{m*n}x+{n*c+d}}. \\end{split} \\]

\n

Use this link to find resources to help you revise how to find composite functions.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5 except n)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-7..7 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-7..7 except [0,c])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "m", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f \\circ g(x)=$[[0]]

\n

$g \\circ f(x)=$[[1]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m*n}x+{m*d+c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n*m}x+{n*c+d}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AL03 Logs - Solving equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solving an equation of the form $a^x=b$ using logarithms to find $x$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve for $x$:

\n

\\[ \\var{a}^x = \\var{b} \\,. \\]

", "advice": "

To solve $\\var{a}^x = \\var{b}$ for $x$, since $x$ is the exponent we want to make use of the following logarithm rule:

\n\n

\n

By taking the logarithm of each side and applying the above rule:

\n

\\[ \\begin{split}\\var{a}^x &\\,= \\var{b} \\\\ \\log_{10}(\\var{a}^x) & \\,= \\log_{10}(\\var{b})\\\\ x \\log_{10}(\\var{a}) &\\,= \\log_{10}(\\var{b}) \\\\\\\\ x&\\,=\\simplify{log({b})/log({a})} \\\\\\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}.  \\end{split} \\]

\n

Use this link to find resources to help you revise how logarithms.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9 except [a,a^2,a^3])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround(log(b)/log(a),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$ [[0]] (Give you answer to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS05 Solve Linear equations with fractions 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solve linear equations with unkowns on both sides. Including brackets and fractions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

To solve an equation like

\n

$\\displaystyle{\\frac{\\var{a}}{y}=\\frac{\\var{b}}{y+\\var{c}}},$

\n

the first thing to deal with is that the unknown ($y$) that you are trying to find is in the denominator (on the bottom) of the fractions. In order to do that you first times by $y$ on both sides and $(y+\\var{c})$ on both sides leading to

\n

\\[\\var{a}(y+\\var{c}) = \\var{b}y.\\]

\n

From here, multiply out the brackets,

\n

\\[\\var{a}y +\\var{a*c} = \\var{b}y.\\]

\n

 Now collect the $y$-terms on one side and the numbers on the other,

\n

\\[\\var{a-b}y=\\var{-a*c}.\\]

\n

Finally divide by the coefficient of $y$,

\n

\\[y=\\frac{\\var{-a*c}}{\\var{a-b}}.\\]

\n

\n

Use this link to find resources to help you revise how to solve linear equations

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "(-a*c)/(a-b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a<>b AND GCD(-a*c,a-b)<(a-b)", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "ans1"], "variable_groups": [{"name": "e", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve $\\displaystyle{\\frac{\\var{a}}{y}=\\frac{\\var{b}}{y+\\var{c}}}$.

\n

$y=$ [[0]] (Give your answer as a fraction)

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "fraction", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans1", "maxValue": "ans1", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS07 Quadratics - solve", "extensions": [], "custom_part_types": [{"source": {"pk": 2, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/2/edit"}, "name": "List of numbers", "short_name": "list-of-numbers", "description": "

The answer is a comma-separated list of numbers.

\n

The list is marked correct if each number occurs the same number of times as in the expected answer, and no extra numbers are present.

\n

You can optionally treat the answer as a set, so the number of occurrences doesn't matter, only whether each number is included or not.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "join(\n if(settings[\"correctAnswerFractions\"],\n map(let([a,b],rational_approximation(x), string(a/b)),x,settings[\"correctAnswer\"])\n ,\n settings[\"correctAnswer\"]\n ),\n settings[\"separator\"] + \" \"\n)", "hint": {"static": false, "value": "if(settings[\"show_input_hint\"],\n \"Enter a list of numbers separated by {settings['separator']}.\",\n \"\"\n)"}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "bits:\nlet(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)\n\nexpected_numbers:\nlet(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)\n\nvalid_numbers:\nif(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )\n\nis_sorted:\nassert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )\n\nincluded:\nmap(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentThe separate items in the student's answer

", "definition": "let(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)"}, {"name": "expected_numbers", "description": "", "definition": "let(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)"}, {"name": "valid_numbers", "description": "

Is every number in the student's list valid?

", "definition": "if(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )"}, {"name": "is_sorted", "description": "

Are the student's answers in ascending order?

", "definition": "assert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )"}, {"name": "included", "description": "

Is each number in the expected answer present in the student's list the correct number of times?

", "definition": "map(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentHas every number been included the right number of times?

", "definition": "all(included)"}, {"name": "no_extras", "description": "

True if the student's list doesn't contain any numbers that aren't in the expected answer.

", "definition": "if(all(map(x in expected_numbers, x, interpreted_answer)),\n true\n ,\n incorrect(\"Your answer contains \"+extra_numbers[0]+\" but should not.\");\n false\n )"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "if(lower(studentAnswer) in [\"empty\",\"\u2205\"],[],\n map(\n if(settings[\"allowFractions\"],parsenumber_or_fraction(x,notationStyles), parsenumber(x,notationStyles))\n ,x\n ,bits\n )\n)"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=\"\",fail(\"You have not entered an answer\"),false);\napply(valid_numbers);\napply(included);\napply(no_extras);\ncorrectif(all_included and no_extras)"}, {"name": "notationStyles", "description": "", "definition": "[\"en\"]"}, {"name": "isSet", "description": "

Should the answer be considered as a set, so the number of times an element occurs doesn't matter?

", "definition": "settings[\"isSet\"]"}, {"name": "extra_numbers", "description": "

Numbers included in the student's answer that are not in the expected list.

", "definition": "filter(not (x in expected_numbers),x,interpreted_answer)"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The list of numbers that the student should enter. The order does not matter.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "allowFractions", "label": "Allow the student to enter fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "correctAnswerFractions", "label": "Display the correct answers as fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "isSet", "label": "Is the answer a set?", "help_url": "", "hint": "If ticked, the number of times an element occurs doesn't matter, only whether it's included at all.", "input_type": "checkbox", "default_value": false}, {"name": "show_input_hint", "label": "Show the input hint?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": true}, {"name": "separator", "label": "Separator", "help_url": "", "hint": "The substring that should separate items in the student's list", "input_type": "string", "default_value": ",", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solving a quadratic equation via factorisation (or otherwise) with the $x^2$-term having a coefficient of 1.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve the following quadratic equation by factorisation or otherwise:

\n

\\[ \\simplify[unitFactor]{x^2+{b}x+{c}=0} \\]

", "advice": "

To solve a quadratic equation of the form \\[ x^2+bx+c=0\\] by factorisation, we want to factorise the equation into the form \\[(x+p)(x+q)=0,\\] where $p+q=b$ and $p \\times q = c$. 

\n

Hence, for the equation \\[\\simplify{x^2+{b}x+{c}=0}, \\]

\n

this can be factorised to \\[\\simplify{(x+{p})(x+{q})=0}.\\] This equation is satisfied when either \\[\\simplify{x+{p}=0} \\quad \\text{or} \\quad \\simplify{x+{q}=0}, \\] which implies the solutions to this quadratic equation are \\[ \\simplify{x={-p}} \\quad \\text{and} \\quad \\simplify{x={-q}} .\\]

\n

Use this link to find resources to help you revise how to solve quadratic equations by factorising the expression.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "{p+q}", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "{p*q}", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(-10..10 except [0,p])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "[-p,-q]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(p+q)>0", "maxRuns": 100}, "ungrouped_variables": ["b", "c", "p", "q", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x= $[[0]]

", "gaps": [{"type": "list-of-numbers", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "{sol}", "allowFractions": false, "correctAnswerFractions": false, "isSet": false, "show_input_hint": true, "separator": ","}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS08 Completing the square", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["complete the square", "completing the square", "taxonomy"], "metadata": {"description": "

Rearrange expressions in the form $ax^2+bx+c$ to $a(x+b)^2+c$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

We can rewrite quadratic equations given in the form $ax^2+bx+c$ as a square plus another term - this is called \"completing the square\".

\n

This can be useful when it isn't obvious how to fully factorise a quadratic equation.

\n

Rewrite the following expressions in the form \\[(x+b)^2-c\\]

", "advice": "

Completing the square works by noticing that

\n

\\[ (x+a)^2 = x^2 + 2ax + a^2 \\]

\n

So when we see an expression of the form $x^2 + 2ax$, we can rewrite it as $(x+a)^2-a^2$.

\n

\n

Replace $x^2+\\var{evens2}x$ with $(x+\\var{evens2/2})^2 - \\var{evens2/2}^2$. Remember to keep the $\\var{evens2-evens1}$ term on the end!

\n

\\begin{align}
\\simplify[basic]{ x^2 + {evens2}x + {evens2-evens1}}  &= \\simplify[basic]{ (x+{evens2/2})^2 - {evens2/2}^2 + {evens2-evens1} } \\\\
&= \\simplify[basic]{ (x+{evens2/2})^2 + {evens2-evens1 - evens2^2/4} }
\\end{align}

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"multiall2": {"name": "multiall2", "group": "Ungrouped variables", "definition": "all2*random(2..10 #2)", "description": "", "templateType": "anything", "can_override": false}, "odds3": {"name": "odds3", "group": "Odds and Evens", "definition": "random(11..30 #2 except odds odds2)", "description": "", "templateType": "anything", "can_override": false}, "evens3": {"name": "evens3", "group": "Odds and Evens", "definition": "random(2..30 #2 except evens1 evens2)", "description": "", "templateType": "anything", "can_override": false}, "evens2": {"name": "evens2", "group": "Odds and Evens", "definition": "random(10..30 #2 except evens1)", "description": "", "templateType": "anything", "can_override": false}, "multiall": {"name": "multiall", "group": "Ungrouped variables", "definition": "all*random(2..10#2)", "description": "", "templateType": "anything", "can_override": false}, "evens1": {"name": "evens1", "group": "Odds and Evens", "definition": "random(10..30 #2)", "description": "", "templateType": "anything", "can_override": false}, "all2": {"name": "all2", "group": "Ungrouped variables", "definition": "random(2..6 except all)", "description": "", "templateType": "anything", "can_override": false}, "odds2": {"name": "odds2", "group": "Odds and Evens", "definition": "random(11..30 #2 except odds)", "description": "", "templateType": "anything", "can_override": false}, "big": {"name": "big", "group": "Ungrouped variables", "definition": "random(30..50)", "description": "", "templateType": "anything", "can_override": false}, "all": {"name": "all", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}, "sml": {"name": "sml", "group": "Ungrouped variables", "definition": "random(2..6#2)", "description": "", "templateType": "anything", "can_override": false}, "odds": {"name": "odds", "group": "Odds and Evens", "definition": "random(11..30 #2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["all", "all2", "multiall", "big", "sml", "multiall2"], "variable_groups": [{"name": "Odds and Evens", "variables": ["evens1", "evens2", "evens3", "odds", "odds2", "odds3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify {x^2+ {evens2}x +{evens2-evens1}} =$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x+{evens2/2})^2+{-(evens2/2)^2+evens2-evens1}", "answerSimplification": "basic, fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["(x", ")^2"], "showStrings": false, "partialCredit": 0, "message": "

It doesn't look like you've completed the square.

