// Numbas version: finer_feedback_settings {"name": "LSCM 2025/26", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], "questions": [{"name": "AC10 Expand single brackets", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Bradley Bush", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1521/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": ["brackets", "expanding brackets", "expansion of brackets", "simplifying algebraic expressions", "simplifying expressions", "taxonomy"], "metadata": {"description": "

This question is made up of 10 exercises to practice the multiplication of brackets by a single term.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Expand the expression below by multiplying each of the terms inside the brackets by the term outside. Give the answer in its simplest form.

", "advice": "

Expand brackets using the general formula $\\displaystyle a(x+c)=ax+ac$. This means we multiply each term inside the brackets by the term outside the brackets.

\n

It is easy to forget that the sign outside the brackets also needs to be involved in the multiplication so remember that when two of the same sign are multiplied, the resultant term is positive and when opposite signs are multiplied, the result is negative.

\n

\\[
\\begin{align}
\\simplify[terms]{{a[7]}x({a[8]}x^2+{a[9]}x)}&=
\\simplify[!collectNumbers]{{a[7]}x{a[8]}x^2+{a[7]}x{a[9]}x}\\\\&=
\\simplify{{a[7]}*{a[8]}x^3+{a[7]}*{a[9]}x^2}\\text{.}
\\end{align}
\\]

\n

Use this link to find resources to help you revise how to expand single brackets

", "rulesets": {"terms": ["all", "!collectNumbers", "!unitFactor", "!noLeadingMinus"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(-10..10 except [-1,0,1] ),50)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{{a[7]}x({a[8]}x^2+{a[9]}x)}=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a[7]*a[8]}x^3+{a[7]*a[9]}x^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n*x^3 + `+-$n*x^2", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC12 Expand Double Brackets", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Poppy Jeffries", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21275/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Expanding two linear brackets multiplied together.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Expand the brackets and simplify

", "advice": "

To expand the brackets $\\simplify{({a[1]}x+{a[2]})({a[3]}x+{a[4]})}$ We first multiply all the terms in the left bracket by all the terms in the right bracket. This gives us

\n

\\[\\var{a[1]}\\times\\var{a[3]}x^2+\\var{a[1]}x\\times\\var{a[4]}+\\var{a[2]}\\times\\var{a[3]}x+\\var{a[2]}\\times\\var{a[4]}=\\var{a[1]*a[3]}x^2+\\var{a[1]*a[4]}x+\\var{a[2]*a[3]}x+\\var{a[2]*a[4]}.\\]

\n

We can then collect the terms to give us the final answer of

\n

\\[\\var{a[1]*a[3]}x^2+\\var{a[1]*a[4]+a[2]*a[3]}x+\\var{a[2]*a[4]}.\\]

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(-10..10 except [0] ),5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{({a[1]}x+{a[2]})({a[3]}x+{a[4]})}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a[1]*a[3]}x^2+{a[1]*a[4]+a[2]*a[3]}x+{a[2]*a[4]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n`?*x^2+`+-$n`?*x+`+-$n`?", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC15 Algebraic substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Substitute values into an algebraic expression and calculate the result.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Evaluate the following expression,

\n

\\[\\simplify{p^{n}+{a}*r*t+{c}},\\]

\n

when $p = \\var{pval}$, $r = \\var{rval}$, and $t = \\var{tval}$.

", "advice": "

In order to evaluate $\\simplify{p^{n}+{a}*r*t+{c}},$ with the given values, $p = \\var{pval}$, $r = \\var{rval}$, and $t = \\var{tval}$, we replace each instance of that letter with its corresponding value and then apply the rules of BIDMAS:

\n

\\[\\var{pval}^\\var{n}+\\var{a}\\times \\var{rval} \\times \\var{tval} + \\var{c}\\]

\n

Which gives the answer $\\var{ans}$.

