// Numbas version: finer_feedback_settings {"name": "MAS 2025/26", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], "questions": [{"name": "AC05 Indices - negative", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "
perform a calculation involving negative indices.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate and simplify the following expression:
\n\\[\\frac{\\var{x}^{\\var{n}}}{\\var{y}^{\\var{m}}}\\]
", "advice": "To simplify this expression we use the rule $a^{-n}=\\frac1{a^n}$.
\n\\[\\frac{\\var{x}^{\\var{n}}}{\\var{y}^{\\var{m}}}=\\frac{\\var{y}^{\\var{-m}}}{\\var{x}^{\\var{-n}}}=\\frac{\\var{y^-m}}{\\var{x^-n}}=\\simplify{{y^-m}/{x^-n}}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-3..-1)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-3..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "x", "y", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x^n/y^m}", "maxValue": "{x^n/y^m}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC16 Rearrange Formulae", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Luigi Pivano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18182/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Rearrange a specific formula. No randomisation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Rearrange the following equation, to make $y$ the subject:
\n\\[{cy -b = 3x}\\]
", "advice": "In order to rearrange the equation so that it is in terms of $y$, we must first add $b$ to both sides, and then divide both sides of the equation by $c$:
\n\\begin{split} cy-b &= 3x \\\\ cy &= 3x + b \\\\ y &=\\frac{3x+b}{c} \\end{split}
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$y=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(3x+b)/c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "b", "value": ""}, {"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC18 Algebraic Fractions - addition (harder)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Simplify the sum of two algebraic fractions where spotting factorising of both numerators and denominators can reduce the work massively.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ simplifying as much as possible. Your answer should be in the form $\\frac{\\alpha\\var{v}+\\beta}{\\delta\\var{v}^2-\\gamma}.$
", "advice": "To write the following as a single fraction $\\frac{\\var{num1}}{\\var{den1}}+\\frac{\\var{num2}}{\\var{den2}}$ first factorise as much as possible and look for any cancellations:
\n\\[\\begin{split}
&\\frac{\\var{a}\\times\\var{b}}{\\var{den1fact}} + \\frac{\\var{num2}}{\\var{den2fact}}\\\\
& = \\frac{\\var{b}}{\\var{den1simp}} + \\frac{1}{\\var{f1c}}.
\\end{split}\\]
Then get a common denominator for the two fractions and combine into a single fraction:
\n\\[\\begin{split}
&\\frac{\\var{b}}{\\var{den1simp}} + \\frac{\\var{f1}}{\\var{den1simp}}\\\\
& = \\frac{\\var{b}+\\var{f1}}{\\var{den1simp}}\\\\
& = \\var{ans}.
\\end{split}\\]
Use this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Set up", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Set up", "definition": "random(2 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "v": {"name": "v", "group": "Set up", "definition": "random(\"a\",\"b\",\"c\",\"d\",\"f\",\"g\",\"h\",\"k\",\"m\",\"n\",\"p\",\"q\",\"r\",\"s\",\"t\",\"u\",\"v\",\"w\",\"x\",\"y\",\"z\")", "description": "", "templateType": "anything", "can_override": false}, "cf1": {"name": "cf1", "group": "Set up", "definition": "repeat(random(2..4),2)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"+\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "f1c": {"name": "f1c", "group": "Set up", "definition": "simplify(cf1[0]+\"*\"+v+\"-\"+cf1[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "cf2": {"name": "cf2", "group": "Set up", "definition": "repeat(random(2..5),2)", "description": "", "templateType": "anything", "can_override": false}, "f2": {"name": "f2", "group": "Set up", "definition": "simplify(cf2[0]+\"*\"+v+\"+\"+cf2[1],\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1fact": {"name": "den1fact", "group": "Advice", "definition": "simplify(a+\"*\"+\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}, "num1": {"name": "num1", "group": "Question", "definition": "a*b", "description": "", "templateType": "anything", "can_override": false}, "den2": {"name": "den2", "group": "Question", "definition": "simplify(den2fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Question", "definition": "simplify(f2,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1": {"name": "den1", "group": "Question", "definition": "simplify(den1fact,[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "den2fact": {"name": "den2fact", "group": "Advice", "definition": "simplify(expression(\"(\"+string(f1c)+\")*(\"+string(f2)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansn": {"name": "ansn", "group": "Question", "definition": "simplify(string(f1) + \"+\" + b,\"all\")", "description": "", "templateType": "anything", "can_override": false}, "ansd": {"name": "ansd", "group": "Question", "definition": "simplify(expression(\"(\"+string(f1)+\")\"+\"*\"+ \"(\"+string(f1c)+\")\"),[\"expandBrackets\",\"all\"])", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Question", "definition": "simplify(expression(\"(\"+string(ansn)+\")\"+\"/\"+\"(\"+string(ansd)+\")\"),\"all\")", "description": "", "templateType": "anything", "can_override": false}, "den1simp": {"name": "den1simp", "group": "Advice", "definition": "simplify(\"(\"+string(f1)+\")*(\"+string(f1c)+\")\",\"all\")", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "f1<>f2 AND f1c<>f2 AND cf1[0]<>cf1[1] AND cf2[0]<>cf2[1]", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Set up", "variables": ["a", "b", "v", "cf1", "f1", "f1c", "cf2", "f2"]}, {"name": "Question", "variables": ["num1", "den1", "num2", "den2", "ansn", "ansd", "ans"]}, {"name": "Advice", "variables": ["den1fact", "den2fact", "den1simp"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ans}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "?`+/?`+", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC22 Partial Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "Rewrite the expression $\\frac{mx^2+nx+k}{(x+a)(x^2+bx+c)}$ as partial fractions in the form $\\frac{A}{x+a}+\\frac{Bx+C}{x^2+bx+c}$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Rewrite the following expression as partial fractions:
\n\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))}. \\]
\n", "advice": "To express \\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} \\] as partial fractions, we want to set this equal to the sum of two fractions with denominators $\\simplify{x+{a}}$ and $\\simplify{x^2+{b}x+{c}}$. Since we have a linear factor and a quadratic factor, this tells us that the form of the partial fractions will be
\n\\[ \\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\simplify{A/(x+{a}) + (B*x+C)/(x^2+{b}x+{c})},\\]
\nwhere $A$, $B$, and $C$ are constants.
\nTo find the values of $A$, $B$, and $C$, we want to first multiply this equation by the denominator of the left-hand side. This gives
\n\\[ \\simplify{{m}x^2+{n}x+{k}=A(x^2+{b}x+{c})+B*x(x+{a}) + C(x+{a})}.\\]
\n(Note: To find $A$, $B$, and $C$, we will use a combination of choosing suitable values of $x$ to eliminate terms, and equating coefficients. It can be solved by only equating coefficients, but this is a more efficient process.)
\n\nTo find $A$, we can eliminate $B$ and $C$ by setting $x=\\var{-a}$:
\n\\[ \\simplify{{m*a^2-n*a+k}=A{(a^2-b*a+c)}} \\implies A=\\simplify[fractionNumbers]{{Asol}}.\\]
\nTo find $C$, we can eliminate $B$ by setting $x=0$ and substituting in the result of $A$:
\n\\[ \\simplify{{k}={c}A+{a}C} \\implies C=\\simplify[all,fractionNumbers]{({k}-{c}A)/{a}}.\\]
\nHence,
\n\\[ C = \\simplify[fractionNumbers]{{Csol}}.\\]
\nFinally, by equating coefficients of the $x^2$-terms we can find $B$:
\n\\[ (x^2): \\quad \\var{m} = \\simplify{A+B} \\implies B=\\var{m}-A. \\]
\nTherefore, \\[ B=\\simplify[fractionNumbers]{{Bsol}}, \\]
\nand
\n{check}
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "pairs[index][1]", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "if(k=1,random(-1,1)*random([1,3,4,5]),if (k=2,random(-1,1)*random([1,2,4,5]),if(k=3,random(-1,1)*random([1,2,3,5]),if(k=5,random(-1,1)*random([1,2,3,4,5,7]),random(-1,1)*random([1,2,3,4,5,7])))))", "description": "", "templateType": "anything", "can_override": false}, "Asol": {"name": "Asol", "group": "Ungrouped variables", "definition": "(m*a^2-n*a+k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Bsol": {"name": "Bsol", "group": "Ungrouped variables", "definition": "(m*c-m*b*a+n*a-k)/(a^2-b*a+c)", "description": "", "templateType": "anything", "can_override": false}, "Csol": {"name": "Csol", "group": "Ungrouped variables", "definition": "(k*(a-b)-m*a*c+n*c)/(a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(Asol=round(Asol) and Bsol=round(Bsol),'{sol1}',if(simp2=1,'{sol2}','{sol3}'))", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify{{Asol}/(x+{a})+({Bsol}x+{Csol})/(x^2+{b}x+{c})}.\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({m*c-m*b*a+n*a-k}x+{k*(a-b)-m*a*c+n*c})/({a^2-a*b+c}(x^2+{b}x+{c}))}.\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "pairs[index][0]", "description": "", "templateType": "anything", "can_override": false}, "simp1": {"name": "simp1", "group": "Ungrouped variables", "definition": "gcd(k*(a-b)-m*a*c+n*c,m*c-m*b*a+n*a-k)", "description": "", "templateType": "anything", "can_override": false}, "simp2": {"name": "simp2", "group": "Ungrouped variables", "definition": "gcd(simp1,a^2-a*b+c)", "description": "", "templateType": "anything", "can_override": false}, "sol3": {"name": "sol3", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\simplify{({m}x^2+{n}x+{k})/((x+{a})(x^2+{b}x+{c}))} = \\\\simplify[all,fractionNumbers]{{m*a^2-n*a+k}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))}.\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random([1,2,3,5,7])", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "pairs": {"name": "pairs", "group": "Ungrouped variables", "definition": "[[1,random(-1,1)*random([1,3,4,5])],[2,random(-1,1)*random([1,2,4,5])],[3,random(-1,1)*random([1,2,3,5])],[5,random(-1,1)*random([1,2,3,4,5,7])],[7,random(-1,1)*random([1,2,3,4,5,7])]]", "description": "", "templateType": "anything", "can_override": false}, "index": {"name": "index", "group": "Ungrouped variables", "definition": "random(0..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a^2-a*b+c>0 or a^2-a*b+c<0", "maxRuns": 100}, "ungrouped_variables": ["a", "pairs", "index", "b", "c", "m", "k", "n", "Asol", "Bsol", "Csol", "check", "sol1", "sol2", "sol3", "simp1", "simp2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(m*a^2-n*a+k)}/({a^2-a*b+c}(x+{a}))+({(m*c-m*b*a+n*a-k)/simp2}x+{(k*(a-b)-m*a*c+n*c)/simp2})/({(a^2-a*b+c)/simp2}(x^2+{b}x+{c}))", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`! (((`+-$n`?*x^2+`+-$n`?*x+`+-$n)/((x+`+-$n)(x^2+`+-$n*x+`+-$n))))", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF01 Sigma Notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Basic calculation from a sum given in Sigma notation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate:
\n\\[\\displaystyle{\\Sigma_{n=1}^3} \\var{b}n.\\]
\n", "advice": "The sigma notation $\\displaystyle\\sum_{n=1}^{3}\\var{b}n$ is asking us to find the sum of the first three terms of the sequence $\\var{b}n$.