"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS09 Quadratics - factorise (a not 1)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["coefficient of x^2 greater than 1", "factorisation", "Factorisation", "factorising", "factorising quadratic equations", "Factorising quadratic equations", "factorising quadratic equations with x^2 coefficients greater than 1", "taxonomy"], "metadata": {"description": "

Factorise a quadratic equation where the coefficient of the $x^2$ term is greater than 1 and then write down the roots of the equation

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

As this question involves a number greater than $1$ before the $x^2$ value it has a factorised form $(ax+b)(cx+d)$.

\n

To find $a$ and $c$, we need to consider the factors of $\\var{a*c}$.

\n

You may have to test a a few different options before you find one that works. In this case $a$ and $c$ are $\\var{a}$ and $\\var{c}$.

\n

This means our factorised equation must take the form

\n

\\[(\\var{a}x+b)(\\var{c}x+d)=0\\text{.}\\]

\n

This expands to

\n

\\[ \\simplify{ {a*c}x^2 + ({a}*d+{c}*b)x + a*b} \\]

\n

So we must find two numbers which add together to make $\\var{a*d+b*c}$, and multiply together to make $\\var{b*d}$.

\n

Therefore $b$ and $d$ must satisfy

\n

\\begin{align}
b \\times d &=\\var{b*d}\\\\
\\simplify{{a}d+{c}b} &= \\var{a*d+b*c}\\text{.}
\\end{align}

\n

$b = \\var{b}$ and $d = \\var{d}$ satisfy these equations:

\n

\\begin{align}
\\var{b} \\times \\var{d} &=\\var{b*d}\\\\
\\simplify[]{ {a}*{d} + {b}*{c} } &= \\var{a*d+b*c}
\\end{align}

\n

So the factorised form of the equation is 

\n

\\[ \\simplify{({a}x+{b})({c}x+{d}) = 0} \\text{.}\\]

\n

$\\simplify{({a}x+{b})({c}x+{d}) = 0}$ when either $\\var{a}x+\\var{b} = 0$ or $\\var{c}x+ \\var{d} = 0$.

\n

So the roots of the equation are $\\var[fractionnumbers]{-b/a}$ and $\\var[fractionnumbers]{-d/c}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "last q", "definition": "random(-5..5 except 0)", "description": "

$b$ in $(ax+b)(cx+d)$

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "last q", "definition": "random(2..8 except a)", "description": "

$c$ in $(ax+b)(cx+d)$

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "last q", "definition": "random(2..3)", "description": "

$a$ in $(ax+b)(cx+d)$

", "templateType": "anything", "can_override": false}, "roots": {"name": "roots", "group": "last q", "definition": "sort([-b/a,-d/c])", "description": "

The roots of the equation

", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "last q", "definition": "random(-8..8 except 0)", "description": "

$d$ in $(ax+b)(cx+d)$

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "last q", "variables": ["a", "b", "c", "d", "roots"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve the following equation by factorisation to find $x$.

\n

$\\simplify{{a*c}x^2+{a*d+b*c}x+{b*d}=0}\\text{.}$

\n

Input your answers in ascending order.

\n

$x=$ [[0]]

\n

$x=$ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "roots[0]", "maxValue": "roots[0]", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "roots[1]", "maxValue": "roots[1]", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD02 Differentiating polynomials 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Differentiate a polynomial expression involving coefficients and, negative and fractional indices. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the derivative of $y=\\simplify[unitFactor, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}}$.

\n

\n

", "advice": "

From the Table of Derivatives we see that a function of the form \\[ f(x)=kx^n \\] has a derivative \\[ \\frac{df}{dx} = knx^{n-1}. \\]

\n

Additionally, the derivative of the sum or difference of two or more functions is equal to the sum or difference of the derivatives of each function: \\[ \\frac{d}{dx}(f(x)\\pm g(x)) = \\frac{df}{dx} \\pm \\frac{dg}{dx}.\\]

\n

\n

{advice}

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3>0,'{solutiona}',{advice2})", "description": "", "templateType": "anything", "can_override": false}, "solutiona": {"name": "solutiona", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutionb": {"name": "solutionb", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutionc": {"name": "solutionc", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutiond": {"name": "solutiond", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "advice2": {"name": "advice2", "group": "Ungrouped variables", "definition": "if(a_2<0 and a_3>0,'{solutionb}',{advice3})", "description": "", "templateType": "anything", "can_override": false}, "advice3": {"name": "advice3", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3<0,'{solutionc}','{solutiond}')", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "b/c", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(b,c)=1", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "b", "c", "advice", "advice2", "advice3", "solutiona", "solutionb", "solutionc", "solutiond"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a_1*b_1}x^{{b_1}-1}+{a_2*b_2}x^{{b_2}-1}+{a_3*b_3}x^{{b_3}-1}", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD03 Differentiation with logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Calculating the derivative of a function of the form $a \\ln(bx)$ using a table of derivatives.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the derivative of $y=\\simplify[unitFactor]{{a}*ln({a_1}*x^2+{a_2}*x+{a_3})}.$

", "advice": "

From the Table of Derivatives and the chain rule we see that a function of the form \\[ f(x)=a \\ln(g(x)) \\] has a derivative \\[\\frac{df}{dx}=\\frac{g'(x)}{g(x)}.\\]

\n

In this case $g(x)=\\var{a_1}x^2+\\var{a_2}x+\\var{a_3}$ so

\n

\\[g'(x)=\\var{2*a_1}x+\\var{a_2}\\]

\n

Therefore, the function \\[ \\simplify[unitFactor]{y={a}ln({a_1}*x^2+{a_2}*x+{a_3})}\\] has a derivative \\[(\\var{a*a_1*2}x+\\var{a*a_2})/(\\var{a_1}x^2+\\var{a_2}x+\\var{a_3})\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-20..20 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "a_1", "a_2", "a_3"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a*a_1*2}x+{a*a_2})/({a_1}*x^2+{a_2}*x+{a_3})", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD04 Differentiating with Exponentials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculating the derivative of an exponential function of the form $ae^{bx}$, using a table of derivatives.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the derivative of $y=\\simplify[all]{{a}*e^({b}x)}.$

", "advice": "

From the Table of Derivatives we see that a function of the form \\[ f(x)=a e^{kx} \\] has a derivative \\[ak e^{kx}.\\]

\n

Therefore, the function  \\[y=\\simplify[unitFactor]{{a}*e^({b}x)}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})e^{\\simplify[unitFactor]{{b}x}}\\\\ &= \\simplify[unitFactor]{{a*b}e^({b}x)}.\\end{split}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-20..20 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*b}e^({b}x)", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD06 Differentiating Trig 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Find the derivative of a function of the form $y=a \\sin(bx+c)$ using a table of derivatives.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Using the Table of Derivatives, calculate the derivative of $y=\\simplify[unitFactor]{{a}sin({b}x+{c})}.$

\n

\n

", "advice": "

From the Table of Derivatives we see that a function of the form \\[ f(x)=a \\sin(kx+c) \\] has a derivative \\[ak \\cos (kx+c).\\]

\n

Therefore, the function  \\[y=\\simplify[unitFactor]{{a}*sin({b}x+{c})}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})\\cos(\\simplify[unitFactor]{{b}x+{c}})\\\\ &= \\simplify[unitFactor]{{a*b}cos({b}x+{c})}.\\end{split}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-15..15)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*b}cos({b}x+{c})", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD07 Differentiating with Trig 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Find the derivative of a function of the form $y=a \\tan(bx+c)$ using a table of derivatives.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Using the Table of Derivatives, calculate the derivative of $y=\\simplify[unitFactor]{{a}tan({b}x+{c})}.$

\n

\n

", "advice": "

From the Table of Derivatives we see that a function of the form \\[ f(x)=a \\tan(kx+c) \\] has a derivative \\[ak \\sec^2(kx+c).\\]

\n

Therefore, the function  \\[y=\\simplify[unitFactor]{{a}*tan({b}x+{c})}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})\\sec^2(\\simplify[unitFactor]{{b}x+{c}})\\\\ &= \\simplify[unitFactor]{{a*b}}\\sec^2(\\simplify[unitFactor]{{b}x+{c}}).\\end{split}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-15..15)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a*b}sec^2({b}x+{c})", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "sec", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{a*b}sec({b}x+{c})^2", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD09 Chain Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculating the derivative of a function of the form $\\sin(ax^m+bx^n)$ using the chain rule.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the derivative of $y=\\simplify[all]{sin({a}*x^{n}+{b}*x^{m})}$.

", "advice": "

If we have a function of the form $y=f(g(x))$, sometimes described as a function of a function, to calculate its derivative we need to use the chain rule:

\n

\\[ \\frac{dy}{dx} = \\frac{du}{dx} \\times \\frac{dy}{du}.\\]

\n

\n

This can be split up into steps:

\n\n

\n

Following this process, we must first identify $g(x)$. Since the function is of the form $y=f(g(x))$, we are looking for the 'inner' function.