\n

Follow this link for more help on tackling these kind of questions.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "Random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "pval": {"name": "pval", "group": "Ungrouped variables", "definition": "random(2 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "rval": {"name": "rval", "group": "Ungrouped variables", "definition": "random(-9 .. -2#1)", "description": "", "templateType": "randrange", "can_override": false}, "tval": {"name": "tval", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "{pval}^{n}+{a}*{rval}*{tval}+{c}", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "c", "pval", "rval", "tval", "ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{pval}^{n}+{a}*{rval}*{tval}+{c}", "maxValue": "{pval}^{n}+{a}*{rval}*{tval}+{c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC16 Rearrange Formulae", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Luigi Pivano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18182/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Rearrange a specific formula. No randomisation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Rearrange the following equation, to make $y$ the subject:

\n

\\[{cy -b = 3x}\\] 

", "advice": "

In order to rearrange the equation so that it is in terms of $y$, we must first add $b$ to both sides, and then divide both sides of the equation by $c$:

\n

\\begin{split} cy-b  &= 3x \\\\ cy &= 3x + b \\\\ y &=\\frac{3x+b}{c} \\end{split}

\n

\n

Use this link to find some resources which will help you revise this topic.

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(3x+b)/c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "b", "value": ""}, {"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC20 Multiplication of algebraic fractions 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": ["adding and subtracting fractions", "adding fractions", "converting between decimals and fractions", "converting integers to fractions", "Fractions", "fractions", "integers", "manipulation of fractions", "subtracting fractions", "taxonomy"], "metadata": {"description": "

Manipulate fractions in order to add and subtract them. The difficulty escalates through the inclusion of a whole integer and a decimal, which both need to be converted into a fraction before the addition/subtraction can take place. 

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following multiplication, giving the fraction in its simplest form.

\n

\\[\\frac{\\var{a}}{y^\\var{n2}}\\times\\frac{y^\\var{n1}}{\\var{b}}\\]

", "advice": "

To multiply two fractions you just multiply the numerators and multiply the denominators. This means we have,

\n

\\[\\frac{\\var{a}}{y^\\var{n2}}\\times\\frac{y^\\var{n1}}{\\var{b}}=\\frac{\\var{a}\\times{y^\\var{n1}}}{y^\\var{n2}\\times\\var{b}}=\\frac{\\var{a/gcd_ab}\\times{y^\\var{n1-n2}}}{\\var{b/gcd_ab}}\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..30)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..30)", "description": "", "templateType": "anything", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..4 except n2)", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "gcd_ab": {"name": "gcd_ab", "group": "Ungrouped variables", "definition": "gcd(a,b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n1", "n2", "gcd_ab"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]] [[1]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a/gcd_ab}y^{n1-n2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "$n`? * $v`? ^ $n`?", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "y", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b/gcd_ab}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF01 Sigma Notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Basic calculation from a sum given in Sigma notation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate:

\n

\\[\\displaystyle{\\Sigma_{n=1}^3} \\var{b}n.\\]

\n

", "advice": "

The sigma notation $\\displaystyle\\sum_{n=1}^{3}\\var{b}n$ is asking us to find the sum of the first three terms of the sequence $\\var{b}n$

\n

\\[\\begin{split}\\Sigma_{n=1}^3 \\var{b}n &\\, = (\\var{b}\\times 1) + (\\var{b}\\times 2) + (\\var{b}\\times 3) \\\\ &\\, = \\var{b1} + \\var{b2} + \\var{b3} \\\\ &\\, = \\var{sum}.\\end{split}\\]

\n

Use this link to find resources to help you revise sigma notation.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "b*1", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "b*2", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "b*3", "description": "", "templateType": "anything", "can_override": false}, "sum": {"name": "sum", "group": "Ungrouped variables", "definition": "b1+b2+b3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "b1", "b2", "b3", "sum"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF02 Straight Line Graphs", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Calculating gradient and finding intercept from a geogebra graph.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

{app}
Find the gradient of the line.


", "advice": "

Firstly draw a right angled 'step' from left to right. This triangle can be anywhere, but it is more helpful for it to have corners on the vertices (whole number points) of the graph and it is easier to calculate with postive numbers.

\n

{app_advice}

\n

Before we start to calculate, notice that the line is {uod}, so the gradient will be {pon} and the line is {sos}, so the absolute value of the number will be {mol}.