\n\\[\\begin{split}\\Sigma_{n=1}^3 \\var{b}n &\\, = (\\var{b}\\times 1) + (\\var{b}\\times 2) + (\\var{b}\\times 3) \\\\ &\\, = \\var{b1} + \\var{b2} + \\var{b3} \\\\ &\\, = \\var{sum}.\\end{split}\\]
\nUse this link to find resources to help you revise sigma notation.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "b*1", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "b*2", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "b*3", "description": "", "templateType": "anything", "can_override": false}, "sum": {"name": "sum", "group": "Ungrouped variables", "definition": "b1+b2+b3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "b1", "b2", "b3", "sum"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF04 Graphs of trig functions (sin, cos, tan)", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Match the relevant graph (sin, cos, tan) with its equation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "This is about core knowledge of graphs. You should know the shapes of the fundamental trig graphs, if you don't familiarize yourself with them from the resources linked below. In this setting the $x$-axis is given with a scale in radians but you might also find some where it is given in degrees. You should also be aware of the difference between those two different units of angles.
\n\nUse this link to find some resources to help you familiarise yourself with these graphs.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Match the graph to its function.
", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\sin(x)$", "$\\cos(x)$", "$\\tan(x)$"], "matrix": [["1", 0, 0], [0, "1", 0], [0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["{geogebra_applet('https://www.geogebra.org/m/ntqvuwqr')}", "{geogebra_applet('https://www.geogebra.org/m/fsqmnhsc')}", "{geogebra_applet('https://www.geogebra.org/m/yg6f9eqz')}"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF05 Function notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Evaluating a linear function for a given value of $x$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Given $f(x)=\\simplify{{m}x+{c}}$, find $f(\\var{n})$.
", "advice": "If $f(x)=\\simplify{{m}x+{c}}$, to find $f(\\var{n})$ we need to evaluate $f(x)$ when $x=\\var{n}$:
\n\\[ \\begin{split} f(\\var{n}) &\\,= \\simplify[alwaysTimes]{{m}({n})+{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{m*n}+{c}} \\\\ &\\,= \\simplify{{m*n+c}}. \\end{split} \\]
\nUse this link to find resources to help you revise function notation.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except [0,m])", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-9..9 except [0,1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$f(\\var{n})=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m*n+c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF06 Domain and Range", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Determining the range of a function of the form $f = m|x| + a$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "The range is the set of values that can be taken by $f(x)$, i.e. the values on the $y$-axis.
\n{geogebra_applet('https://www.geogebra.org/m/aqcgkurg',[a: a, m: m])}
\nTherefore, for $f(x)=\\simplify{{m}x^2+{a}}$, the range is $[\\var{a}, \\infty)$.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..2 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-2..2 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-2,2,-1,3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "n", "m", "b", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $f(x)=\\simplify{{m}x^2+{a}}$
What is the range of $f(x)$?
Finding the inverse of a function of the form $f(x)=\\frac{mx+c}{x+a},\\,x\\neq-a$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "If $f(x)=\\simplify{({m}x+{c})/(x+{a})},\\,x\\neq \\simplify{{-a}}$, find the inverse function, $f^{-1}(x)$.
", "advice": "To find $f^{-1}x$, it can help to first set $f(x)$ to a different variable, which we will call $y$:
\n\\[ y = f(x) = \\simplify{({m}x+{c})/(x+{a})}\\]
\nSince the function $f(x)$ takes us from $x$ to $y$, the inverse function $f^{-1}$ will take us from $y$ to $x$. So to obtain $f^{-1}$, we want to rearrange $y=\\simplify{({m}x+{c})/(x+{a})}$ so that it is $x$ as a function of $y$:
\n\\[ \\begin{split} y &\\,= \\simplify{({m}x+{c})/(x+{a})} \\\\\\\\ \\simplify{(x+{a})y} &\\,= \\simplify{{m}x+{c}} \\\\\\\\ \\simplify{x*y+{a}y} &\\,= \\simplify{{m}x+{c}} \\\\\\\\ \\simplify{x*y - {m}x} &\\,= \\simplify{{c}- {a}y} \\\\ \\\\ \\simplify{x(y-{m})} &\\,= \\simplify{{c}-{a}y} \\\\\\\\ x&\\,= \\simplify{({c}-{a}y)/(y-{m})}. \\end{split} \\]
\nHence, $f^{-1}(y) =\\simplify{({c}-{a}y)/(y-{m})}$, and therefore \\[ f^{-1}(x) =\\simplify{({c}-{a}x)/(x-{m})}.\\]
\n(Note: The inverse is valid for all values of $x$ except $x=\\var{m}$, since this would make the denominator equal to 0.)
\nUse this link to find resources to help you revise how to find the inverse of functions.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-8..8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(m)-abs(c)>0 or abs(m)-abs(c)<0", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$f^{-1}(x)=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({c}-{a}x)/(x-{m})", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF08 Composite functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Finding composite functions of 2 linear functions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "If $f(x)=\\simplify{{m}x+{c}}$ and $g(x)=\\simplify{{n}x+{d}}$, find expressions for $f\\circ g(x)$ and $g \\circ f(x)$.
\n\nRecall: $f \\circ g(x) \\equiv f(g(x))$ and $g \\circ f(x) \\equiv g(f(x))$.
", "advice": "\nTo find the composition $f \\circ g(x)$ we are substituting the expression for $g(x)$ into the function $f(x)$, replacing the $x$-terms with the function $g(x)$. Similarly, to find the composition $g \\circ f(x)$ we are substituting the expression for $f(x)$ into the function $g(x)$, replacing the $x$-terms with the function $f(x)$.
\nSo, for $f(x)=\\simplify{{m}x+{c}}$ and $g(x)=\\simplify{{n}x+{d}}$,
\n\\[ \\begin{split} f \\circ g(x) \\equiv f(g(x)) &\\,= \\simplify{{m}({n}x+{d})+{c}} \\\\ &\\,=\\simplify[!collectNumbers,unitFactor]{{m*n}x+{m*d}+{c}} \\\\ &\\,=\\simplify{{m*n}x+{m*d+c}}, \\end{split} \\]
\nand
\n\\[ \\begin{split} g \\circ f(x) \\equiv g(f(x)) &\\,= \\simplify{{n}({m}x+{c})+{d}} \\\\ &\\,=\\simplify[!collectNumbers,unitFactor]{{m*n}x+{n*c}+{d}} \\\\ &\\,=\\simplify{{m*n}x+{n*c+d}}. \\end{split} \\]
\nUse this link to find resources to help you revise how to find composite functions.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5 except n)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-7..7 except 0)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-7..7 except [0,c])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "m", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$f \\circ g(x)=$[[0]]
\n$g \\circ f(x)=$[[1]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m*n}x+{m*d+c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n*m}x+{n*c+d}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AL01 Logs - definition", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Finding $x$ from a logarithmic equation of the form $\\log_ax = b$, where $a$ and $b$ are positive integers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the value of $x$:
\n\\[ \\log_\\var{a}x = \\var{n} \\]
", "advice": "To find the value of $x$, recall that $\\log_a(x)=b$ is equivalent to $x=a^b$.
\nTherefore, \\[\\log_\\var{a}(x) = \\var{n} \\implies \\simplify[!collectNumbers]{x={a}^{n}}.\\]
\nHence, \\[x=\\var{a^n}\\,.\\]
\nUse this link to find resources to help you revise logarithms.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a^n}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AL02 Logs - rules 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Solving $a\\log(x)+\\log(b)=\\log(c)$ for $x$, where $a$, $b$ and $c$ are positive integers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve for $x$:
\n\\[ \\var{a}\\log(x)+\\log(\\var{b})=\\log(\\var{c}). \\]
", "advice": "To solve $\\var{a}\\log(x)+\\log(\\var{b})=\\log(\\var{c})$ for $x$, we want to use the following logarithm rules:
\nHence,
\n\\[ \\begin{split} \\var{a}\\log(x)+\\log(\\var{b}) &\\,=\\log(\\var{c}) \\\\ \\log(x^\\var{a})+\\log(\\var{b}) &\\,= \\log(\\var{c}) \\\\ \\log(\\var{b}x^\\var{a}) &\\,= \\log(\\var{c}). \\end{split} \\]
\nIf $\\log(a)=\\log(b)$ then this implies $a=b$. Therefore,
\n\\[ \\begin{split} \\var{b}x^\\var{a} &\\,=\\var{c} \\\\ x^\\var{a} &\\,= \\simplify[fractionNumbers]{{c/b}} \\\\ x &\\,= \\simplify[fractionNumbers]{({c/b})^(1/{a})} \\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}\\end{split} \\]
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround((c/b)^(1/a),2)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..40 except [b,b^(a+1)])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]] (Give you answer to 2 decimal places where necessary)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AL03 Logs - Solving equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Solving an equation of the form $a^x=b$ using logarithms to find $x$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve for $x$:
\n\\[ \\var{a}^x = \\var{b} \\,. \\]
", "advice": "To solve $\\var{a}^x = \\var{b}$ for $x$, since $x$ is the exponent we want to make use of the following logarithm rule:
\nBy taking the logarithm of each side and applying the above rule:
\n\\[ \\begin{split}\\var{a}^x &\\,= \\var{b} \\\\ \\log_{10}(\\var{a}^x) & \\,= \\log_{10}(\\var{b})\\\\ x \\log_{10}(\\var{a}) &\\,= \\log_{10}(\\var{b}) \\\\\\\\ x&\\,=\\simplify{log({b})/log({a})} \\\\\\\\ x &\\,= \\var{sol} \\text{ (2 d.p.)}. \\end{split} \\]
\nUse this link to find resources to help you revise how logarithms.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..9 except [a,a^2,a^3])", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "precround(log(b)/log(a),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "sol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]] (Give you answer to 2 decimal places where necessary)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS04 Simultaneous Equations (one non-linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Solving a pair of simultaneous equations of the form $a_1x+y=c_1$ and $a_2x^2+b_2xy=c_2$ by forming a quadratic equation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the following simultaneous equations:
\n\\[ \\begin{split} \\simplify{{a1}x+y} &\\,= \\var{c1} \\\\ \\simplify{{a2}x^2+{b2}x*y} &\\,= \\var{c2} \\end{split} \\]
\n\nGive your answers to 2 decimal places where necessary.