\n

So, for $y=\\simplify[all,fractionNumbers]{sin({a}*x^{n}+{b}*x^{m})}$, \\[g(x)=\\simplify[all, fractionNumbers, unitFactor]{{a}*x^{n}+{b}*x^{m}}.\\]

\n

If we now set $u=g(x)$, we can rewrite $y$ in terms of $u$ such that $y=f(u)$:

\n

\\[y=\\simplify[all, fractionNumbers,unitFactor]{sin(u)}.\\]

\n

Next, we calculate the two derivatives $\\frac{du}{dx}$ and $\\frac{dy}{du}$:

\n

\\[\\frac{du}{dx}=\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}}, \\quad \\frac{dy}{du}=\\simplify[all, fractionNumbers, unitFactor]{cos(u)}.\\]

\n

Plugging these into the chain rule:

\n

\\[ \\begin{split} \\frac{dy}{dx} &= \\frac{du}{dx} \\times \\frac{dy}{du}, \\\\&=(\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}}) \\times\\simplify[all, fractionNumbers, unitFactor]{cos(u)}. \\end{split} \\]

\n

Finally, we need to express $\\frac{dy}{dx}$ only in terms of $x$, so we must replace the $u$ term using the initial substitution $u=\\simplify[all, fractionNumbers, unitFactor]{{a}*x^{n}+{b}*x^{m}}$:

\n

\\[ \\frac{dy}{dx} =(\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}})\\simplify[all, fractionNumbers, unitFactor]{cos({a}*x^{n}+{b}*x^{m})}.\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "n>m", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a*n}*x^{n-1}+{b*m}*x^{m-1})*cos({a}x^{n}+{b}x^{m})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD10 Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculating the derivative a function of the form $ax^n \\sin(bx)$ using the product rule.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the derivative of \\[ \\simplify{y={a}x^{n} sin({b}x)}. \\]

", "advice": "

If we have a function of the form $y=u(x)v(x)$, to calculate its derivative we need to use the product rule:

\n

\\[ \\dfrac{dy}{dx} = u(x) \\times \\dfrac{dv}{dx} + v(x) \\times\\dfrac{du}{dx}.\\]

\n

This can be split up into steps:

\n
    \n
  1. Identify the functions $u(x)$ and $v(x)$;
  2. \n
  3. Calculate their derivatives $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$;
  4. \n
  5. Substitute these into the formula for the product rule to obtain an expression for $\\tfrac{dy}{dx}$;
  6. \n
  7. Simplify $\\tfrac{dy}{dx}$ where possible.
  8. \n
\n

Following this process, we must first identify $u(x)$ and $v(x)$.

\n

As \\[ \\simplify{y={a}x^{n} sin({b}x)}, \\]

\n

let \\[ u(x) = \\simplify{{a}x^{n}} \\quad \\text{and} \\quad v(x)=\\simplify{sin({b}x)}.\\]

\n

Next, we need to find the derivatives, $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$:

\n

\\[ \\dfrac{du}{dx} = \\simplify{{a*n}x^{n-1}}\\quad \\text{and} \\quad\\dfrac{dv}{dx}=\\simplify{{b}cos({b}x)}.\\]

\n

Substituting these results into the product rule formula we can obtain an expression for $\\tfrac{dy}{dx}$:

\n

\\[ \\begin{split} \\dfrac{dy}{dx} &\\,= \\dfrac{du}{dx}\\times v(x) + u(x) \\times\\dfrac{dv}{dx} \\\\ &\\,=\\simplify{{a*n}x^{n-1}} \\times\\simplify{sin({b}x)} +\\simplify{{a}x^{n}} \\times \\simplify{{b}cos({b}x)}.  \\end{split}\\]

\n

Simplifying,

\n

\\[\\dfrac{dy}{dx} = \\simplify{{n*a}x^{n-1}sin({b}x) + {a*b}x^{n}cos({b}x)}. \\]

\n

\n

Use this link to find some resources which will help you revise this topic

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\dfrac{dy}{dx}=$[[0]] 

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n*a}x^{n-1}sin({b}x) + {a*b}x^{n}cos({b}x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD11 Quotient Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "

Calculating the derivative of a function of the form $\\frac{ax^n}{bx+c}$ using the quotient rule.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the derivative of \\[ \\simplify{y={a}x^{n}/({b}x+{c})}. \\]

", "advice": "

If we have a function of the form $y=\\tfrac{u(x)}{v(x)}$, to calculate its derivative we need to use the quotient rule:

\n

\\[ \\dfrac{dy}{dx} = \\dfrac{v(x) \\times \\frac{du}{dx} - u(x) \\times\\frac{dv}{dx}}{[v(x)]^2}\\,.\\]

\n

This can be split up into steps:

\n
    \n
  1. Identify the functions $u(x)$ and $v(x)$;
  2. \n
  3. Calculate their derivatives $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$;
  4. \n
  5. Substitute these into the formula for the quotient rule to obtain an expression for $\\tfrac{dy}{dx}$;
  6. \n
  7. Simplify $\\tfrac{dy}{dx}$ where possible.
  8. \n
\n

\n

Following this process, we must first identify $u(x)$ and $v(x)$.

\n

As \\[ \\simplify{y={a}x^{n}/({b}x+{c})}, \\]

\n

let \\[ u(x) = \\simplify{{a}x^{n}} \\quad \\text{and} \\quad v(x)=\\simplify{{b}x+{c}}.\\]

\n

Next, we need to find the derivatives, $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$:

\n

\\[ \\dfrac{du}{dx} = \\simplify{{a*n}x^{n-1}}\\quad \\text{and} \\quad\\dfrac{dv}{dx}=\\simplify{{b}}.\\]

\n

Substituting these results into the quotient rule formula we can obtain an expression for $\\tfrac{dy}{dx}$:

\n

\\[ \\begin{split} \\dfrac{dy}{dx} &\\,= \\dfrac{v(x) \\times \\frac{du}{dx} - u(x) \\times\\frac{dv}{dx}}{[v(x)]^2} \\\\ \\\\&\\,=\\dfrac{(\\simplify{{b}x+{c}}) \\times\\simplify{{a*n}x^{n-1}} - \\simplify{{a}x^{n}} \\times \\simplify{{b}}}{\\simplify{({b}x+{c})^2}}.  \\end{split}\\]

\n

Simplifying,

\n

\\[ \\begin{split} \\dfrac{dy}{dx} &\\,=\\dfrac{(\\simplify{{b}x+{c}})\\simplify{{a*n}x^{n-1}} - \\simplify{{b*a}x^{n}}}{\\simplify{({b}x+{c})^2}} \\\\ \\\\&\\,=\\dfrac{\\simplify[all,!cancelTerms]{{b*a*n}x^{n}+{c*a*n}x^{n-1} - {b*a}x^{n}}}{\\simplify{({b}x+{c})^2}}\\\\ \\\\ &\\,=\\dfrac{\\simplify{{b*a*n}x^{n}+{c*a*n}x^{n-1} - {b*a}x^{n}}}{\\simplify{({b}x+{c})^2}} \\\\ \\\\ &\\,=\\dfrac{\\simplify{{simp}x^{n-1}({(b*a*n-b*a)/simp}x+{c*a*n/simp})}}{\\simplify{({b}x+{c})^2}} \\end{split} \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except [0,b])", "description": "", "templateType": "anything", "can_override": false}, "simp": {"name": "simp", "group": "Ungrouped variables", "definition": "gcd(b*a*n-b*a,c*a*n)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "simp>1", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "n", "simp"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\dfrac{dy}{dx}=$[[0]] 

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({simp}x^{n-1}({(b*a*n-a*b)/simp}x+{c*a*n/simp}))/({b}x+{c})^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI01 Indefinite integration - polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculating the integral of a function of the form $a_1x^{b_1}+a_2x^{b_2}+a_3x^{b_3}$ using a table of integrals. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Find the integral of $f(x)=\\simplify[unitFactor, unitPower, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}+{a_4}}$.

\n

\n

", "advice": "

From the Table of Integrals we see that a function of the form \\[ f(x)=x^n \\] has the integral \\[ \\int x^n dx  =  \\frac{x^{n+1}}{n+1}+ c,\\]

\n

and \\[\\int kf(x) dx = k \\int f(x) dx.\\]

\n

Additionally, the integral of the sum or difference of two or more functions is equal to the sum or difference of the integrals of each function: \\[ \\int(f(x)\\pm g(x))\\, dx = \\int f(x)\\, dx  \\pm \\int g(x) \\, dx.\\]

\n

So, for the function

\n

\\[f(x)=\\simplify[unitFactor,unitPower]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}+{a_4}},\\]

\n

the integral  is

\n

\\[ \\begin{split}\\simplify[unitFactor,unitPower]{int({a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}+{a_4},x)} &\\,= \\simplify{{a_1}int(x^{b_1},x)+{a_2}int(x^{b_2},x)+{a_3}int(x^{b_3},x)+int({a_4},x)} \\\\&\\,= \\simplify[all,fractionNumbers]{({a_1}*x^{b_1+1})/{b_1+1}+({a_2}*x^{b_2+1})/{b_2+1}+({a_3}*x^{b_3+1})/{b_3+1}+{a_4}x}+c.\\end{split} \\]

\n

\n

Note: You only need to put one $c$ term here, you do not need to put a separate constant term for each calculation.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "2", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3>0,'{solutiona}',{advice2})", "description": "", "templateType": "anything", "can_override": false}, "solutiona": {"name": "solutiona", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutionb": {"name": "solutionb", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutionc": {"name": "solutionc", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "solutiond": {"name": "solutiond", "group": "Ungrouped variables", "definition": "\"

So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative  is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}

\"", "description": "", "templateType": "long string", "can_override": false}, "advice2": {"name": "advice2", "group": "Ungrouped variables", "definition": "if(a_2<0 and a_3>0,'{solutionb}',{advice3})", "description": "", "templateType": "anything", "can_override": false}, "advice3": {"name": "advice3", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3<0,'{solutionc}','{solutiond}')", "description": "", "templateType": "anything", "can_override": false}, "a_4": {"name": "a_4", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b_1>b_2 and b_2>b_3", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "advice", "advice2", "advice3", "solutiona", "solutionb", "solutionc", "solutiond", "a_4"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alternative using \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a_1}x^{{b_1}+1}/{b_1+1}+{a_2}x^{{b_2}+1}/{b_2+1}+{a_3}x^{{b_3}+1}/{b_3+1}+{a_4}x+x", "answerSimplification": "all, fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.