Now find the coordinates of the places your triangle meets the line

\n

$(x_1,y_1)=(\\var{ax},\\var{ay})$ and $(x_2,y_2)=(\\var{bx},\\var{by})$

\n

We need to compare the 'rise on the y-axis' to the 'run across the x-axis', we can say that:

\n

$\\text{gradient} = \\frac{\\text{rise}}{\\text{run}}$

\n

This is equivalent to using the formula:

$  m = \\frac{y_2 - y_1}{x_2 - x_1} $

\n

and substitute the coordinates of the vertices of the triangle:

$\\begin{split} &\\, m = \\frac{\\var{by} - \\var{ay}}{\\var{bx} - \\var{ax}} \\\\  
&\\, = \\frac{\\var{by-ay}}{\\var{bx-ax}} \\\\ 
&\\,  = \\var[fractionNumbers]{m} \\\\
\\end{split} $

\n

Use this link to find resources to help you revise straight line graphs and how to find the gradient of them.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"app": {"name": "app", "group": "Ungrouped variables", "definition": "geogebra_applet(\n 800,500,\n [\n A: [\n definition: p1,\n label_visible: false,\n visible: false\n ],\n B: [\n definition: p2,\n label_visible: false,\n visible: false \n ],\n line: [\n definition: \"Line(A,B)\",\n label_visible: false\n ]\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "(ay-by)/(ax-bx)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "ay-m*ax", "description": "", "templateType": "anything", "can_override": false}, "P1": {"name": "P1", "group": "Ungrouped variables", "definition": "vector(ax, ay)", "description": "", "templateType": "anything", "can_override": false}, "P2": {"name": "P2", "group": "Ungrouped variables", "definition": "vector(bx,by)", "description": "", "templateType": "anything", "can_override": false}, "uod": {"name": "uod", "group": "Ungrouped variables", "definition": "if(m=0,'horizontal',if(m=abs(m),'going up','going down'))", "description": "

if(m=abs(m),'positive','negative')

", "templateType": "anything", "can_override": false}, "ax": {"name": "ax", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "ay": {"name": "ay", "group": "Ungrouped variables", "definition": "random(0,1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "bx": {"name": "bx", "group": "Ungrouped variables", "definition": "random(ax+1..3) \n", "description": "", "templateType": "anything", "can_override": false}, "by": {"name": "by", "group": "Ungrouped variables", "definition": "random(0..4 except ay)\n", "description": "", "templateType": "anything", "can_override": false}, "app_advice": {"name": "app_advice", "group": "Ungrouped variables", "definition": "geogebra_applet(\n 800,500,\n [\n A: [\n definition: p1,\n label_visible: false,\n visible: true\n ],\n B: [\n definition: p2,\n label_visible: false,\n visible: true \n ],\n \n C: [\n definition: p3,\n label_visible: false,\n visible: false \n ],\n \n line1: [\n definition: \"Line(A,B)\",\n label_visible: false,\n visible: true\n ],\n \n line2: [\n definition: \"Segment(A,C)\",\n label_visible: false,\n visible: true\n ],\n \n \n \n line3: [\n definition: \"Segment(C,B)\",\n label_visible: false,\n visible: true\n ]\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "p3": {"name": "p3", "group": "Ungrouped variables", "definition": "vector(bx,ay)", "description": "", "templateType": "anything", "can_override": false}, "pon": {"name": "pon", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(m=abs(m),'a positive number','a negative number'))", "description": "", "templateType": "anything", "can_override": false}, "sos": {"name": "sos", "group": "Ungrouped variables", "definition": "if(m=0,'horizontal',if(abs(m)<1,'shallow','steep'))", "description": "", "templateType": "anything", "can_override": false}, "mol": {"name": "mol", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(abs(m)<1,'less than 1','greater than or equal to 1'))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "m<>1", "maxRuns": 100}, "ungrouped_variables": ["app", "m", "c", "P1", "P2", "uod", "ax", "ay", "bx", "by", "app_advice", "p3", "pon", "sos", "mol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

It looks like you have incorrectly rounded this answer.  You might want to look at some resources on rounded decimals.  You can also leave your answer in fraction form as
$\\var[fractionNumbers]{m}$

", "useAlternativeFeedback": false, "answer": "{m}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.1", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "answer": "{m}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": "1", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF03 Shapes of quadratics", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Multiple choice - select the quadratic graph.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Which of the following is the graph $y=x^2$.

", "advice": "

Use this link to find some resources to help you familiarise yourself with these graphs.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{geogebra_applet('https://www.geogebra.org/m/tpfzv3w7')}", "{geogebra_applet('https://www.geogebra.org/m/zftpwq64')}", "{geogebra_applet('https://www.geogebra.org/m/we3gngqa')}", "{geogebra_applet('https://www.geogebra.org/m/cadkup6r')}"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF05 Function notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Evaluating a linear function for a given value of $x$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Given $f(x)=\\simplify{{m}x+{c}}$, find $f(\\var{n})$.