", "advice": "To solve a pair of simultaneous equations of this type we want to rearrange the linear equation such that $y$ is the subject, which we can then substitute into the equation with the quadratic $x$-term. This will result in a quadratic equation in terms of $x$ only.
\nFor the equations
\n\\[ \\begin{split} \\simplify{{a1}x+y} &\\,= \\var{c1} \\qquad \\qquad &(1) \\\\\\simplify{{a2}x^2+{b2}x*y} &\\,= \\var{c2} \\qquad \\qquad &(2) \\end{split} \\]
\nwe can rearrange equation (1) to make $y$ the subject:
\n\\[ y = \\simplify{{c1}-{a1}x}. \\qquad\\qquad (3)\\]
\nSubstituting this into equation (2):
\n\\[ \\begin{split}\\simplify{{a2}x^2+{b2}x({c1}-{a1}x)} &\\,=\\var{c2} \\\\ \\simplify[!cancelTerms,unitFactor]{{a2}x^2+{b2*c1}x-{b2*a1}x^2} &\\,=\\var{c2}. \\end{split} \\]
\nCollecting similar terms:
\n\\[ \\simplify{({a2}-{b2*a1})x^2+{b2*c1}x-{c2}} =0. \\qquad\\qquad (4) \\]
\nUsing the quadratic formula, we find two solutions for $x$:
\n{check}
\nTherefore, the 2 pairs of solutions for these simultaneous equations are
\n\\[ (x_1,y_1) = (\\var{x1dp},\\var{y1dp}) \\] and \\[ (x_2,y_2) = (\\var{x2dp},\\var{y2dp}). \\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-5..-1)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(0..10)", "description": "", "templateType": "anything", "can_override": false}, "solx1": {"name": "solx1", "group": "Ungrouped variables", "definition": "(-b2*c1-sqrt((b2^2*c1^2)+4(a2-a1*b2)*c2))/(2(a2-b2*a1))", "description": "", "templateType": "anything", "can_override": false}, "solx2": {"name": "solx2", "group": "Ungrouped variables", "definition": "(-b2*c1+sqrt((b2^2*c1^2)+4(a2-a1*b2)*c2))/(2(a2-b2*a1))", "description": "", "templateType": "anything", "can_override": false}, "soly1": {"name": "soly1", "group": "Ungrouped variables", "definition": "c1-a1*solx1", "description": "", "templateType": "anything", "can_override": false}, "soly2": {"name": "soly2", "group": "Ungrouped variables", "definition": "c1-a1*solx2", "description": "", "templateType": "anything", "can_override": false}, "x2dp": {"name": "x2dp", "group": "Ungrouped variables", "definition": "precround(solx2,2)", "description": "", "templateType": "anything", "can_override": false}, "y1dp": {"name": "y1dp", "group": "Ungrouped variables", "definition": "precround(soly1,2)", "description": "", "templateType": "anything", "can_override": false}, "y2dp": {"name": "y2dp", "group": "Ungrouped variables", "definition": "precround(soly2,2)", "description": "", "templateType": "anything", "can_override": false}, "x1dp": {"name": "x1dp", "group": "Ungrouped variables", "definition": "precround(solx1,2)", "description": "", "templateType": "anything", "can_override": false}, "solutions1": {"name": "solutions1", "group": "Ungrouped variables", "definition": "matrix([x1dp,y1dp])", "description": "", "templateType": "anything", "can_override": false}, "solutions2": {"name": "solutions2", "group": "Ungrouped variables", "definition": "matrix([x2dp,y2dp])", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(x1dp=round(x1dp) and x2dp=round(x2dp),'{text}', if(x1dp=round(x1dp),'{text1}',if(x2dp=round(x2dp),'{text2}','{text3}')))", "description": "", "templateType": "anything", "can_override": false}, "text1": {"name": "text1", "group": "Ungrouped variables", "definition": "\"\\\\[ x_1 = \\\\var{x1dp} \\\\, \\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\, \\\\text{ (2 d.p.)} \\\\]
\\nTo find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:
\\n\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\, \\\\text{(2 d.p.)} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "text2": {"name": "text2", "group": "Ungrouped variables", "definition": "\"\\\\[ x_1 = \\\\var{x1dp} \\\\, \\\\text{ (2 d.p.)}\\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\]
\\nTo find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:
\\n\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\text{(2 d.p.)} \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "text3": {"name": "text3", "group": "Ungrouped variables", "definition": "\"\\\\[ x_1 = \\\\var{x1dp} \\\\, \\\\text{ (2 d.p.)}\\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\, \\\\text{(2 d.p.)} \\\\]
\\nTo find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:
\\n\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\text{(2 d.p.)} \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\, \\\\text{(2 d.p.)} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "text": {"name": "text", "group": "Ungrouped variables", "definition": "\"\\\\[ x_1 = \\\\var{x1dp} \\\\, \\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp}\\\\]
\\nTo find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:
\\n\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}}, "variablesTest": {"condition": "(a2-a1*b2)>0 and (b2^2*c1^2+4(a2-a1*b2)*c2)>0 and gcd(a2,b2)=1", "maxRuns": 100}, "ungrouped_variables": ["a1", "c1", "a2", "b2", "c2", "solx1", "solx2", "soly1", "soly2", "x1dp", "y1dp", "x2dp", "y2dp", "solutions1", "solutions2", "check", "text", "text1", "text2", "text3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$(x_1,y_1)=$[[0]]
\n$(x_2,y_2)=$[[1]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "correctAnswer": "solutions2", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "correctAnswer": "solutions1", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "correctAnswer": "solutions1", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "correctAnswer": "solutions2", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS08 Completing the square", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["complete the square", "completing the square", "taxonomy"], "metadata": {"description": "Rearrange expressions in the form $ax^2+bx+c$ to $a(x+b)^2+c$.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "We can rewrite quadratic equations given in the form $ax^2+bx+c$ as a square plus another term - this is called \"completing the square\".
\nThis can be useful when it isn't obvious how to fully factorise a quadratic equation.
\nRewrite the following expressions in the form \\[(x+b)^2-c\\]
", "advice": "Completing the square works by noticing that
\n\\[ (x+a)^2 = x^2 + 2ax + a^2 \\]
\nSo when we see an expression of the form $x^2 + 2ax$, we can rewrite it as $(x+a)^2-a^2$.
\n\nReplace $x^2+\\var{evens2}x$ with $(x+\\var{evens2/2})^2 - \\var{evens2/2}^2$. Remember to keep the $\\var{evens2-evens1}$ term on the end!
\n\\begin{align}
\\simplify[basic]{ x^2 + {evens2}x + {evens2-evens1}} &= \\simplify[basic]{ (x+{evens2/2})^2 - {evens2/2}^2 + {evens2-evens1} } \\\\
&= \\simplify[basic]{ (x+{evens2/2})^2 + {evens2-evens1 - evens2^2/4} }
\\end{align}
Use this link to find some resources which will help you revise this topic.
\n$\\simplify {x^2+ {evens2}x +{evens2-evens1}} =$ [[0]]
It doesn't look like you've completed the square.
"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS09 Quadratics - factorise (a not 1)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["coefficient of x^2 greater than 1", "factorisation", "Factorisation", "factorising", "factorising quadratic equations", "Factorising quadratic equations", "factorising quadratic equations with x^2 coefficients greater than 1", "taxonomy"], "metadata": {"description": "Factorise a quadratic equation where the coefficient of the $x^2$ term is greater than 1 and then write down the roots of the equation
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "As this question involves a number greater than $1$ before the $x^2$ value it has a factorised form $(ax+b)(cx+d)$.
\nTo find $a$ and $c$, we need to consider the factors of $\\var{a*c}$.
\nYou may have to test a a few different options before you find one that works. In this case $a$ and $c$ are $\\var{a}$ and $\\var{c}$.
\nThis means our factorised equation must take the form
\n\\[(\\var{a}x+b)(\\var{c}x+d)=0\\text{.}\\]
\nThis expands to
\n\\[ \\simplify{ {a*c}x^2 + ({a}*d+{c}*b)x + a*b} \\]
\nSo we must find two numbers which add together to make $\\var{a*d+b*c}$, and multiply together to make $\\var{b*d}$.
\nTherefore $b$ and $d$ must satisfy
\n\\begin{align}
b \\times d &=\\var{b*d}\\\\
\\simplify{{a}d+{c}b} &= \\var{a*d+b*c}\\text{.}
\\end{align}
$b = \\var{b}$ and $d = \\var{d}$ satisfy these equations:
\n\\begin{align}
\\var{b} \\times \\var{d} &=\\var{b*d}\\\\
\\simplify[]{ {a}*{d} + {b}*{c} } &= \\var{a*d+b*c}
\\end{align}
So the factorised form of the equation is
\n\\[ \\simplify{({a}x+{b})({c}x+{d}) = 0} \\text{.}\\]
\n$\\simplify{({a}x+{b})({c}x+{d}) = 0}$ when either $\\var{a}x+\\var{b} = 0$ or $\\var{c}x+ \\var{d} = 0$.