", "useAlternativeFeedback": false, "answer": "{a_1}x^{{b_1}+1}/{b_1+1}+{a_2}x^{{b_2}+1}/{b_2+1}+{a_3}x^{{b_3}+1}/{b_3+1}+{a_4}x", "answerSimplification": "all, fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{a_1}x^{{b_1}+1}/{b_1+1}+{a_2}x^{{b_2}+1}/{b_2+1}+{a_3}x^{{b_3}+1}/{b_3+1}+{a_4}x+c", "answerSimplification": "all, fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI02 Definite integration", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Calculating the definite integral $\\int_{n_1}^{n_2}a_1x^{b_1}+a_2x^{b_2}+a_3x^{b_3} dx$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Evaluate \\[ \\int_{\\var{n_1}}^{\\var{n_2}}\\simplify[unitFactor, unitPower, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}} \\,dx.\\]

\n

", "advice": "

Integrating a function of the form  \\[ f(x)=x^n \\] has the integral \\[ \\int_a^b x^n dx  =  \\left[\\frac{x^{n+1}}{n+1}\\right]_a^b,\\]

\n

and \\[\\int_a^b kf(x) dx = k \\int_a^b f(x) dx.\\]

\n

Additionally, the integral of the sum or difference of two or more functions is equal to the sum or difference of the integrals of each function: \\[ \\int(f(x)\\pm g(x))\\, dx = \\int f(x)\\, dx  \\pm \\int g(x) \\, dx.\\]

\n

\n

Therefore,

\n

\\[ \\begin{split}\\simplify[unitFactor,unitPower]{defint({a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3},x,{n_1},{n_2})} &\\,= \\simplify{{a_1}defint(x^{b_1},x,{n_1},{n_2})+{a_2}defint(x^{b_2},x,{n_1},{n_2})+{a_3}defint(x^{b_3},x,{n_1},{n_2})} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers]{{a_1}x^{b_1+1}/{b_1+1}+{a_2}x^{b_2+1}/{b_2+1}+{a_3}x^{b_3+1}/{b_3+1}}\\right]_\\var{n_1}^\\var{n_2} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_2^(b_1+1)}/{b_1+1}+{a_2*n_2^(b_2+1)}/{b_2+1}+{a_3*n_2^(b_3+1)}/{b_3+1}}\\right] -\\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_1^(b_1+1)}/{b_1+1}+{a_2*n_1^(b_2+1)}/{b_2+1}+{a_3*n_1^(b_3+1)}/{b_3+1}}\\right] \\\\ &\\,= \\simplify[!collectNumbers]{{eval2a}-{eval1a}} \\\\ &\\,=\\var{sol1} \\end{split} \\]

\n

Use this link to find some resources on areas under curves which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "2", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n_1": {"name": "n_1", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "n_2": {"name": "n_2", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "eval2": {"name": "eval2", "group": "Ungrouped variables", "definition": "a_1*n_2^(b_1+1)/(b_1+1)+a_2*n_2^(b_2+1)/(b_2+1)+a_3*n_2^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval1": {"name": "eval1", "group": "Ungrouped variables", "definition": "a_1*n_1^(b_1+1)/(b_1+1)+a_2*n_1^(b_2+1)/(b_2+1)+a_3*n_1^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval2a": {"name": "eval2a", "group": "Ungrouped variables", "definition": "precround(eval2,3)", "description": "", "templateType": "anything", "can_override": false}, "eval1a": {"name": "eval1a", "group": "Ungrouped variables", "definition": "precround(eval1,3)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "eval2-eval1", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "precround(sol,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b_1>b_2 and b_2>b_3 and n_2>n_1", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "n_1", "n_2", "eval2", "eval1", "eval2a", "eval1a", "sol", "sol1"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]] (Give answers to 2 decimal places where necessary)

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI05 Integration - Substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculating the integral of a function of the form $\\frac{nx^{n-1}}{x^n+a}$ using integration by substitution.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate \\[ \\simplify[all]{int(({n}x^{n-1})/(x^{n}+{a}),x)}\\]

\n

by using the substitution \\[ \\simplify[all]{u=x^{n}+{a}}.\\]

", "advice": "

Since this integral is of the form \\[ \\int g'(x)f(g(x))\\,dx,\\] we can use the method of substitution to calculate the solution. 

\n

Firstly, we must make a change of variables from $x$ to $u$, where $u$ is equal to the 'inner' function $g(x)$.

\n

So, for \\[\\simplify[fractionNumbers]{int(({n}x^{n-1})/((x^{n}+{a})),x)}\\]

\n

let $\\color{red}{u=\\simplify[fractionNumbers]{x^{n}+{a}}}.$

\n

Now, we need to calculate the differential, $du$, where \\[ du = \\left(\\frac{du}{dx}\\right)dx. \\]

\n

Differentiating $u$ with respect to $x$:

\n

\\[ \\frac{du}{dx}= \\simplify[fractionNumbers]{{n}x^{n-1}}.\\]

\n

Therefore, \\[ \\color{blue}{du = \\simplify[fractionNumbers]{{n}x^{n-1}}\\, dx}.\\]

\n

We can now rewrite the original integral in terms of $u$:

\n

\\[ \\int \\frac{\\color{blue}{\\simplify{{n}x^{n-1}}}}{\\color{red}{\\simplify{x^{n}+{a}}}}\\color{blue}{\\text{d}x} = \\int \\frac{1}{\\color{red}{u}}\\color{blue}{\\text{d}u}.\\]

\n

(Note: It is important to see that both the function we are integrating, and the variable we are integrating with respect to, has changed.)

\n

\\[ \\simplify[fractionNumbers]{int(1/u,u) = ln(abs(u)) + c}.\\]

\n

Finally, we must rewrite our solution back in terms of the original variable $x$:

\n

\\[ \\simplify[fractionNumbers]{ln(abs(u)) + c = ln(abs(x^{n}+{a})) + c}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "n"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alternative using brackets", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".

", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a})) + k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using brackets and \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".

", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.

", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a}))", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "ln(abs(x^{n}+{a}))+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI06 Integration - Parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculating the integral of a function of the form $ax^2 \\cos(bx)$ using integration by parts.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the integral \\[ \\simplify{int({a}x^2 cos({b}x),x)}\\]

", "advice": "

If we have a function of $x$ which is the product of two functions of $x$, to integrate such a function it is often necessary to use Integration by Parts. The formula for Integration by Parts is:

\n

\\[ \\int u(x) \\frac{dv}{dx} dx = u(x)v(x) - \\int v(x) \\frac{du}{dx} dx.\\]

\n

Using this method can be broken down into steps:

\n
    \n
  1. Identify $u(x)$ and $\\tfrac{dv}{dx}$ (The function you pick for each is important, in general you want $u(x)$ to become simpler when differentiating it, and you must be able to integrate $\\tfrac{dv}{dx}$ to find $v(x)$);
  2. \n
  3. Calculate $\\tfrac{du}{dx}$ and $v(x)$;
  4. \n
  5. Put the functions $u(x)$, $v(x)$, and their derivatives into the Integration by Parts formula;
  6. \n
  7. Calculate the integral $\\int v(x) \\tfrac{du}{dx} dx$ (This may require you to use Integration by Parts again, this is OK!);
  8. \n
  9. Simplify your answer where possible and don't forget to add the constant of integration.
  10. \n
\n

\n

For the integral

\n

\\[ \\simplify{int({a}x^2 cos({b}x),x)},\\]

\n

we must first identify $u(x)$ and $\\tfrac{dv}{dx}$. In this case, let \\[ u(x)=\\simplify{{a}x^2},\\quad \\frac{dv}{dx}= \\simplify{cos({b}x)}. \\]

\n

Next, we need to calculate $\\tfrac{du}{dx}$ and $v(x)$:

\n

\\[ \\begin{split} u(x) = \\var{a}x^2 \\quad &\\implies \\frac{du}{dx} = \\simplify{{2a}x}; \\\\ \\frac{dv}{dx} = \\cos(\\var{b}x) &\\implies v(x) = \\simplify[fractionNumbers]{1/{b} sin({b}x)}. \\end{split} \\]

\n

Plugging these 4 terms into the integration by parts formula:

\n

\\[  \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) - int({2a/b}x sin({b}x),x)},  \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x sin({b}x),x)}.\\end{split} \\]

\n

Since the integral on the right-hand side is still the product of two functions of $x$, we need to use integration by parts again. 

\n

So, for 

\n

\\[ \\simplify{int(x sin({b}x),x)}, \\]

\n

 Let $u=x$ and $\\tfrac{dv}{dx} = \\sin(\\var{b}x)$. Therefore, $\\tfrac{du}{dx}=1$ and $v(x)=\\simplify{-1/{b} cos({b}x)}$.

\n

Hence,

\n

\\[ \\begin{split} \\simplify{int(x sin({b}x),x)} &\\,= \\simplify{-1/{b}x cos({b}x)- int(-1/{b} cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify{-1/{b}x cos({b}x)+1/{b^2}sin({b}x)}. \\end{split}\\]

\n

Plugging this back into the original calculation:

\n

\\[  \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}[-1/{b}x cos({b}x)+1/{b^2}sin({b}x)]} \\\\ \\\\ &\\,=\\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) +{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)} + c.\\end{split} \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..7)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(a,b)=1 and b>a", "maxRuns": 100}, "ungrouped_variables": ["a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct Answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alt constant +k", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.

", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+c", "answerSimplification": "fractionNumbers, basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA07 Trigonometric Identities 1", "extensions": [], "custom_part_types": [], "resources": ["question-resources/image_jPzIKnS.png", "question-resources/image_kkFBamd.png", "question-resources/image_K3sk7RI.png", "question-resources/image_SC1KBmT.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "

Rewriting a trigonometric expression of the form $A\\sin(\\theta)-B\\cos(\\theta)$ to $R\\sin(\\theta-\\alpha)$ by calculating $R$ and $\\alpha$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

If \\[ \\simplify[unitFactor]{{A}sin(theta)-{B}cos(theta)} = R \\sin (\\theta - \\alpha),\\]

\n

find the values for $R$ and $\\alpha$, given $R>0$ and $0<\\alpha<\\frac{\\pi}{2}$.