", "advice": "

If $f(x)=\\simplify{{m}x+{c}}$, to find $f(\\var{n})$ we need to evaluate $f(x)$ when $x=\\var{n}$:

\n

\\[ \\begin{split} f(\\var{n}) &\\,= \\simplify[alwaysTimes]{{m}({n})+{c}} \\\\ &\\,= \\simplify[!collectNumbers]{{m*n}+{c}} \\\\ &\\,= \\simplify{{m*n+c}}. \\end{split} \\]

\n

Use this link to find resources to help you revise function notation.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except [0,m])", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-9..9 except [0,1])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f(\\var{n})=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m*n+c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS01 Solve linear equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solve linear equations with unkowns on both sides. Including brackets and fractions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

Given $\\simplify{{m}w-{n} = {p}w+{q}}$, we can get all the $w$'s on the left hand side and all the numbers on the right hand side, and then divide both sides by the coefficient of $w$ to get $w$ by itself.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 
$\\simplify{{m}w+{n}}$$=$$\\simplify{{p}w+{q}}$
 
$\\simplify[!cancelTerms,unitFactor]{{m}w-{n}-{p}w}$$=$$\\simplify[!cancelTerms,unitFactor]{{p}w+{q}-{p}w}$
 
$\\simplify{{m-p}w-{n}}$$=$$\\var{q}$
 
$\\var{m-p}w-\\var{n}+\\var{n}$$=$$\\var{q}+\\var{n}$
 
$\\var{m-p}w$$=$$\\var{q+n}$
 
$\\displaystyle{\\frac{\\var{m-p}w}{\\var{m-p}}}$$=$$\\displaystyle{\\frac{\\var{q+n}}{\\var{m-p}}}$
 
$w$$=$$\\displaystyle{\\simplify{{q+n}/{m-p}}} = \\var{precround(ansA,1)} \\text{ to 1 dp}$
\n


Use this link to find resources to help you revise how to solve linear equations

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"p": {"name": "p", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "ansA": {"name": "ansA", "group": "Ungrouped variables", "definition": "(q+n)/(m-p)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["l", "m", "n", "p", "q", "ansA"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve  $\\simplify{({m}w-{n}) = {p}w+{q}}$

\n

$w=$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansA", "maxValue": "ansA", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS02 Solve Linear equations with fractions 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solve linear equations with unkowns on both sides. Including brackets and fractions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

\n

To solve an equation like

\n

$\\displaystyle{\\frac{x+\\var{num1}}{\\var{num2}}+\\frac{x}{\\var{num3}}=\\var{num4}},$

\n

the first thing to deal with is the denominators of the fractions. In order to do that you multiply both sides of the equation by both denominators $\\var{num2}$ and $\\var{num3}$ (or their lowest common multiple to be slightly more efficient). This will give something equivalent to:

\n

$\\displaystyle{\\var{num3 + num2} x+\\var{num3*num1} = \\var{num2*num3*num4}.}$

\n

Then proceeding by subtracting $\\var{num3*num1} from both sides:

\n

$\\displaystyle{\\var{num3 + num2} x = \\var{num2*num3*num4-num3*num1}.}$

\n

And finally dividing by $\\var{num2+num3}$:

\n

$\\displaystyle{x = \\frac{\\var{num2*num3*num4-num3*num1}}{\\var{num2+num3}}.}$

\n


Use this link to find resources to help you revise how to solve linear equations

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"num1": {"name": "num1", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "random(2..15)", "description": "", "templateType": "anything", "can_override": false}, "num3": {"name": "num3", "group": "Ungrouped variables", "definition": "random(2..9 except num2)", "description": "", "templateType": "anything", "can_override": false}, "num4": {"name": "num4", "group": "Ungrouped variables", "definition": "random(-15..15)", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "(num4*num3*num2-num1*num3)/(num2+num3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["num1", "num2", "num3", "num4", "ans"], "variable_groups": [{"name": "e", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve $\\displaystyle{\\frac{x+\\var{num1}}{\\var{num2}}+\\frac{x}{\\var{num3}}=\\var{num4}}$.