\nSo the roots of the equation are $\\var[fractionnumbers]{-b/a}$ and $\\var[fractionnumbers]{-d/c}$.
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "last q", "definition": "random(-5..5 except 0)", "description": "$b$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "last q", "definition": "random(2..8 except a)", "description": "$c$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "last q", "definition": "random(2..3)", "description": "$a$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}, "roots": {"name": "roots", "group": "last q", "definition": "sort([-b/a,-d/c])", "description": "The roots of the equation
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "last q", "definition": "random(-8..8 except 0)", "description": "$d$ in $(ax+b)(cx+d)$
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "last q", "variables": ["a", "b", "c", "d", "roots"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve the following equation by factorisation to find $x$.
\n$\\simplify{{a*c}x^2+{a*d+b*c}x+{b*d}=0}\\text{.}$
\nInput your answers in ascending order.
\n$x=$ [[0]]
\n$x=$ [[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "roots[0]", "maxValue": "roots[0]", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "roots[1]", "maxValue": "roots[1]", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS10 Difference of two squares", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Factorising a quadratic expression of the form $a^2x^2-b^2$ to $(ax+b)(ax-b)$, using the difference of two squares formula.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Factorise the following quadratic expression:
\n\\[ \\simplify[unitFactor]{{a^2}x^2-{c^2}} \\]
", "advice": "For a quadratic expression of this form we can make use of the Difference of Squares formula, which states that \\[a^2-b^2 = (a+b)(a-b).\\]
\nTherefore,
\n\\[ \\simplify[unitFactor]{{a^2}x^2-{c^2} = ({a}x+{c})({a}x-{c})}. \\]
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..10 except a)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a}x+{c})({a}x-{c})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "($n`?*x+`+-$n)($n`?*x+`+-$n)", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD02 Differentiating polynomials 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Differentiate a polynomial expression involving coefficients and, negative and fractional indices.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the derivative of $y=\\simplify[unitFactor, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}}$.
\n\n", "advice": "From the Table of Derivatives we see that a function of the form \\[ f(x)=kx^n \\] has a derivative \\[ \\frac{df}{dx} = knx^{n-1}. \\]
\nAdditionally, the derivative of the sum or difference of two or more functions is equal to the sum or difference of the derivatives of each function: \\[ \\frac{d}{dx}(f(x)\\pm g(x)) = \\frac{df}{dx} \\pm \\frac{dg}{dx}.\\]
\n\n{advice}
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3>0,'{solutiona}',{advice2})", "description": "", "templateType": "anything", "can_override": false}, "solutiona": {"name": "solutiona", "group": "Ungrouped variables", "definition": "\"So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}
\"", "description": "", "templateType": "long string", "can_override": false}, "solutionb": {"name": "solutionb", "group": "Ungrouped variables", "definition": "\"So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} +(\\\\var[fractionNumbers]{a_3}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}
\"", "description": "", "templateType": "long string", "can_override": false}, "solutionc": {"name": "solutionc", "group": "Ungrouped variables", "definition": "\"So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} +(\\\\var[fractionNumbers]{a_2}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}
\"", "description": "", "templateType": "long string", "can_override": false}, "solutiond": {"name": "solutiond", "group": "Ungrouped variables", "definition": "\"So, for the function \\\\[y=\\\\simplify[all, fractionNumbers]{{a_1}x^{b_1}+{a_2}x^{b_2}+{a_3}x^{b_3}} \\\\] the derivative is \\\\begin{split}\\\\frac{dy}{dx} &= (\\\\var[fractionNumbers]{a_1}\\\\times\\\\var[fractionNumbers]{b_1})x^{\\\\var[fractionNumbers]{b_1}-1} -(\\\\var[fractionNumbers]{abs(a_2)}\\\\times\\\\var[fractionNumbers]{b_2})x^{\\\\var[fractionNumbers]{b_2}-1} -(\\\\var[fractionNumbers]{abs(a_3)}\\\\times\\\\var[fractionNumbers]{b_3})x^{\\\\var[fractionNumbers]{b_3}-1},\\\\\\\\ \\\\\\\\&= \\\\simplify[all, fractionNumbers]{{a_1*b_1}x^{b_1-1} +{a_2*b_2}x^{b_2-1} +{a_3*b_3}x^{b_3-1}}.\\\\end{split}
\"", "description": "", "templateType": "long string", "can_override": false}, "advice2": {"name": "advice2", "group": "Ungrouped variables", "definition": "if(a_2<0 and a_3>0,'{solutionb}',{advice3})", "description": "", "templateType": "anything", "can_override": false}, "advice3": {"name": "advice3", "group": "Ungrouped variables", "definition": "if(a_2>0 and a_3<0,'{solutionc}','{solutiond}')", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "b/c", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(b,c)=1", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "b", "c", "advice", "advice2", "advice3", "solutiona", "solutionb", "solutionc", "solutiond"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\frac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a_1*b_1}x^{{b_1}-1}+{a_2*b_2}x^{{b_2}-1}+{a_3*b_3}x^{{b_3}-1}", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD03 Differentiation with logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Calculating the derivative of a function of the form $a \\ln(bx)$ using a table of derivatives.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate the derivative of $y=\\simplify[unitFactor]{{a}*ln({a_1}*x^2+{a_2}*x+{a_3})}.$
", "advice": "From the Table of Derivatives and the chain rule we see that a function of the form \\[ f(x)=a \\ln(g(x)) \\] has a derivative \\[\\frac{df}{dx}=\\frac{g'(x)}{g(x)}.\\]
\nIn this case $g(x)=\\var{a_1}x^2+\\var{a_2}x+\\var{a_3}$ so
\n\\[g'(x)=\\var{2*a_1}x+\\var{a_2}\\]
\nTherefore, the function \\[ \\simplify[unitFactor]{y={a}ln({a_1}*x^2+{a_2}*x+{a_3})}\\] has a derivative \\[(\\var{a*a_1*2}x+\\var{a*a_2})/(\\var{a_1}x^2+\\var{a_2}x+\\var{a_3})\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-20..20 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "a_1", "a_2", "a_3"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\frac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a*a_1*2}x+{a*a_2})/({a_1}*x^2+{a_2}*x+{a_3})", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD04 Differentiating with Exponentials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculating the derivative of an exponential function of the form $ae^{bx}$, using a table of derivatives.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate the derivative of $y=\\simplify[all]{{a}*e^({b}x)}.$
", "advice": "From the Table of Derivatives we see that a function of the form \\[ f(x)=a e^{kx} \\] has a derivative \\[ak e^{kx}.\\]
\nTherefore, the function \\[y=\\simplify[unitFactor]{{a}*e^({b}x)}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})e^{\\simplify[unitFactor]{{b}x}}\\\\ &= \\simplify[unitFactor]{{a*b}e^({b}x)}.\\end{split}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-20..20 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\frac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*b}e^({b}x)", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD06 Differentiating Trig 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Find the derivative of a function of the form $y=a \\sin(bx+c)$ using a table of derivatives.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Using the Table of Derivatives, calculate the derivative of $y=\\simplify[unitFactor]{{a}sin({b}x+{c})}.$
\n\n", "advice": "From the Table of Derivatives we see that a function of the form \\[ f(x)=a \\sin(kx+c) \\] has a derivative \\[ak \\cos (kx+c).\\]
\nTherefore, the function \\[y=\\simplify[unitFactor]{{a}*sin({b}x+{c})}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})\\cos(\\simplify[unitFactor]{{b}x+{c}})\\\\ &= \\simplify[unitFactor]{{a*b}cos({b}x+{c})}.\\end{split}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-15..15)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\frac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*b}cos({b}x+{c})", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD07 Differentiating with Trig 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Find the derivative of a function of the form $y=a \\tan(bx+c)$ using a table of derivatives.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Using the Table of Derivatives, calculate the derivative of $y=\\simplify[unitFactor]{{a}tan({b}x+{c})}.$
\n\n", "advice": "From the Table of Derivatives we see that a function of the form \\[ f(x)=a \\tan(kx+c) \\] has a derivative \\[ak \\sec^2(kx+c).\\]
\nTherefore, the function \\[y=\\simplify[unitFactor]{{a}*tan({b}x+{c})}\\] has a derivative\\[ \\begin{split} \\frac{dy}{dx} &=(\\var{a}\\times \\var{b})\\sec^2(\\simplify[unitFactor]{{b}x+{c}})\\\\ &= \\simplify[unitFactor]{{a*b}}\\sec^2(\\simplify[unitFactor]{{b}x+{c}}).\\end{split}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-15..15)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\frac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a*b}sec^2({b}x+{c})", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "sec", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{a*b}sec({b}x+{c})^2", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD08 Finding turning points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Finding the stationary points of a cubic equation and determining their nature.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Given the function \\[ \\simplify{y={a}x^3+{b}x^2+{c}x+{d}} ,\\] find its stationary points and determine their nature.
", "advice": "To find the stationary points of the function, we must solve $\\tfrac{dy}{dx}=0$ for $x$. For the function $\\simplify{y={a}x^3+{b}x^2+{c}x+{d}}$,
\n\\[ \\frac{dy}{dx} = \\simplify{{3a}x^2+{2b}x+{c}}. \\]
\nSetting $\\frac{dy}{dx}=0$ and solving for $x$:
\n\\[ \\simplify{{3a}x^2+{2b}x+{c}} =0 \\\\ \\\\ \\implies x=\\var{solx1dp} \\var{x1} \\text{ and } x=\\var{solx2dp} \\var{x2}. \\]
\nHence, the function has two stationary points at $x=\\var{solx1dp}$ and $x=\\var{solx2dp}$. To find the corresponding $y$-coordinates, we want to plug these values back into the initial equation.