", "advice": "

To find $R$ and $\\alpha$ we want to first rewrite our equation using the double-angle formula, $\\sin(a-b)=\\sin(a)\\cos(b)-\\sin(b)\\cos(a)$:

\n

\\[ \\begin{split}\\simplify[unitFactor]{{A}sin(theta)-{B}cos(theta)} &\\,= R \\sin(\\theta-\\alpha) \\\\ &\\,= R(\\sin(\\theta)\\cos(\\alpha) - \\sin(\\alpha)\\cos(\\theta)) \\\\ &\\,= R\\sin(\\theta)\\cos(\\alpha) - R\\sin(\\alpha)\\cos(\\theta). \\end{split} \\]

\n

By comparing the coefficients of $\\sin(\\theta)$ and $\\cos(\\theta)$, we find that

\n

\\[ R\\cos(\\alpha) = \\var{A},\\quad \\text{and} \\quad R\\sin(\\alpha) = \\var{B}. \\]

\n

To calculate $R$, we want to square these results and add them together, allowing us to make use of $\\sin^2(\\alpha)+\\cos^2(\\alpha) = 1$:

\n

{Rsol}

\n

Similarly, to find $\\alpha$ we can divide $R\\sin(\\alpha) = \\var{B}$ by $R\\cos(\\alpha) = \\var{A}$, and use the identity $\\tan(\\alpha) = \\frac{\\sin(\\alpha)}{\\cos(\\alpha)}$:

\n

\\[ \\frac{R\\sin(\\alpha)}{R\\cos(\\alpha)} = \\frac{\\var{B}}{\\var{A}} \\implies \\tan(\\alpha) = \\simplify[fractionNumbers]{{B/A}}.\\]

\n

Therefore, \\[ \\begin{split} \\alpha &\\,= \\tan^{-1}\\left(\\simplify[fractionNumbers]{{B/A}}\\right) \\\\ &\\,= \\var{alpharound} \\text{ (2 d.p.)}. \\end{split} \\]

\n

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "random(1..5 except A)", "description": "", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "sqrt(A^2+B^2)", "description": "", "templateType": "anything", "can_override": false}, "Rround": {"name": "Rround", "group": "Ungrouped variables", "definition": "precround(R,2)", "description": "", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "arctan(B/A)", "description": "", "templateType": "anything", "can_override": false}, "Rsol": {"name": "Rsol", "group": "Ungrouped variables", "definition": "if(R=round(R),'{Rsol1}','{Rsol2}')", "description": "", "templateType": "anything", "can_override": false}, "Rsol1": {"name": "Rsol1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split} R^2\\\\cos^2(\\\\alpha) + R^2 \\\\sin^2(\\\\alpha) &\\\\,= \\\\var{A}^2+\\\\var{B}^2 \\\\\\\\ R^2 (\\\\cos^2(\\\\alpha) +\\\\sin^2(\\\\alpha)) &\\\\,= \\\\var{A^2+B^2} \\\\\\\\ R &\\\\,= \\\\var{R}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "Rsol2": {"name": "Rsol2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split} R^2\\\\cos^2(\\\\alpha) + R^2 \\\\sin^2(\\\\alpha) &\\\\,= \\\\var{A}^2+\\\\var{B}^2 \\\\\\\\ R^2 (\\\\cos^2(\\\\alpha) +\\\\sin^2(\\\\alpha)) &\\\\,= \\\\var{A^2+B^2} \\\\\\\\ R &\\\\,= \\\\sqrt{\\\\var{A^2+B^2}}\\\\\\\\ &\\\\,=\\\\var{Rround} \\\\text{ (2 d.p.)}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "alpharound": {"name": "alpharound", "group": "Ungrouped variables", "definition": "precround(alpha,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "B", "R", "Rround", "alpha", "alpharound", "Rsol", "Rsol1", "Rsol2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$R=$[[0]]

\n

$\\alpha=$[[1]]

\n

(Give your answers to 2 decimal places where necessary.)

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{Rround}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{alpharound}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA09 sec/cosec/cot", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Match the graphs to the functions. No randomisation. Multiple choice.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

This is about knowledge of graphs. Generally with trigonometric graphs it is best to start with making sure you know and understand the graphs of the functionts $\\sin(x)$, $\\cos(x)$ and $\\tan(x)$. From there you can use knowledge of where they are zero to work out the position of the asymptotes in the graphs of $\\sec(x)$, $\\text{cosec}(x)$ and $\\cot(x)$. However, you still need really to be able to recall the shape of each graph for some purposes and be confident about where the zeros and turning points are.

\n

Use this link to find some resources to help you familiarise yourself with these graphs.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Match the graph to its function.

", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\sec(x)$", "$\\text{cosec}(x)$", "$\\cot(x)$"], "matrix": [["1", "0", 0], [0, "1", 0], ["0", 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["{geogebra_applet('https://www.geogebra.org/m/h9d8hzna')}", "{geogebra_applet('https://www.geogebra.org/m/kqnrbjzy')}", "{geogebra_applet('https://www.geogebra.org/m/xm44vcwe')}"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GM05 Volume of a Trapezoidal Prism", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Find the volume of a prism with a trapezium as a cross section from a diagram.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate the volume of this (all lengths are in $cm$):

\n

{geogebra_applet('https://www.geogebra.org/m/qvcktek2',[basew: basew, topw: topw, h: h, l: l])}

", "advice": "

In order to work out the volume of a prism you need to work out the cross sectional area first. In this question the cross section is a trapezium. Find the area of a trapezium,

\n

\\begin{align} \\frac{\\var{basew}+\\var{topw}}{2}\\times \\var{h}  = \\var{traparea} cm^2 \\end{align}

\n

Then to calculate the volume you times the cross-sectional area by the length,

\n

\\begin{align} \\var{traparea} \\times \\var{l} = \\var{answer}cm^3\\end{align}.

\n

\n

Use this link to find resources to help you revise how to calculate the volume of a prism.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"basew": {"name": "basew", "group": "Ungrouped variables", "definition": "random(12 .. 20#2)", "description": "", "templateType": "randrange", "can_override": false}, "topw": {"name": "topw", "group": "Ungrouped variables", "definition": "random(4 .. 10#2)", "description": "", "templateType": "randrange", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(4 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(8 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "((topw+basew)/2)*h*l", "description": "", "templateType": "anything", "can_override": false}, "traparea": {"name": "traparea", "group": "Ungrouped variables", "definition": "(basew+topw)/2*h", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["basew", "topw", "h", "l", "answer", "traparea"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$cm^3$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Volume", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "LD01 Commutativity, Associativity and Distributive", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Poppy Jeffries", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21275/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

Commutative

\n

The definition of commutativity can be written in the following way:

\n

$$
a \\times b = b \\times a.
$$

\n

There are varying degress of technical detail that can be included in this definition depending on what area you are studying. The key idea is that an operation is said to be commutative if the order in which you write the two elements being operated on does not matter. Multiplication of real numbers is commutative because as we know $2 \\times 3 = 3 \\times 2 = 6$ for example. The most common example of something being non-commutative is multiplication for matrices. In general for two matrices $A$ and $B$, $AB \\neq BA$ (in fact sometimes one of these things can be calculated and the other does not even exist).

\n

Assosciative

\n

The definition of associativity can be written in the following way:

\n

$$
(ab)c = a(bc).
$$

\n

In other words it doesn't matter if you first work out $a$ times $b$ and then take the result and times it by $c$, or if you first work out $b$ times $c$ and then pre-multiply the result by $a$.

\n

Distributive

\n

The definition of distributive can be written in the following way:

\n

$$
a \\times (b + c) = a \\times b + a \\times c.
$$

\n

As with the others there are increasing levels of detail that can be put into this definition (such as including ideas such as right-distributive and left-distributive) but the key idea is that you can \"expand brackets\" as you can in elementary algebra, if an operator is distributive.

\n

For more reading on this try (for example) this link.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Match the word to its correct definition

", "minMarks": 0, "maxMarks": "3", "minAnswers": 0, "maxAnswers": "3", "shuffleChoices": true, "shuffleAnswers": false, "displayType": "checkbox", "warningType": "warn", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$a,b \\in S \\Rightarrow ab = ba$", "$a,b,c \\in S \\Rightarrow (ab)c = a(bc)$", "$a,b,c \\in S \\Rightarrow a(b+c)=ab+ac$", "If $a,b \\in S$, and $ab = ba = I$ then $b = a^{-1}$ ", "$a,b,c \\in S$ and $a+b = b+c \\Rightarrow a = c$"], "matrix": [["1", "0", "0"], ["0", "1", 0], ["0", "0", "1"], [0, 0, 0], [0, 0, 0]], "layout": {"type": "all", "expression": ""}, "answers": ["Commutative", "Associative", "Distributive"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "LM01 Matrices dimensions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The following questions are designed to explore the dimensions of matrices and what you can and can't do with matrices of differing dimensions.

", "advice": "

Rows and Columns

\n

The convention in Matrix notation is to give the dimensions of a matrix in the order \"rows\" by \"columns\".

\n

For $\\var{Dimensions}$ there are $\\var{rows[0]}$ rows and $\\var{columns[0]}$ columns. We write this as \"this is a $\\var{rows[0]}$X$\\var{columns[0]}$ matrix\".

\n

When can you add and subtract matrices?

\n

Two Matrices can be added or subtracted if they have the exact same dimensions as each other. For example $\\var{canadd1}$ and $\\var{canadd2}$ are both $\\var{rows[1]}$X$\\var{columns[1]}$ matrices and therefore can be added (or subtracted). However, $\\var{cantaddsub1}$ is a $\\var{rows[3]}$X$\\var{columns[3]}$ matrix and $\\var{cantaddsub2}$ is a $\\var{rows[3]}$X$\\var{columns[3]+1}$ matrix. Since these dimensions are different these matrices cannot be added or subtracted.