\n

$x=$ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ans}", "maxValue": "{ans}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS03 Simultaneous Equations (2 linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["Category: Simultaneous equations"], "metadata": {"description": "

Solving a pair of linear simultaneous equations, giving answers as integers or fractions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve the simultaneous equations for x and y, giving your answers as integers or fractions, but not decimals.

\n

\\[ \\begin{split} \\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y}  &\\,=\\var{c1} \\end{split}\\]

", "advice": "

\\[\\begin{split}\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\qquad\\qquad&(1)\\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y}  &\\,=\\var{c1} \\qquad\\qquad&(2)\\end{split}\\]

\n

{advice1}

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-8..8 except [0,1,a])", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-5..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(2..10 except [round(a1*b/a),b,0,1])", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-7..7 except 0)", "description": "", "templateType": "anything", "can_override": false}, "aorsb": {"name": "aorsb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfb": {"name": "torfb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgn": {"name": "sgn", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),-1,1)", "description": "", "templateType": "anything", "can_override": false}, "xn": {"name": "xn", "group": "Ungrouped variables", "definition": "c*abs(b1)+sgn*c1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xd": {"name": "xd", "group": "Ungrouped variables", "definition": "a*abs(b1)+sgn*a1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xsimp": {"name": "xsimp", "group": "Ungrouped variables", "definition": "xn/xd", "description": "", "templateType": "anything", "can_override": false}, "samex": {"name": "samex", "group": "Ungrouped variables", "definition": "\"

For these equations, it is easiest to get a solution for $y$ first, due to the $x$-terms having {eqoroppa} coefficients.

\\n

If we {aorsa} equation (2) {torfa} equation (1) this eliminates the $x$-terms leaving us with one equation in terms of $y$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1)})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgna*(c1)}}\\\\\\\\ \\\\simplify{{b+sgna*(b1)}y} &\\\\,= \\\\simplify{{c+sgna*(c1)}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a}x + \\\\var{b} \\\\times \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{a}x &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c} - {c*b+b*sgna*(c1)}/{b+sgna*(b1)}} \\\\\\\\ x &\\\\,= \\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "eqoroppb": {"name": "eqoroppb", "group": "Ungrouped variables", "definition": "if(abs(b)*b1=abs(b1)*b,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "eqoroppa": {"name": "eqoroppa", "group": "Ungrouped variables", "definition": "if(abs(a)*a1=abs(a1)*a,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "samey": {"name": "samey", "group": "Ungrouped variables", "definition": "\"

For these equations, it is easiest to get a solution for $x$ first, due to the $y$-terms having {eqoroppb} coefficients.

\\n

If we {aorsb} equation (2) {torfb} equation (1) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1)})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgn*(c1)}}\\\\\\\\ \\\\simplify{{a+sgn*(a1)}x} &\\\\,= \\\\simplify{{c+sgn*(c1)}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a} \\\\times\\\\simplify[fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} + \\\\var{b}y &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c} - {c*a+a*sgn*(c1)}/{a+sgn*(a1)}} \\\\\\\\ y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb": {"name": "lcmb", "group": "Ungrouped variables", "definition": "\"

To get a solution for $x$, if we multiply equation (2) by $\\\\simplify{{abs(b/b1)}}$ we will have two equations with {eqoroppb} $y$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b/b1)}x +{b1*abs(b/b1)}y}  &\\\\,=\\\\var{c1*abs(b/b1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]

\\n

If we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1*abs(b/b1))})x} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgn*(c1*abs(b/b1))}}\\\\\\\\ \\\\simplify{{a+sgn*(a1*abs(b/b1))}x} &\\\\,= \\\\simplify{{c+sgn*(c1*abs(b/b1))}} \\\\\\\\ x &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgn*(c1*abs(b/b1))}/{a+sgn*(a1*abs(b/b1))}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c)+a*sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c+a*sgn*c1*abs(b/b1))/(a+sgn*a1*abs(b/b1))}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb1": {"name": "lcmb1", "group": "Ungrouped variables", "definition": "\"

To get a solution for $x$, if we multiply equation (1) by $\\\\simplify{{abs(b1/b)}}$ we will have two equations with {eqoroppb} $y$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1/b)}x +{b*abs(b1/b)}y}  &\\\\,=\\\\var{c*abs(b1/b)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4)\\\\\\\\ \\\\end{split} \\\\]