\nWhen $x=\\var{solx1dp}$,
\n\\[ \\begin{split} y &\\,= \\simplify[unitFactor,!cancelTerms]{{a}*({solx1dp})^3+{b}*({solx1dp})^2+{c}*({solx1dp})+{d}} \\\\ &\\,=\\simplify{{soly1dp}} \\var{y1}. \\end{split} \\]
\nWhen $x=\\var{solx2dp}$,
\n\\[ \\begin{split} y &\\,= \\simplify[unitFactor,!cancelTerms]{{a}*({solx2dp})^3+{b}*({solx2dp})^2+{c}*({solx2dp})+{d}} \\\\ &\\,=\\simplify{{soly2dp}} \\var{y2}. \\end{split} \\]
\nTherefore, the stationary points of $y=\\simplify{{a}x^3+{b}x^2+{c}x+{d}}$ are
\n\\[ (\\simplify{{solx1dp}},\\, \\simplify{{soly1dp}}) \\, , \\,(\\simplify{{solx2dp}},\\, \\simplify{{soly2dp}}). \\]
\nFinally, we need to determine the nature of the stationary points. To do this we want to calculate the second derivative of the initial function and then evaluate it for each $x$-value of the stationary points.
\nRecall:
\nTo calculate $\\tfrac{d^2y}{dx^2}$, we want to differentiate $\\tfrac{dy}{dx}$ again with respect to $x$:
\n\\[ \\begin{split} &\\frac{dy}{dx} = \\simplify{{3a}x^2+{2b}x+{c}}, \\\\ \\\\\\implies &\\frac{d^2y}{dx^2} = \\simplify{{6a}x+{2b}}. \\end{split}\\]
\nFor $(\\simplify{{solx1dp}},\\, \\simplify{{soly1dp}})$, $\\frac{d^2y}{dx^2} = \\simplify{{check}}$, so it is a minimum.
\nFor $(\\simplify{{solx2dp}},\\, \\simplify{{soly2dp}})$, $\\frac{d^2y}{dx^2} = \\simplify{{check2}}$, so it is a maximum.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-7..7)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..5 except b)", "description": "", "templateType": "anything", "can_override": false}, "solx1": {"name": "solx1", "group": "Ungrouped variables", "definition": "(-2b+sqrt((2b)^2-12*a*c))/(6a)", "description": "", "templateType": "anything", "can_override": false}, "solx2": {"name": "solx2", "group": "Ungrouped variables", "definition": "(-2b-sqrt((2b)^2-12*a*c))/(6a)", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "precround(6a*solx1+2b,2)", "description": "", "templateType": "anything", "can_override": false}, "check2": {"name": "check2", "group": "Ungrouped variables", "definition": "precround(6a*solx2+2b,2)", "description": "", "templateType": "anything", "can_override": false}, "soly1": {"name": "soly1", "group": "Ungrouped variables", "definition": "a*(solx1)^3+b*(solx1)^2+c*solx1+d", "description": "", "templateType": "anything", "can_override": false}, "soly2": {"name": "soly2", "group": "Ungrouped variables", "definition": "a*(solx2)^3+b*(solx2)^2+c*solx2+d", "description": "", "templateType": "anything", "can_override": false}, "solx1dp": {"name": "solx1dp", "group": "Ungrouped variables", "definition": "precround(solx1,2)", "description": "", "templateType": "anything", "can_override": false}, "solx2dp": {"name": "solx2dp", "group": "Ungrouped variables", "definition": "precround(solx2,2)", "description": "", "templateType": "anything", "can_override": false}, "soly1dp": {"name": "soly1dp", "group": "Ungrouped variables", "definition": "precround(soly1,2)", "description": "", "templateType": "anything", "can_override": false}, "soly2dp": {"name": "soly2dp", "group": "Ungrouped variables", "definition": "precround(soly2,2)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "if(round(solx1)=solx1,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "if(round(solx2)=solx2,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "if(round(soly1)=soly1,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "if(round(soly2)=soly2,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b^2>3*a*c", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "d", "solx1", "soly1", "solx2", "soly2", "check", "check2", "solx1dp", "solx2dp", "soly1dp", "soly2dp", "x1", "x2", "y1", "y2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "There is a minimum point at ([[0]], [[1]]) and a maximum point at ([[2]] , [[3]]).
\n(Give the coordinates of the stationary points to 2 decimal places where necessary.)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{solx1dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{soly1dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{solx2dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{soly2dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD09 Chain Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "Calculating the derivative of a function of the form $\\sin(ax^m+bx^n)$ using the chain rule.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate the derivative of $y=\\simplify[all]{sin({a}*x^{n}+{b}*x^{m})}$.
", "advice": "If we have a function of the form $y=f(g(x))$, sometimes described as a function of a function, to calculate its derivative we need to use the chain rule:
\n\\[ \\frac{dy}{dx} = \\frac{du}{dx} \\times \\frac{dy}{du}.\\]
\n\nThis can be split up into steps:
\nFollowing this process, we must first identify $g(x)$. Since the function is of the form $y=f(g(x))$, we are looking for the 'inner' function.
\nSo, for $y=\\simplify[all,fractionNumbers]{sin({a}*x^{n}+{b}*x^{m})}$, \\[g(x)=\\simplify[all, fractionNumbers, unitFactor]{{a}*x^{n}+{b}*x^{m}}.\\]
\nIf we now set $u=g(x)$, we can rewrite $y$ in terms of $u$ such that $y=f(u)$:
\n\\[y=\\simplify[all, fractionNumbers,unitFactor]{sin(u)}.\\]
\nNext, we calculate the two derivatives $\\frac{du}{dx}$ and $\\frac{dy}{du}$:
\n\\[\\frac{du}{dx}=\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}}, \\quad \\frac{dy}{du}=\\simplify[all, fractionNumbers, unitFactor]{cos(u)}.\\]
\nPlugging these into the chain rule:
\n\\[ \\begin{split} \\frac{dy}{dx} &= \\frac{du}{dx} \\times \\frac{dy}{du}, \\\\&=(\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}}) \\times\\simplify[all, fractionNumbers, unitFactor]{cos(u)}. \\end{split} \\]
\nFinally, we need to express $\\frac{dy}{dx}$ only in terms of $x$, so we must replace the $u$ term using the initial substitution $u=\\simplify[all, fractionNumbers, unitFactor]{{a}*x^{n}+{b}*x^{m}}$:
\n\\[ \\frac{dy}{dx} =(\\simplify[all,fractionNumbers]{{a*n}x^{n-1}+{b*m}x^{m-1}})\\simplify[all, fractionNumbers, unitFactor]{cos({a}*x^{n}+{b}*x^{m})}.\\]
\n\nUse this link to find some resources which will help you revise this topic.
\n\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "n>m", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\frac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a*n}*x^{n-1}+{b*m}*x^{m-1})*cos({a}x^{n}+{b}x^{m})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD10 Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "Calculating the derivative a function of the form $ax^n \\sin(bx)$ using the product rule.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the derivative of \\[ \\simplify{y={a}x^{n} sin({b}x)}. \\]
", "advice": "If we have a function of the form $y=u(x)v(x)$, to calculate its derivative we need to use the product rule:
\n\\[ \\dfrac{dy}{dx} = u(x) \\times \\dfrac{dv}{dx} + v(x) \\times\\dfrac{du}{dx}.\\]
\nThis can be split up into steps:
\nFollowing this process, we must first identify $u(x)$ and $v(x)$.
\nAs \\[ \\simplify{y={a}x^{n} sin({b}x)}, \\]
\nlet \\[ u(x) = \\simplify{{a}x^{n}} \\quad \\text{and} \\quad v(x)=\\simplify{sin({b}x)}.\\]
\nNext, we need to find the derivatives, $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$:
\n\\[ \\dfrac{du}{dx} = \\simplify{{a*n}x^{n-1}}\\quad \\text{and} \\quad\\dfrac{dv}{dx}=\\simplify{{b}cos({b}x)}.\\]
\nSubstituting these results into the product rule formula we can obtain an expression for $\\tfrac{dy}{dx}$:
\n\\[ \\begin{split} \\dfrac{dy}{dx} &\\,= \\dfrac{du}{dx}\\times v(x) + u(x) \\times\\dfrac{dv}{dx} \\\\ &\\,=\\simplify{{a*n}x^{n-1}} \\times\\simplify{sin({b}x)} +\\simplify{{a}x^{n}} \\times \\simplify{{b}cos({b}x)}. \\end{split}\\]
\nSimplifying,
\n\\[\\dfrac{dy}{dx} = \\simplify{{n*a}x^{n-1}sin({b}x) + {a*b}x^{n}cos({b}x)}. \\]
\n\nUse this link to find some resources which will help you revise this topic
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\dfrac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n*a}x^{n-1}sin({b}x) + {a*b}x^{n}cos({b}x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CD11 Quotient Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "tags": [], "metadata": {"description": "Calculating the derivative of a function of the form $\\frac{ax^n}{bx+c}$ using the quotient rule.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the derivative of \\[ \\simplify{y={a}x^{n}/({b}x+{c})}. \\]
", "advice": "If we have a function of the form $y=\\tfrac{u(x)}{v(x)}$, to calculate its derivative we need to use the quotient rule:
\n\\[ \\dfrac{dy}{dx} = \\dfrac{v(x) \\times \\frac{du}{dx} - u(x) \\times\\frac{dv}{dx}}{[v(x)]^2}\\,.\\]
\nThis can be split up into steps:
\nFollowing this process, we must first identify $u(x)$ and $v(x)$.