\n

Multiplying Dimensions

\n

When you multiply two matrices together the number of columns in the first matrix must match the number of rows in the second matrix. For example in the calculation $\\var{Mult3}$X$\\var{Mult4}$ the first matrix has $3$ columns and the second matrix has $3$ rows so they can be multiplied. In addition to this when multiplying two matrices (that can be multiplied) the result will be a single matrix that has the number of rows of the first matrix and the number of columns of the second matrix. In this example the first matrix has $\\var{rows[0]}$ rows and the second matrix has $\\var{columns[1]}$ columns, so the result of multiplying the two matrices will be a $\\var{rows[0]}$X$\\var{columns[1]}$ matrix.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"rows": {"name": "rows", "group": "Ungrouped variables", "definition": "repeat(random(1..4),6)", "description": "", "templateType": "anything", "can_override": false}, "columns": {"name": "columns", "group": "Ungrouped variables", "definition": "repeat(random(1..4),6)", "description": "", "templateType": "anything", "can_override": false}, "dimensions": {"name": "dimensions", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[0]),rows[0]))", "description": "", "templateType": "anything", "can_override": false}, "canadd1": {"name": "canadd1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),rows[1]))", "description": "", "templateType": "anything", "can_override": false}, "canadd2": {"name": "canadd2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),rows[1]))", "description": "", "templateType": "anything", "can_override": false}, "cansub1": {"name": "cansub1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[2]),rows[2]))", "description": "", "templateType": "anything", "can_override": false}, "cansub2": {"name": "cansub2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[2]),rows[2]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub1": {"name": "cantaddsub1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[3]),rows[3]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub2": {"name": "cantaddsub2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[3]+1),rows[3]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub3": {"name": "cantaddsub3", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),rows[3]),columns[3]))", "description": "", "templateType": "anything", "can_override": false}, "Mult1": {"name": "Mult1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[4]),rows[4]))", "description": "", "templateType": "anything", "can_override": false}, "Mult2": {"name": "Mult2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[5]),rows[5]))", "description": "", "templateType": "anything", "can_override": false}, "correctanswertomult": {"name": "correctanswertomult", "group": "Ungrouped variables", "definition": "IF(columns[4]=rows[5],\"yes\",\"no\")", "description": "", "templateType": "anything", "can_override": false}, "incorrectanswertomult": {"name": "incorrectanswertomult", "group": "Ungrouped variables", "definition": "IF(columns[4]=rows[5],\"no\",\"yes\")", "description": "", "templateType": "anything", "can_override": false}, "Mult3": {"name": "Mult3", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),3),rows[0]))", "description": "", "templateType": "anything", "can_override": false}, "Mult4": {"name": "Mult4", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),3))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "(rows[0]>1 OR columns[0]>1) AND (rows[3]<>columns[3])", "maxRuns": 100}, "ungrouped_variables": ["rows", "columns", "dimensions", "canadd1", "canadd2", "cansub1", "cansub2", "cantaddsub1", "cantaddsub2", "cantaddsub3", "Mult1", "Mult2", "correctanswertomult", "incorrectanswertomult", "Mult3", "Mult4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Rows and Columns", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What are the dimensions of the following matrix?

\n

$\\var{dimensions}$

\n

[[0]]X[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Rows", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{rows[0]}", "maxValue": "{rows[0]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Columns", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{columns[0]}", "maxValue": "{columns[0]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "m_n_2", "useCustomName": true, "customName": "When can you add and subtract matrices?", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following calculations are defined?

\n

(Indicate ALL possible answers by ticking the corresponding box(es))

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "0", "minAnswers": 0, "maxAnswers": "2", "warningType": "warn", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": ["$\\var{canadd1}+\\var{canadd2}\\\\$", "$\\var{cansub1}-\\var{cansub2}\\\\$", "$\\var{cantaddsub1}-\\var{cantaddsub2}\\\\$", "$\\var{cantaddsub1}+\\var{cantaddsub3}\\\\$"], "matrix": ["1", "1", "0", "0"], "distractors": ["", "", "", ""]}, {"type": "gapfill", "useCustomName": true, "customName": "When can you multiply two matrices?", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Is this calculation defined?

\n

$\\var{Mult1}$X$\\var{Mult2}$

\n

[[0]]

", "gaps": [{"type": "1_n_2", "useCustomName": true, "customName": "Yesno", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{correctanswertomult}", "{incorrectanswertomult}"], "matrix": ["1", 0], "distractors": ["", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Dimensions of multiplication answer", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What will be the dimensions of the matrix you get when you multiply these two matrices?

\n

$\\var{Mult3}$X$\\var{Mult4}$.

\n

\n

[[0]]X[[1]]

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Rows", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "rows[0]", "maxValue": "rows[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Cols", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "columns[1]", "maxValue": "columns[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "LN04 The LInfinity Norm", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

What is the $L^{\\infty}$ norm of the following vectors

", "advice": "

The L-two norm

\n

The $L^{\\infty}$ norm of a vector is found by picking the maximum of the absolute value of the elements of the vector.

\n

So, introducing the $\\left| \\bf{v} \\right|_\\infty$ notation for the $L^{\\infty}$ norm, gives the definition (for a vector with 3 elements):

\n

$$
\\begin{vmatrix}
\\left(
\\begin{array}{l}
x\\\\
y\\\\
z\\\\
\\end{array}
\\right)
\\end{vmatrix}_\\infty =\\max(\\left|x\\right|,\\left|y\\right|,\\left|z\\right|)
$$

\n

Therefore, for example, a) has the answer:

\n

$$
\\begin{vmatrix}
\\var{vector1}
\\end{vmatrix}_\\infty = \\max(\\var{advice})=\\var{answera}
$$

\n

For more information on norms read (for example) this.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"vector1": {"name": "vector1", "group": "Ungrouped variables", "definition": "vector(repeat(random(-4..4),rowsa))", "description": "", "templateType": "anything", "can_override": false}, "vector2": {"name": "vector2", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..7),rowsb))", "description": "", "templateType": "anything", "can_override": false}, "answera": {"name": "answera", "group": "Ungrouped variables", "definition": "Linfnorm(vector1)", "description": "", "templateType": "anything", "can_override": false}, "answerb": {"name": "answerb", "group": "Ungrouped variables", "definition": "Linfnorm(vector2)", "description": "", "templateType": "anything", "can_override": false}, "answerc": {"name": "answerc", "group": "Ungrouped variables", "definition": "abs(number)*answera", "description": "", "templateType": "anything", "can_override": false}, "rowsa": {"name": "rowsa", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "rowsb": {"name": "rowsb", "group": "Ungrouped variables", "definition": "random(2,3,4)", "description": "", "templateType": "anything", "can_override": false}, "number": {"name": "number", "group": "Ungrouped variables", "definition": "random(-4,5,-6,3,-2,7)", "description": "", "templateType": "anything", "can_override": false}, "rawadviceabs": {"name": "rawadviceabs", "group": "Ungrouped variables", "definition": "map('|\\\\' + 'var{'+'vector1[{i-1}]'+'}|'+ latexcodebits(rowsa)[i-1],[dummy,i],product(1..1,1..rowsa))", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "latex(stringify(rawadviceabs))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["vector1", "vector2", "answera", "answerb", "answerc", "rowsa", "rowsb", "number", "rawadviceabs", "advice"], "variable_groups": [], "functions": {"Linfnorm": {"parameters": [["vector", "vector"]], "type": "number", "language": "javascript", "definition": "var output = 0;\nvar i;\n let count = 0;\n for (let i = 0; i < vector.length; i++) {\n if (Math.abs(vector[i]) > output) {\n output = Math.abs(vector[i]);\n }\n }\n return output;"}, "Latexcodebits": {"parameters": [["n", "number"]], "type": "anything", "language": "jme", "definition": "repeat(',',n-1)+['']"}, "Stringify": {"parameters": [["input", "list"]], "type": "string", "language": "javascript", "definition": "var output = '';\nvar i;\nfor (i = 0; i < input.length; i++) {\n output += input[i];\n} \nreturn output;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{vector1}$

", "minValue": "answera", "maxValue": "answera", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{vector2}$

", "minValue": "answerb", "maxValue": "answerb", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{number} \\times \\var{vector1}$

", "minValue": "answerc", "maxValue": "answerc", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "LV04 Scalar product of 2D vectors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

It is given $\\bf{a} = \\var{a}$ and $\\bf{b} = \\var{b}$.

\n

Find the scalar (or dot) product of $\\bf{a}$ and $\\bf{b}$.

", "advice": "

It is important to note that for vectors there is more than one type of multiplication. This question is specifically about the scalar (or dot) product.

\n

For the vectors $ \\mathbf v = \\pmatrix{v_1 \\\\ v_2},\\, \\mathbf w = \\pmatrix{w_1 \\\\ w_2},$ the scalar (or dot) product is defined as

\n

$$
\\mathbf{v \\cdot w} = v_1 \\times w_1 + v_2 \\times w_2.
$$

\n

So for this question:

\n

$$
\\bf{a} = \\var{a} \\qquad \\text{and} \\qquad \\bf{b} = \\var{b}\\\\
\\bf{a} \\cdot \\bf{b} = \\var{a[0]}\\times\\var{b[0]} + \\var{a[1]}\\times\\var{b[1]} = \\var{adotb}.
$$

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..9 except 0),2))", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..9 except 0),2))", "description": "", "templateType": "anything", "can_override": false}, "adotb": {"name": "adotb", "group": "Ungrouped variables", "definition": "dot(a,b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "adotb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Scalar product", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\bf{a} \\cdot \\bf{b} =$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "scalar product", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "adotb", "maxValue": "adotb", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "LV05 Scalar product of 3D vectors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

It is given $\\bf{a} = \\var{a}$ and $\\bf{b} = \\var{b}$.

\n

Find the scalar (or dot) product of $\\bf{a}$ and $\\bf{b}$.

", "advice": "

It is important to note that for vectors there is more than one type of multiplication. This question is specifically about the scalar (or dot) product.

\n

For the vectors $ \\mathbf v = \\pmatrix{v_1 \\\\ v_2 \\\\ v_3},\\, \\mathbf w = \\pmatrix{w_1 \\\\ w_2 \\\\ w_3},$ the scalar (or dot) product is defined as

\n

$$
\\mathbf{v \\cdot w} = v_1 \\times w_1 + v_2 \\times w_2 + v_3 \\times w_3.
$$

\n

So for this question:

\n

$$
\\bf{a} = \\var{a} \\qquad \\text{and} \\qquad \\bf{b} = \\var{b}\\\\
\\bf{a} \\cdot \\bf{b} = \\var{a[0]}\\times\\var{b[0]} + \\var{a[1]}\\times\\var{b[1]} + \\var{a[2]}\\times\\var{b[2]} = \\var{adotb}.
$$

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..9 except 0),3))", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "vector(repeat(random(-9..9 except 0),3))", "description": "", "templateType": "anything", "can_override": false}, "adotb": {"name": "adotb", "group": "Ungrouped variables", "definition": "dot(a,b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "adotb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Scalar product", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\bf{a} \\cdot \\bf{b} =$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "scalar product", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "adotb", "maxValue": "adotb", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF03 Rounding SF (decimal)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["rounding"], "metadata": {"description": "

Round numbers to a given number of significant figures.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

The first thing to do when we are rounding numbers is to identify the last digit we are keeping.

\n

When you're asked to round your answer to a number of significant figures, you need to decide whether to keep the last digit same (rounding down) or increase it by 1 (rounding up). If the following digit is less than 5 we round down and we round up when the next digit is 5 or more.