\nAs \\[ \\simplify{y={a}x^{n}/({b}x+{c})}, \\]
\nlet \\[ u(x) = \\simplify{{a}x^{n}} \\quad \\text{and} \\quad v(x)=\\simplify{{b}x+{c}}.\\]
\nNext, we need to find the derivatives, $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$:
\n\\[ \\dfrac{du}{dx} = \\simplify{{a*n}x^{n-1}}\\quad \\text{and} \\quad\\dfrac{dv}{dx}=\\simplify{{b}}.\\]
\nSubstituting these results into the quotient rule formula we can obtain an expression for $\\tfrac{dy}{dx}$:
\n\\[ \\begin{split} \\dfrac{dy}{dx} &\\,= \\dfrac{v(x) \\times \\frac{du}{dx} - u(x) \\times\\frac{dv}{dx}}{[v(x)]^2} \\\\ \\\\&\\,=\\dfrac{(\\simplify{{b}x+{c}}) \\times\\simplify{{a*n}x^{n-1}} - \\simplify{{a}x^{n}} \\times \\simplify{{b}}}{\\simplify{({b}x+{c})^2}}. \\end{split}\\]
\nSimplifying,
\n\\[ \\begin{split} \\dfrac{dy}{dx} &\\,=\\dfrac{(\\simplify{{b}x+{c}})\\simplify{{a*n}x^{n-1}} - \\simplify{{b*a}x^{n}}}{\\simplify{({b}x+{c})^2}} \\\\ \\\\&\\,=\\dfrac{\\simplify[all,!cancelTerms]{{b*a*n}x^{n}+{c*a*n}x^{n-1} - {b*a}x^{n}}}{\\simplify{({b}x+{c})^2}}\\\\ \\\\ &\\,=\\dfrac{\\simplify{{b*a*n}x^{n}+{c*a*n}x^{n-1} - {b*a}x^{n}}}{\\simplify{({b}x+{c})^2}} \\\\ \\\\ &\\,=\\dfrac{\\simplify{{simp}x^{n-1}({(b*a*n-b*a)/simp}x+{c*a*n/simp})}}{\\simplify{({b}x+{c})^2}} \\end{split} \\]
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except [0,b])", "description": "", "templateType": "anything", "can_override": false}, "simp": {"name": "simp", "group": "Ungrouped variables", "definition": "gcd(b*a*n-b*a,c*a*n)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "simp>1", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "n", "simp"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
$\\dfrac{dy}{dx}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({simp}x^{n-1}({(b*a*n-a*b)/simp}x+{c*a*n/simp}))/({b}x+{c})^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI02 Definite integration", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Calculating the definite integral $\\int_{n_1}^{n_2}a_1x^{b_1}+a_2x^{b_2}+a_3x^{b_3} dx$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Evaluate \\[ \\int_{\\var{n_1}}^{\\var{n_2}}\\simplify[unitFactor, unitPower, fractionNumbers]{{a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3}} \\,dx.\\]
\n", "advice": "Integrating a function of the form \\[ f(x)=x^n \\] has the integral \\[ \\int_a^b x^n dx = \\left[\\frac{x^{n+1}}{n+1}\\right]_a^b,\\]
\nand \\[\\int_a^b kf(x) dx = k \\int_a^b f(x) dx.\\]
\nAdditionally, the integral of the sum or difference of two or more functions is equal to the sum or difference of the integrals of each function: \\[ \\int(f(x)\\pm g(x))\\, dx = \\int f(x)\\, dx \\pm \\int g(x) \\, dx.\\]
\n\nTherefore,
\n\\[ \\begin{split}\\simplify[unitFactor,unitPower]{defint({a_1}*x^{b_1}+{a_2}*x^{b_2}+{a_3}*x^{b_3},x,{n_1},{n_2})} &\\,= \\simplify{{a_1}defint(x^{b_1},x,{n_1},{n_2})+{a_2}defint(x^{b_2},x,{n_1},{n_2})+{a_3}defint(x^{b_3},x,{n_1},{n_2})} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers]{{a_1}x^{b_1+1}/{b_1+1}+{a_2}x^{b_2+1}/{b_2+1}+{a_3}x^{b_3+1}/{b_3+1}}\\right]_\\var{n_1}^\\var{n_2} \\\\ &\\,= \\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_2^(b_1+1)}/{b_1+1}+{a_2*n_2^(b_2+1)}/{b_2+1}+{a_3*n_2^(b_3+1)}/{b_3+1}}\\right] -\\left[\\simplify[all,fractionNumbers,!collectNumbers]{{a_1*n_1^(b_1+1)}/{b_1+1}+{a_2*n_1^(b_2+1)}/{b_2+1}+{a_3*n_1^(b_3+1)}/{b_3+1}}\\right] \\\\ &\\,= \\simplify[!collectNumbers]{{eval2a}-{eval1a}} \\\\ &\\,=\\var{sol1} \\end{split} \\]
\nUse this link to find some resources on areas under curves which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a_1": {"name": "a_1", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "b_1": {"name": "b_1", "group": "Ungrouped variables", "definition": "3", "description": "", "templateType": "anything", "can_override": false}, "a_2": {"name": "a_2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "b_2": {"name": "b_2", "group": "Ungrouped variables", "definition": "2", "description": "", "templateType": "anything", "can_override": false}, "b_3": {"name": "b_3", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "a_3": {"name": "a_3", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n_1": {"name": "n_1", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "n_2": {"name": "n_2", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "eval2": {"name": "eval2", "group": "Ungrouped variables", "definition": "a_1*n_2^(b_1+1)/(b_1+1)+a_2*n_2^(b_2+1)/(b_2+1)+a_3*n_2^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval1": {"name": "eval1", "group": "Ungrouped variables", "definition": "a_1*n_1^(b_1+1)/(b_1+1)+a_2*n_1^(b_2+1)/(b_2+1)+a_3*n_1^(b_3+1)/(b_3+1)", "description": "", "templateType": "anything", "can_override": false}, "eval2a": {"name": "eval2a", "group": "Ungrouped variables", "definition": "precround(eval2,3)", "description": "", "templateType": "anything", "can_override": false}, "eval1a": {"name": "eval1a", "group": "Ungrouped variables", "definition": "precround(eval1,3)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "eval2-eval1", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "precround(sol,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b_1>b_2 and b_2>b_3 and n_2>n_1", "maxRuns": "100"}, "ungrouped_variables": ["a_1", "a_2", "a_3", "b_1", "b_2", "b_3", "n_1", "n_2", "eval2", "eval1", "eval2a", "eval1a", "sol", "sol1"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]] (Give answers to 2 decimal places where necessary)
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sol1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI03 Integration - Partial Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculating the integral of a function of the form $\\frac{c}{(x+a)(x+b)}$ using partial fractions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate the integral
\n\\[ \\simplify{int({c}/((x^2+{aPlusb}x+{ab})),x)} .\\]
", "advice": "In order to integrate the function \\[ \\simplify{int({c}/((x^2+{aPlusb}x+{ab})),x)}, \\] we want to rewrite it in terms of its partial fractions.
\nFirst we need to factorise the denominator so we have
\n\\[ \\simplify{{c}/((x+{a})(x+{b}))}. \\]
\nNow to write this as a partial fraction, we want to set the function equal to the sum of 2 fractions with denominators $\\simplify{x+{a}}$ and $\\simplify{x+{b}}$. Since these are both distinct linear factors, this tells us that the numerators will be constants, which we will call $A$ and $B$:
\n\\[ \\simplify{{c}/((x+{a})(x+{b}))} = \\simplify{A/(x+{a}) + B/(x+{b})}.\\]
\nTo find the values of $A$ and $B$, we want to multiply this equation by the denominator of the left-hand side. This gives
\n\\[ \\simplify{{c}=A(x+{b})+B(x+{a})}.\\]
\n\nTo find $A$, we can eliminate $B$ by setting $\\simplify{x={-a}}$:
\n\\[ \\simplify{{c}=A{b-a}} \\implies \\simplify[fractionNumbers]{A={c/(b-a)}}.\\]
\nSimilarly, to find B, we can eliminate $A$ by setting $\\simplify{x={-b}}$:
\n\\[ \\simplify{{c}=B{a-b}} \\implies \\simplify[fractionNumbers]{B={c/(a-b)}}.\\]
\nTherefore,
\n{check1}
\nand
\n{check2}
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Asol": {"name": "Asol", "group": "Ungrouped variables", "definition": "c/(b-a)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-9..9 except a)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "Bsol": {"name": "Bsol", "group": "Ungrouped variables", "definition": "c/(a-b)", "description": "", "templateType": "anything", "can_override": false}, "check1": {"name": "check1", "group": "Ungrouped variables", "definition": "if(Asol=round(Asol),'{Sol1}','{Sol2}')", "description": "", "templateType": "anything", "can_override": false}, "Sol1": {"name": "Sol1", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\simplify{{c}/((x+{a})(x+{b}))} = \\\\simplify[all,fractionNumbers]{{Asol}/(x+{a})+{Bsol}/(x+{b})},\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "Sol2": {"name": "Sol2", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\simplify{{c}/((x+{a})(x+{b}))} = \\\\simplify[all,fractionNumbers]{{c}/(({b-a})(x+{a}))+{c}/(({a-b})(x+{b}))},\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "int1": {"name": "int1", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split} \\\\simplify{int({c}/((x+{a})(x+{b})),x)} &\\\\,= \\\\simplify[all,fractionNumbers]{int({Asol}/(x+{a})+{Bsol}/(x+{b}),x)}\\\\\\\\\\\\\\\\ &\\\\,=\\\\simplify[all,fractionNumbers]{{Asol} int(1/(x+{a}),x)+{Bsol} int(1/(x+{b}),x)} \\\\\\\\\\\\\\\\ &\\\\,=\\\\simplify[all,fractionNumbers]{{Asol} ln (abs(x+{a}))+{Bsol} ln (abs(x+{b})) + C}. \\\\end{split}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "int2": {"name": "int2", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split} \\\\simplify{int({c}/((x+{a})(x+{b})),x)} &\\\\,= \\\\simplify[all,fractionNumbers]{int({c}/(({b-a})(x+{a}))+{c}/(({a-b})(x+{b})),x)} \\\\\\\\\\\\\\\\ &\\\\,=\\\\simplify[basic,fractionNumbers,zeroFactor,noLeadingMinus]{{Asol} int(1/(x+{a}),x)+{Bsol} int(1/(x+{b}),x)} \\\\\\\\ \\\\\\\\ &\\\\,=\\\\simplify[basic,fractionNumbers,zeroFactor,noLeadingMinus]{{Asol} ln (abs(x+{a}))+{Bsol} ln (abs(x+{b})) + C}. \\\\end{split}\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "check2": {"name": "check2", "group": "Ungrouped variables", "definition": "if(Asol=round(Asol),'{int1}','{int2}')", "description": "", "templateType": "anything", "can_override": false}, "ab": {"name": "ab", "group": "Ungrouped variables", "definition": "a*b", "description": "", "templateType": "anything", "can_override": false}, "aPlusb": {"name": "aPlusb", "group": "Ungrouped variables", "definition": "a+b", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["b", "a", "c", "Bsol", "Asol", "check1", "Sol1", "Sol2", "check2", "int1", "int2", "ab", "aPlusb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "brackets", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".