\n

To write it down in steps:

\n
    \n
      \n
        \n
          \n
        1. Identify the last digit we need to keep.
        2. \n
        3. Look at the following digit.
        4. \n
        5. If it's 5 or more, increase the previous digit by one.
        6. \n
        7. If it's 4 or less, keep the previous digit the same.
        8. \n
        9. Fill any spaces to the right of the digit with zeros if needed.
        10. \n
        \n
      \n
    \n
\n

It is important to keep in mind that if the digit we are increasing is 9, it becomes zero and we increase the previous digit instead. If this digit is 9 as well, we move along to the left side until we find a digit less than 9.

\n

The last digit we need to keep will depend on how many zeros there are.  We don't consider leading zeros to be significant,
i.e. 0.03 and 0.3 both have 1 significant figure (but 0.30 has two significant figures, since the second zero isn't a 'leading' zero).

\n

i)

\n

We round $\\var{e1}$ to 1 significant figure. The first non-zero digit is $\\var{edig[4]}$, followed by $\\var{edig[3]}$. This is lower than 5 so we round downmore than 5 so we round up to get $\\var{sigformat(e1,1)}$.

\n

ii)

\n

We round $\\var{e1}$ to {sf} significant figures. The first non-zero digit is $\\var{edig[4]}$. The second following digit is $\\var{edig[3]}$, the third following digit is $\\var{edig[2]}$ and the fourth following digit is $\\var{edig[1]}$. The digit following the last digit we are keeping is $\\var{edig[2]}$$\\var{edig[1]}$$\\var{edig[0]}$, so we round to get $\\var{sigformat(e1, sf)}$. These are our {sf} significant figures. 

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"edig": {"name": "edig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 5)", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "n_from_digits(ddig)", "description": "

Random integer.

", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "n_from_digits(edig)*10^(random(-6,-7,-8))", "description": "

Random number with 7 decimal places.

", "templateType": "anything", "can_override": false}, "ddig": {"name": "ddig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 6)", "description": "", "templateType": "anything", "can_override": false}, "sf": {"name": "sf", "group": "Ungrouped variables", "definition": "3", "description": "

Number of significant figures to round.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["sf", "ddig", "edig", "d1", "e1"], "variable_groups": [], "functions": {"n_from_digits": {"parameters": [["digits", "list"]], "type": "number", "language": "jme", "definition": "if(\n len(digits)=0,\n 0,\n digits[0]+10*n_from_digits(digits[1..len(digits)])\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Round $\\var{e1}$

\n

iii) $\\var{e1}$ rounded to 1 significant figure is:  [[0]]

\n

iv) $\\var{e1}$ rounded to {sf} significant figures is:  [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(e1, 1)", "maxValue": "siground(e1, 1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(e1, sf)", "maxValue": "siground(e1, sf)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF07 Percentage change (decrease then increase)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Compound percentage change.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The value of a car is initially {StartingPrice}. If the value decreases by {dec}%, and then increases by {inc}%, what is the final value?

\n

Give your answer correct to two decimal places.

", "advice": "

There is a {dec}% decrease in price. This means that price after the decrease will be {100-dec}% of the old price.

\n

\\[\\frac{\\var{100-dec}}{100} \\times \\var{StartingPrice} = \\var{(100-dec)/100*StartingPrice}\\]

\n

Then there is a {inc}% increase in price. This means the final price will be {100+inc}% of the price after the decrease.

\n

\\[\\frac{\\var{100+inc}}{100} \\times \\var{(100-dec)/100*StartingPrice} = £\\var{dpformat((100+inc)/100*(100-dec)/100*StartingPrice,2)}\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"dec": {"name": "dec", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "inc": {"name": "inc", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "FinalPrice": {"name": "FinalPrice", "group": "Ungrouped variables", "definition": "StartingPrice*(1-dec/100)*(1+inc/100)", "description": "", "templateType": "anything", "can_override": false}, "StartingPrice": {"name": "StartingPrice", "group": "Ungrouped variables", "definition": "random(600..8000 # 10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec", "inc", "FinalPrice", "StartingPrice"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\n

£[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "FinalPrice", "maxValue": "FinalPrice", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SN01 Correlation", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Richard Miles", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/882/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}], "tags": [], "metadata": {"description": "

Tests understanding of scatter plots and related concepts.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

The scatter plot below shows the relationship between an employee’s height in centimetres and how long it takes them to walk to work in minutes.

\n\n\n\n\n\n\n\n\n\n\n\n
time (mins){drawgraph()}
height (cm)
\n

\n

\n

\n

", "advice": "

The graph shows that there is a positive correlation between a person's height and how long it takes them to walk to work.

\n

A postive correlation is a relationship between two variables where both variables move in the same diection.

\n

This tells us that as a person's height increases, the time it takes to walk to work increases.

\n

Use this link to find some resources which will help you revise this topic

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"slope": {"name": "slope", "group": "Regression variables", "definition": "(6*sumxy-sumx*sumy)/(6*sumxx-(sumx)^2)", "description": "

s

", "templateType": "anything", "can_override": false}, "timemax": {"name": "timemax", "group": "Calculation variables", "definition": "max([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "minx": {"name": "minx", "group": "Graph Limits", "definition": "140", "description": "", "templateType": "anything", "can_override": false}, "miny": {"name": "miny", "group": "Graph Limits", "definition": "-10", "description": "", "templateType": "anything", "can_override": false}, "p3x": {"name": "p3x", "group": "Points", "definition": "random(166..175)", "description": "", "templateType": "anything", "can_override": false}, "p3y": {"name": "p3y", "group": "Points", "definition": "random(26..35)", "description": "", "templateType": "anything", "can_override": false}, "p5x": {"name": "p5x", "group": "Points", "definition": "random(146..155 except p1x)", "description": "", "templateType": "anything", "can_override": false}, "p5y": {"name": "p5y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "p1x": {"name": "p1x", "group": "Points", "definition": "random(146..155)", "description": "", "templateType": "anything", "can_override": false}, "p1y": {"name": "p1y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "timediff": {"name": "timediff", "group": "Calculation variables", "definition": "timemax-timemin", "description": "", "templateType": "anything", "can_override": false}, "maxx": {"name": "maxx", "group": "Graph Limits", "definition": "188", "description": "", "templateType": "anything", "can_override": false}, "maxy": {"name": "maxy", "group": "Graph Limits", "definition": "63", "description": "", "templateType": "anything", "can_override": false}, "roundedslope": {"name": "roundedslope", "group": "Regression variables", "definition": "precround(slope,2)", "description": "", "templateType": "anything", "can_override": false}, "yintercept": {"name": "yintercept", "group": "Regression variables", "definition": "(sumy-slope*sumx)/6", "description": "", "templateType": "anything", "can_override": false}, "timemin": {"name": "timemin", "group": "Calculation variables", "definition": "min([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "tallest": {"name": "tallest", "group": "Calculation variables", "definition": "max([p1x,p2x,p3x,p4x,p5x,p6x])", "description": "", "templateType": "anything", "can_override": false}, "regy1": {"name": "regy1", "group": "Regression variables", "definition": "slope*minx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "regy2": {"name": "regy2", "group": "Regression variables", "definition": "slope*maxx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "sumy": {"name": "sumy", "group": "Regression variables", "definition": "p1y+p2y+p3y+p4y+p5y+p6y", "description": "", "templateType": "anything", "can_override": false}, "sumx": {"name": "sumx", "group": "Regression variables", "definition": "p1x+p2x+p3x+p4x+p5x+p6x", "description": "", "templateType": "anything", "can_override": false}, "p6y": {"name": "p6y", "group": "Points", "definition": "random(46..55)", "description": "

p6y

", "templateType": "anything", "can_override": false}, "p6x": {"name": "p6x", "group": "Points", "definition": "random(176..185 except p4x)", "description": "", "templateType": "anything", "can_override": false}, "p4y": {"name": "p4y", "group": "Points", "definition": "random(36..45)", "description": "", "templateType": "anything", "can_override": false}, "p4x": {"name": "p4x", "group": "Points", "definition": "random(176..185)", "description": "", "templateType": "anything", "can_override": false}, "p2y": {"name": "p2y", "group": "Points", "definition": "random(16..25)", "description": "", "templateType": "anything", "can_override": false}, "p2x": {"name": "p2x", "group": "Points", "definition": "random(156..165)", "description": "", "templateType": "anything", "can_override": false}, "sumxx": {"name": "sumxx", "group": "Regression variables", "definition": "p1x^2+p2x^2+p3x^2+p4x^2+p5x^2+p6x^2", "description": "", "templateType": "anything", "can_override": false}, "sumxy": {"name": "sumxy", "group": "Regression variables", "definition": "p1x*p1y+p2x*p2y+p3x*p3y+p4x*p4y+p5x*p5y+p6x*p6y", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Graph Limits", "variables": ["minx", "maxx", "miny", "maxy"]}, {"name": "Points", "variables": ["p1x", "p1y", "p2x", "p2y", "p3x", "p3y", "p4x", "p4y", "p5x", "p5y", "p6x", "p6y"]}, {"name": "Calculation variables", "variables": ["tallest", "timemax", "timemin", "timediff"]}, {"name": "Regression variables", "variables": ["sumx", "sumy", "sumxy", "sumxx", "slope", "yintercept", "regy1", "regy2", "roundedslope"]}], "functions": {"drawgraph": {"parameters": [], "type": "html", "language": "javascript", "definition": " var miny = Numbas.jme.unwrapValue(scope.variables.miny);\n var maxy = Numbas.jme.unwrapValue(scope.variables.maxy);\n var minx = Numbas.jme.unwrapValue(scope.variables.minx);\n var maxx = Numbas.jme.unwrapValue(scope.variables.maxx);\n var regy1 = Numbas.jme.unwrapValue(scope.variables.regy1);\n var regy2 = Numbas.jme.unwrapValue(scope.variables.regy2);\n\n var p1x = Numbas.jme.unwrapValue(scope.variables.p1x);\n var p1y = Numbas.jme.unwrapValue(scope.variables.p1y);\n var p2x = Numbas.jme.unwrapValue(scope.variables.p2x);\n var p2y= Numbas.jme.unwrapValue(scope.variables.p2y);\n var p3x = Numbas.jme.unwrapValue(scope.variables.p3x);\n var p3y= Numbas.jme.unwrapValue(scope.variables.p3y);\n var p4x = Numbas.jme.unwrapValue(scope.variables.p4x);\n var p4y= Numbas.jme.unwrapValue(scope.variables.p4y);\n var p5x = Numbas.jme.unwrapValue(scope.variables.p5x);\n var p5y= Numbas.jme.unwrapValue(scope.variables.p5y);\n var p6x = Numbas.jme.unwrapValue(scope.variables.p6x);\n var p6y= Numbas.jme.unwrapValue(scope.variables.p6y);\n \n var div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox:[minx,maxy,maxx,miny],\n axis:false,\n showNavigation:false,\n grid:true});\n var brd = div.board; \n var xaxis=brd.createElement('axis', [[minx,0],[maxx,0]]);\n var yaxis=brd.createElement('axis', [[minx+5,miny],[minx+5,maxy]]);\n var li1=brd.create('line',[[minx,regy1],[maxx,regy2]],{fixed:true,withLabel:false});\n var pt1=brd.create('point',[p1x,p1y],{visible:true,withLabel:false}); \n var pt2=brd.create('point',[p2x,p2y],{visible:true,withLabel:false}); \n var pt3=brd.create('point',[p3x,p3y],{visible:true,withLabel:false}); \n var pt4=brd.create('point',[p4x,p4y],{visible:true,withLabel:false}); \n var pt5=brd.create('point',[p5x,p5y],{visible:true,withLabel:false}); \n var pt6=brd.create('point',[p6x,p6y],{visible:true,withLabel:false}); \nreturn div;\n "}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Mark the statement that best describes what this scatter plot shows.