", "useAlternativeFeedback": true, "answer": "{Asol} ln (x+{a})+{Bsol} ln (x+{b}) + c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alt constant \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": true, "answer": "{Asol} ln (abs(x+{a}))+{Bsol} ln (abs(x+{b})) + k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alt constant \"+k\" brackets", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".
", "useAlternativeFeedback": true, "answer": "{Asol} ln (x+{a})+{Bsol} ln (x+{b}) + k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.
", "useAlternativeFeedback": false, "answer": "{Asol} ln (abs(x+{a}))+{Bsol} ln (abs(x+{b}))", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{Asol} ln (abs(x+{a}))+{Bsol} ln (abs(x+{b})) + c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI04 Integration - trig identities", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Using the various versions of $\\cos{2x}$ identity to integrate $\\sin^2{x}$ and $\\cos^2{x}$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Integrate $f(x)=\\var{Func}$.
", "advice": "We can't integrate $\\var{Coeff}\\sin^2(x)$ directly so first we have to use the double angle formula $\\cos(2x)=1-2\\sin^2(x)$. We re-arrange using the double angle formula to give us,
\n\\[\\var{Coeff}\\sin^2(x)=\\frac{\\var{Coeff}}2-\\frac{\\var{Coeff}}2\\cos(2x).\\]
\nFrom the Table of Integrals we see that a function of the form \\[ f(x)= \\cos(nx) \\] has the integral \\[ \\int \\cos(nx) dx = \\frac{1}{n}\\sin(nx)+c\\]
\n\nSo, for the function
\n\\[f(x)=\\simplify[unitFactor,fractionNumbers]{{-Coeff/2}cos(2x)},\\]
\nthe integral is
\n\\[ \\begin{split} \\int\\simplify[unitFactor,fractionNumbers]{{-Coeff/2}cos(2x)} dx \\,= \\simplify[unitFactor,fractionNumbers]{{-Coeff/2}int(cos(2x),x)} &\\,=\\simplify[unitFactor,fractionNumbers]{{-Coeff/2}(1/2 sin({2}x))} +c, \\\\ &\\,=\\simplify[unitFactor,fractionNumbers]{{-Coeff/4} sin(2x)+c}. \\end{split} \\]
\nThe integral of $\\frac{\\var{Coeff}}2$ is
\n\\[\\int\\frac{\\var{Coeff}}2dx=\\frac{\\var{Coeff}}2x+c,\\]
\nso combining these our final answer is
\n\\[\\int\\frac{\\var{Coeff}}2-\\frac{\\var{Coeff}}2\\cos(2x)dx=\\simplify[unitFactor,fractionNumbers]{{Coeff/2}x-{Coeff/4} sin(2x)+c}\\]
\nWe can't integrate $\\var{Coeff}\\cos^2(x)$ directly so first we have to use the double angle formula $\\cos(2x)=2\\cos^2(x)-1$. We re-arrange using the double angle formula to give us,
\n\\[\\var{Coeff}\\cos^2(x)=\\frac{\\var{Coeff}}2+\\frac{\\var{Coeff}}2\\cos(2x).\\]
\nFrom the Table of Integrals we see that a function of the form \\[ f(x)= \\cos(nx) \\] has the integral \\[ \\int \\cos(nx) dx = \\frac{1}{n}\\sin(nx)+c\\]
\nSo, for the function
\n\\[f(x)=\\simplify[unitFactor,fractionNumbers]{{Coeff/2}cos(2x)},\\]
\nthe integral is
\n\\[ \\begin{split} \\int\\simplify[unitFactor,fractionNumbers]{{Coeff/2}cos(2x)} dx \\,= \\simplify[unitFactor,fractionNumbers]{{Coeff/2}int(cos(2x),x)} &\\,=\\simplify[unitFactor,fractionNumbers]{{Coeff/2}(1/2 sin({2}x))} +c, \\\\ &\\,=\\simplify[unitFactor,fractionNumbers]{{Coeff/4} sin(2x)+c}. \\end{split} \\]
\nThe integral of $\\frac{\\var{Coeff}}2$ is
\n\\[\\int\\frac{\\var{Coeff}}2dx=\\frac{\\var{Coeff}}2x+c,\\]
\nso combining these our final answer is
\n\\[\\int\\frac{\\var{Coeff}}2+\\frac{\\var{Coeff}}2\\cos(2x)dx=\\simplify[unitFactor,fractionNumbers]{{Coeff/2}x+{Coeff/4} sin(2x)+c}\\]
Use this link to find some resources which will help you revise this topic.
It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.
", "useAlternativeFeedback": false, "answer": "1/2{Coeff}*(x+{OneIfCosMinusOneIfSine}/2*sin(2x))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "1/2{Coeff}*(x+{OneIfCosMinusOneIfSine}/2*sin(2x))+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI05 Integration - Substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculating the integral of a function of the form $\\frac{nx^{n-1}}{x^n+a}$ using integration by substitution.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate \\[ \\simplify[all]{int(({n}x^{n-1})/(x^{n}+{a}),x)}\\]
\nby using the substitution \\[ \\simplify[all]{u=x^{n}+{a}}.\\]
", "advice": "Since this integral is of the form \\[ \\int g'(x)f(g(x))\\,dx,\\] we can use the method of substitution to calculate the solution.
\nFirstly, we must make a change of variables from $x$ to $u$, where $u$ is equal to the 'inner' function $g(x)$.
\nSo, for \\[\\simplify[fractionNumbers]{int(({n}x^{n-1})/((x^{n}+{a})),x)}\\]
\nlet $\\color{red}{u=\\simplify[fractionNumbers]{x^{n}+{a}}}.$
\nNow, we need to calculate the differential, $du$, where \\[ du = \\left(\\frac{du}{dx}\\right)dx. \\]
\nDifferentiating $u$ with respect to $x$:
\n\\[ \\frac{du}{dx}= \\simplify[fractionNumbers]{{n}x^{n-1}}.\\]
\nTherefore, \\[ \\color{blue}{du = \\simplify[fractionNumbers]{{n}x^{n-1}}\\, dx}.\\]
\nWe can now rewrite the original integral in terms of $u$:
\n\\[ \\int \\frac{\\color{blue}{\\simplify{{n}x^{n-1}}}}{\\color{red}{\\simplify{x^{n}+{a}}}}\\color{blue}{\\text{d}x} = \\int \\frac{1}{\\color{red}{u}}\\color{blue}{\\text{d}u}.\\]
\n(Note: It is important to see that both the function we are integrating, and the variable we are integrating with respect to, has changed.)
\n\\[ \\simplify[fractionNumbers]{int(1/u,u) = ln(abs(u)) + c}.\\]
\nFinally, we must rewrite our solution back in terms of the original variable $x$:
\n\\[ \\simplify[fractionNumbers]{ln(abs(u)) + c = ln(abs(x^{n}+{a})) + c}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "n"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alternative using brackets", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".
", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a})) + k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Alternative using brackets and \"+k\"", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "Technically we should use the absolute value symbols for the logs. This can be done in NUMBAS by using \"abs(*function*)\".
", "useAlternativeFeedback": false, "answer": "ln(x^{n}+{a})+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.
", "useAlternativeFeedback": false, "answer": "ln(abs(x^{n}+{a}))", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "ln(abs(x^{n}+{a}))+c", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "CI06 Integration - Parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculating the integral of a function of the form $ax^2 \\cos(bx)$ using integration by parts.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate the integral \\[ \\simplify{int({a}x^2 cos({b}x),x)}\\]
", "advice": "If we have a function of $x$ which is the product of two functions of $x$, to integrate such a function it is often necessary to use Integration by Parts. The formula for Integration by Parts is:
\n\\[ \\int u(x) \\frac{dv}{dx} dx = u(x)v(x) - \\int v(x) \\frac{du}{dx} dx.\\]
\nUsing this method can be broken down into steps:
\nFor the integral
\n\\[ \\simplify{int({a}x^2 cos({b}x),x)},\\]
\nwe must first identify $u(x)$ and $\\tfrac{dv}{dx}$. In this case, let \\[ u(x)=\\simplify{{a}x^2},\\quad \\frac{dv}{dx}= \\simplify{cos({b}x)}. \\]
\nNext, we need to calculate $\\tfrac{du}{dx}$ and $v(x)$:
\n\\[ \\begin{split} u(x) = \\var{a}x^2 \\quad &\\implies \\frac{du}{dx} = \\simplify{{2a}x}; \\\\ \\frac{dv}{dx} = \\cos(\\var{b}x) &\\implies v(x) = \\simplify[fractionNumbers]{1/{b} sin({b}x)}. \\end{split} \\]
\nPlugging these 4 terms into the integration by parts formula:
\n\\[ \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) - int({2a/b}x sin({b}x),x)}, \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x sin({b}x),x)}.\\end{split} \\]
\nSince the integral on the right-hand side is still the product of two functions of $x$, we need to use integration by parts again.
\nSo, for
\n\\[ \\simplify{int(x sin({b}x),x)}, \\]
\nLet $u=x$ and $\\tfrac{dv}{dx} = \\sin(\\var{b}x)$. Therefore, $\\tfrac{du}{dx}=1$ and $v(x)=\\simplify{-1/{b} cos({b}x)}$.
\nHence,
\n\\[ \\begin{split} \\simplify{int(x sin({b}x),x)} &\\,= \\simplify{-1/{b}x cos({b}x)- int(-1/{b} cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify{-1/{b}x cos({b}x)+1/{b^2}sin({b}x)}. \\end{split}\\]
\nPlugging this back into the original calculation:
\n\\[ \\begin{split} \\simplify{int({a}x^2 cos({b}x),x)} &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}int(x cos({b}x),x)} \\\\ \\\\ &\\,= \\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) -{2a/b}[-1/{b}x cos({b}x)+1/{b^2}sin({b}x)]} \\\\ \\\\ &\\,=\\simplify[fractionNumbers]{{a/b}x^2 sin({b}x) +{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)} + c.\\end{split} \\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..7)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(a,b)=1 and b>a", "maxRuns": 100}, "ungrouped_variables": ["a", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Correct Answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": true, "customName": "Alt constant +k", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+k", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "k", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Forgotten constant", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "It looks like you forgot to include the integration constant. You should always remember the \"+C\" when doing an indefinite integral.
", "useAlternativeFeedback": false, "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)", "answerSimplification": "all,!collectLikeFractions,fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{a/b}x^2 sin({b}x)+{2a/b^2}x cos({b}x)-{2a/b^3}sin({b}x)+c", "answerSimplification": "fractionNumbers, basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA08 Trigonometric Identities 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "Rewriting a trigonometric expression of the form $A\\cos(\\theta)\\pm B\\sin(\\theta)$ to either $R\\sin(\\theta+\\alpha)$ or $R\\cos(\\theta+\\alpha)$ by calculating $R$ and $\\alpha$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "If
\n{question}
\nfind the values for $R$ and $\\alpha$, given $R>0$ and $0<\\alpha<\\frac{\\pi}{2}$.
", "advice": "\n{answer}
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "random(1..5 except A)", "description": "", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "sqrt(A^2+B^2)", "description": "", "templateType": "anything", "can_override": false}, "Rround": {"name": "Rround", "group": "Ungrouped variables", "definition": "precround(R,2)", "description": "", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "arctan(B/A)", "description": "", "templateType": "anything", "can_override": false}, "Rsol": {"name": "Rsol", "group": "Ungrouped variables", "definition": "if(R=round(R),'{Rsol1}','{Rsol2}')", "description": "", "templateType": "anything", "can_override": false}, "Rsol1": {"name": "Rsol1", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split} R^2\\\\cos^2(\\\\alpha) + R^2 \\\\sin^2(\\\\alpha) &\\\\,= \\\\var{A}^2+\\\\var{B}^2 \\\\\\\\ R^2 (\\\\cos^2(\\\\alpha) +\\\\sin^2(\\\\alpha)) &\\\\,= \\\\var{A^2+B^2} \\\\\\\\ R &\\\\,= \\\\var{R}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "Rsol2": {"name": "Rsol2", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split} R^2\\\\cos^2(\\\\alpha) + R^2 \\\\sin^2(\\\\alpha) &\\\\,= \\\\var{A}^2+\\\\var{B}^2 \\\\\\\\ R^2 (\\\\cos^2(\\\\alpha) +\\\\sin^2(\\\\alpha)) &\\\\,= \\\\var{A^2+B^2} \\\\\\\\ R &\\\\,= \\\\sqrt{\\\\var{A^2+B^2}}\\\\\\\\ &\\\\,=\\\\var{Rround} \\\\text{ (2 d.p.)}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "alpharound": {"name": "alpharound", "group": "Ungrouped variables", "definition": "precround(alpha,2)", "description": "", "templateType": "anything", "can_override": false}, "question": {"name": "question", "group": "Ungrouped variables", "definition": "if(Q=1,'{q1}','{q2}')", "description": "", "templateType": "anything", "can_override": false}, "Q": {"name": "Q", "group": "Ungrouped variables", "definition": "random(1,2)", "description": "", "templateType": "anything", "can_override": false}, "sign": {"name": "sign", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "q1": {"name": "q1", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\simplify[unitFactor]{{A}sin(theta)+{sign*B}cos(theta)} = \\\\simplify[unitFactor]{R sin (theta+{sign}*alpha)},\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\simplify[unitFactor]{{A}cos(theta)-{sign*B}sin(theta)} = \\\\simplify[unitFactor]{R cos (theta+{sign}*alpha)},\\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "\"To find $R$ and $\\\\alpha$ we want to first rewrite our equation using the double-angle formula, $\\\\simplify[unitFactor]{sin(a+{sign}*b)=sin(a)cos(b)+{sign}*sin(b)cos(a)}$:
\\n\\\\[ \\\\begin{split}\\\\simplify[unitFactor]{{A}sin(theta)+{sign*B}cos(theta)} &\\\\,= \\\\simplify{R sin(theta+{sign}*alpha)} \\\\\\\\ &\\\\,= \\\\simplify{R(sin(theta)cos(alpha) + {sign}*sin(alpha)cos(theta))} \\\\\\\\ &\\\\,= \\\\simplify{Rsin(theta)cos(alpha) + {sign}*R sin(alpha)cos(theta)}. \\\\end{split} \\\\]
\\nBy comparing the coefficients of $\\\\sin(\\\\theta)$ and $\\\\cos(\\\\theta)$, we find that
\\n\\\\[ R\\\\cos(\\\\alpha) = \\\\var{A},\\\\quad \\\\text{and} \\\\quad R\\\\sin(\\\\alpha) = \\\\var{B}. \\\\]
\\nTo calculate $R$, we want to square these results and add them together, allowing us to make use of $\\\\sin^2(\\\\alpha)+\\\\cos^2(\\\\alpha) = 1$:
\\n{Rsol}
\\nSimilarly, to find $\\\\alpha$ we can divide $R\\\\sin(\\\\alpha) = \\\\var{B}$ by $R\\\\cos(\\\\alpha) = \\\\var{A}$, and use the identity $\\\\tan(\\\\alpha) = \\\\frac{\\\\sin(\\\\alpha)}{\\\\cos(\\\\alpha)}$:
\\n\\\\[ \\\\frac{R\\\\sin(\\\\alpha)}{R\\\\cos(\\\\alpha)} = \\\\frac{\\\\var{B}}{\\\\var{A}} \\\\implies \\\\tan(\\\\alpha) = \\\\simplify[fractionNumbers]{{B/A}}.\\\\]
\\nTherefore, \\\\[ \\\\begin{split} \\\\alpha &\\\\,= \\\\tan^{-1}\\\\left(\\\\simplify[fractionNumbers]{{B/A}}\\\\right) \\\\\\\\ &\\\\,= \\\\var{alpharound} \\\\text{ (2 d.p.)}. \\\\end{split} \\\\]
\\n\"", "description": "", "templateType": "long string", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "\"To find $R$ and $\\\\alpha$ we want to first rewrite our equation using the double-angle formula, $\\\\simplify{cos(a+{sign}*b)=cos(a)cos(b)-{sign}*sin(a)sin(b)}$:
\\n\\\\[ \\\\begin{split}\\\\simplify[unitFactor]{{A}cos(theta)-{sign*B}sin(theta)} &\\\\,= \\\\simplify[unitFactor]{R cos (theta + {sign}*alpha)} \\\\\\\\ &\\\\,= \\\\simplify{R(cos(theta)cos(alpha) - {sign}*sin(theta)sin(alpha))} \\\\\\\\ &\\\\,= \\\\simplify{Rcos(theta)cos(alpha) - {sign}*R sin(theta)sin(alpha)}. \\\\end{split} \\\\]
\\nBy comparing the coefficients of $\\\\cos(\\\\theta)$ and $\\\\sin(\\\\theta)$, we find that
\\n\\\\[ R\\\\cos(\\\\alpha) = \\\\var{A},\\\\quad \\\\text{and} \\\\quad R\\\\sin(\\\\alpha) = \\\\var{B}. \\\\]
\\nTo calculate $R$, we want to square these results and add them together, allowing us to make use of $\\\\sin^2(\\\\alpha)+\\\\cos^2(\\\\alpha) = 1$:
\\n{Rsol}
\\nSimilarly, to find $\\\\alpha$ we can divide $R\\\\sin(\\\\alpha) = \\\\var{B}$ by $R\\\\cos(\\\\alpha) = \\\\var{A}$, and use the identity $\\\\tan(\\\\alpha) = \\\\frac{\\\\sin(\\\\alpha)}{\\\\cos(\\\\alpha)}$:
\\n\\\\[ \\\\frac{R\\\\sin(\\\\alpha)}{R\\\\cos(\\\\alpha)} = \\\\frac{\\\\var{B}}{\\\\var{A}} \\\\implies \\\\tan(\\\\alpha) = \\\\simplify[fractionNumbers]{{B/A}}.\\\\]
\\nTherefore, \\\\[ \\\\begin{split} \\\\alpha &\\\\,= \\\\tan^{-1}\\\\left(\\\\simplify[fractionNumbers]{{B/A}}\\\\right) \\\\\\\\ &\\\\,= \\\\var{alpharound} \\\\text{ (2 d.p.)}. \\\\end{split} \\\\]
\\n\"", "description": "", "templateType": "long string", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "if(Q=1,'{a1}','{a2}')", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Q", "A", "B", "sign", "R", "Rround", "alpha", "alpharound", "Rsol", "Rsol1", "Rsol2", "question", "q1", "q2", "answer", "a1", "a2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$R=$[[0]]
\n$\\alpha=$[[1]]
\n(Give your answers to 2 decimal places where necessary.)
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{Rround}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{alpharound}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "GA09 sec/cosec/cot", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Match the graphs to the functions. No randomisation. Multiple choice.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "This is about knowledge of graphs. Generally with trigonometric graphs it is best to start with making sure you know and understand the graphs of the functionts $\\sin(x)$, $\\cos(x)$ and $\\tan(x)$. From there you can use knowledge of where they are zero to work out the position of the asymptotes in the graphs of $\\sec(x)$, $\\text{cosec}(x)$ and $\\cot(x)$. However, you still need really to be able to recall the shape of each graph for some purposes and be confident about where the zeros and turning points are.
\nUse this link to find some resources to help you familiarise yourself with these graphs.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Match the graph to its function.
", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\sec(x)$", "$\\text{cosec}(x)$", "$\\cot(x)$"], "matrix": [["1", "0", 0], [0, "1", 0], ["0", 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["{geogebra_applet('https://www.geogebra.org/m/h9d8hzna')}", "{geogebra_applet('https://www.geogebra.org/m/kqnrbjzy')}", "{geogebra_applet('https://www.geogebra.org/m/xm44vcwe')}"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "Thank you for completing the Skills Audit for Maths and Stats. Hopefully it has been useful in directing you to resources and services that can support your studies. The Skills Audit for Maths and Stats will remain open to you throughout the academic year and you can always revisit it again later.
\nFor any further information or questions please contact mash@sheffield.ac.uk
", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}], "extensions": ["geogebra"], "custom_part_types": [], "resources": []}