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

In general, there is a positive correlation between a person's height and how long it takes them to walk to work.

", "

In general, there is a negative correlation between a person's height and how long it takes them to walk to work.

", "

In general, there is a no correlation between a person's height and how long it takes them to walk to work.

"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SP03 Calculating probability from a Contingency Table", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Complete the two way table.

", "advice": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
FootballRugbyTennisTotal
Year 7$\\var{f7}$$\\var{r7}$$\\var{total7}-(\\var{f7}+\\var{r7}) = \\var{total7}-\\var{f7+r7} = \\var{t7}$$\\var{total7}$
Year 8$\\var{totalf}-\\var{f7} = \\var{f8}$$\\var{r8}$$\\var{t8}$$\\var{total}-\\var{total7} = \\var{total8}$
Total$\\var{totalf}$$\\var{r7}+\\var{r8}=\\var{totalr}$$\\var{t7}+\\var{t8}=\\var{totalt}$$\\var{total}$
\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"f7": {"name": "f7", "group": "Ungrouped variables", "definition": "random(5 .. 20#1)", "description": "

number of year 7's playing football

", "templateType": "randrange", "can_override": false}, "r7": {"name": "r7", "group": "Ungrouped variables", "definition": "random(5 .. 20#1)", "description": "

Number of year 7's playing rugby 

", "templateType": "randrange", "can_override": false}, "t7": {"name": "t7", "group": "Ungrouped variables", "definition": "random(5 .. 20#1)", "description": "

Number of year 7's playing tennis

", "templateType": "randrange", "can_override": false}, "Total7": {"name": "Total7", "group": "Ungrouped variables", "definition": "f7+r7+t7", "description": "", "templateType": "anything", "can_override": false}, "f8": {"name": "f8", "group": "Ungrouped variables", "definition": "random(5 .. 20#1)", "description": "

Number of year 8's play8ng football

", "templateType": "randrange", "can_override": false}, "r8": {"name": "r8", "group": "Ungrouped variables", "definition": "random(5 .. 20#1)", "description": "

Number of year 8's playing rugby 

", "templateType": "randrange", "can_override": false}, "t8": {"name": "t8", "group": "Ungrouped variables", "definition": "random(5 .. 20#1)", "description": "

Number of year 8's playing tennis

", "templateType": "randrange", "can_override": false}, "total8": {"name": "total8", "group": "Ungrouped variables", "definition": "f8+r8+t8", "description": "

Total number of year 8 students 

", "templateType": "anything", "can_override": false}, "totalf": {"name": "totalf", "group": "Ungrouped variables", "definition": "f7+f8", "description": "

Total number of students playing football

", "templateType": "anything", "can_override": false}, "totalr": {"name": "totalr", "group": "Ungrouped variables", "definition": "r7+r8", "description": "

Total number of students playing rugby

", "templateType": "anything", "can_override": false}, "totalt": {"name": "totalt", "group": "Ungrouped variables", "definition": "t7+t8", "description": "

Total number of students playing tennis

", "templateType": "anything", "can_override": false}, "total78": {"name": "total78", "group": "Ungrouped variables", "definition": "total7+total8", "description": "

Total number of students in year 7 and year 8 

", "templateType": "anything", "can_override": false}, "totalfrt": {"name": "totalfrt", "group": "Ungrouped variables", "definition": "totalf+totalr+totalt", "description": "

Total number of students playing a sport

", "templateType": "anything", "can_override": false}, "total": {"name": "total", "group": "Ungrouped variables", "definition": "if(total78=totalfrt,totalfrt,0)", "description": "

Total number of students 

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["f7", "r7", "t7", "Total7", "f8", "r8", "t8", "total8", "totalf", "totalr", "totalt", "total78", "totalfrt", "total"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
FootballRugbyTennisTotal
Year 7{f7}{r7}[[2]]{total7}
Year 8[[0]]{r8}{t8}[[4]]
Total{totalf}[[1]][[3]]{total}
\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "f8", "maxValue": "f8", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "totalr", "maxValue": "totalr", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "t7", "maxValue": "t7", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "totalt", "maxValue": "totalt", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "total8", "maxValue": "total8", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "

Thank you for completing the Skills Audit for Maths and Stats. Hopefully it has been useful in directing you to resources and services that can support your studies. The Skills Audit for Maths and Stats will remain open to you throughout the academic year and you can always revisit it again later.

\n

For any further information or questions please contact mash@sheffield.ac.uk

", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}], "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [{"source": {"pk": 2, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/2/edit"}, "name": "List of numbers", "short_name": "list-of-numbers", "description": "

The answer is a comma-separated list of numbers.

\n

The list is marked correct if each number occurs the same number of times as in the expected answer, and no extra numbers are present.

\n

You can optionally treat the answer as a set, so the number of occurrences doesn't matter, only whether each number is included or not.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "join(\n if(settings[\"correctAnswerFractions\"],\n map(let([a,b],rational_approximation(x), string(a/b)),x,settings[\"correctAnswer\"])\n ,\n settings[\"correctAnswer\"]\n ),\n settings[\"separator\"] + \" \"\n)", "hint": {"static": false, "value": "if(settings[\"show_input_hint\"],\n \"Enter a list of numbers separated by {settings['separator']}.\",\n \"\"\n)"}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "bits:\nlet(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)\n\nexpected_numbers:\nlet(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)\n\nvalid_numbers:\nif(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )\n\nis_sorted:\nassert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )\n\nincluded:\nmap(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentThe separate items in the student's answer

", "definition": "let(b,filter(x<>\"\",x,split(studentAnswer,settings[\"separator\"])),\n if(isSet,list(set(b)),b)\n)"}, {"name": "expected_numbers", "description": "", "definition": "let(l,settings[\"correctAnswer\"] as \"list\",\n if(isSet,list(set(l)),l)\n)"}, {"name": "valid_numbers", "description": "

Is every number in the student's list valid?

", "definition": "if(all(map(not isnan(x),x,interpreted_answer)),\n true,\n let(index,filter(isnan(interpreted_answer[x]),x,0..len(interpreted_answer)-1)[0], wrong, bits[index],\n warn(wrong+\" is not a valid number\");\n fail(wrong+\" is not a valid number.\")\n )\n )"}, {"name": "is_sorted", "description": "

Are the student's answers in ascending order?

", "definition": "assert(sort(interpreted_answer)=interpreted_answer,\n multiply_credit(0.5,\"Not in order\")\n )"}, {"name": "included", "description": "

Is each number in the expected answer present in the student's list the correct number of times?

", "definition": "map(\n let(\n num_student,len(filter(x=y,y,interpreted_answer)),\n num_expected,len(filter(x=y,y,expected_numbers)),\n switch(\n num_student=num_expected,\n true,\n num_studentHas every number been included the right number of times?

", "definition": "all(included)"}, {"name": "no_extras", "description": "

True if the student's list doesn't contain any numbers that aren't in the expected answer.

", "definition": "if(all(map(x in expected_numbers, x, interpreted_answer)),\n true\n ,\n incorrect(\"Your answer contains \"+extra_numbers[0]+\" but should not.\");\n false\n )"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "if(lower(studentAnswer) in [\"empty\",\"\u2205\"],[],\n map(\n if(settings[\"allowFractions\"],parsenumber_or_fraction(x,notationStyles), parsenumber(x,notationStyles))\n ,x\n ,bits\n )\n)"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=\"\",fail(\"You have not entered an answer\"),false);\napply(valid_numbers);\napply(included);\napply(no_extras);\ncorrectif(all_included and no_extras)"}, {"name": "notationStyles", "description": "", "definition": "[\"en\"]"}, {"name": "isSet", "description": "

Should the answer be considered as a set, so the number of times an element occurs doesn't matter?

", "definition": "settings[\"isSet\"]"}, {"name": "extra_numbers", "description": "

Numbers included in the student's answer that are not in the expected list.

", "definition": "filter(not (x in expected_numbers),x,interpreted_answer)"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The list of numbers that the student should enter. The order does not matter.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "allowFractions", "label": "Allow the student to enter fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "correctAnswerFractions", "label": "Display the correct answers as fractions?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": false}, {"name": "isSet", "label": "Is the answer a set?", "help_url": "", "hint": "If ticked, the number of times an element occurs doesn't matter, only whether it's included at all.", "input_type": "checkbox", "default_value": false}, {"name": "show_input_hint", "label": "Show the input hint?", "help_url": "", "hint": "", "input_type": "checkbox", "default_value": true}, {"name": "separator", "label": "Separator", "help_url": "", "hint": "The substring that should separate items in the student's list", "input_type": "string", "default_value": ",", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": [["question-resources/image_jPzIKnS.png", "/srv/numbas/media/question-resources/image_jPzIKnS.png"], ["question-resources/image_kkFBamd.png", "/srv/numbas/media/question-resources/image_kkFBamd.png"], ["question-resources/image_K3sk7RI.png", "/srv/numbas/media/question-resources/image_K3sk7RI.png"], ["question-resources/image_SC1KBmT.png", "/srv/numbas/media/question-resources/image_SC1KBmT.png"]]}