\\n

If we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(a*abs(b1/b))}+{sgn*a1})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(b1/b))}+{sgn*c1}}\\\\\\\\ \\\\simplify{{(a*abs(b1/b))+sgn*a1}x} &\\\\,= \\\\simplify{{(c*abs(b1/b))+sgn*c1}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c*abs(b1/b))+a*sgn*c1}/{(a*abs(b1/b))+sgn*a1})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c*abs(b1/b)+a*sgn*c1)/(a*abs(b1/b)+sgn*a1)}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "full": {"name": "full", "group": "Ungrouped variables", "definition": "\"

To get a solution for $x$, if we multiply equation (1) by $\\\\var{abs(b1)}$ and equation (2) by $\\\\var{abs(b)}$, we will have two equations with {eqoroppb} $y$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1)}x+{b*abs(b1)}y} &\\\\,=\\\\var{c*abs(b1)} \\\\qquad\\\\qquad&(3)\\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b)}x +{b1*abs(b)}y}  &\\\\,=\\\\var{c1*abs(b)} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]

\\n

Now, {aorsb} equation (4) {torfb} equation (3) to eliminate the $y$ terms:

\\n

\\\\[ \\\\begin{split} (\\\\simplify[!collectNumbers]{{a*abs(b1)} +{sgn*a1*abs(b)}}) x &\\\\,= \\\\simplify[!collectNumbers]{{c*abs(b1)}+{sgn*c1*abs(b)}} \\\\\\\\  \\\\simplify{{a*abs(b1)+sgn*a1*abs(b)}} x &\\\\,= \\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}} .\\\\end{split} \\\\]

\\n

So the solution for $x$ is \\\\[ x=\\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}/{a*abs(b1)+sgn*a1*abs(b)}}.\\\\]

\\n

To obtain a solution for $y$ we can substitute this value of $x$ into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\simplify[noLeadingminus,fractionNumbers,unitFactor]{{a}  {xsimp} + {b}y} &\\\\,=\\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers,fractionNumbers]{{c}-{a*xsimp}} \\\\\\\\\\\\var{b}y &\\\\,= \\\\simplify[fractionNumbers]{{c-a*xsimp}} \\\\\\\\y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}} \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "aorsa": {"name": "aorsa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfa": {"name": "torfa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgna": {"name": "sgna", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,-1,1)", "description": "", "templateType": "anything", "can_override": false}, "lcma": {"name": "lcma", "group": "Ungrouped variables", "definition": "\"

To get a solution for $y$, if we multiply equation (2) by $\\\\simplify{{abs(a/a1)}}$ we will have two equations with {eqoroppa} $x$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(a/a1)}x +{b1*abs(a/a1)}y}  &\\\\,=\\\\var{c1*abs(a/a1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]

\\n

If we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1*abs(a/a1))})y} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgna*(c1*abs(a/a1))}}\\\\\\\\ \\\\simplify{{b+sgna*(b1*abs(a/a1))}y} &\\\\,= \\\\simplify{{c+sgna*(c1*abs(a/a1))}} \\\\\\\\ y &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgna*(c1*abs(a/a1))}/{b+sgna*(b1*abs(a/a1))}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c)+b*sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c+b*sgna*c1*abs(a/a1))/(b+sgna*b1*abs(a/a1))}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "lcma1": {"name": "lcma1", "group": "Ungrouped variables", "definition": "\"

To get a solution for $y$, if we multiply equation (1) by $\\\\simplify{{abs(a1/a)}}$ we will have two equations with {eqoroppa} $x$-coefficients:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(a1/a)}x +{b*abs(a1/a)}y}  &\\\\,=\\\\var{c*abs(a1/a)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]

\\n

If we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:

\\n

\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(b*abs(a1/a))}+{sgna*b1})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(a1/a))}+{sgna*c1}}\\\\\\\\ \\\\simplify{{(b*abs(a1/a))+sgna*b1}y} &\\\\,= \\\\simplify{{(c*abs(a1/a))+sgna*c1}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(a1/a))+sgna*c1}/{(b*abs(a1/a))+sgna*b1}}. \\\\end{split} \\\\]

\\n

\\n

To obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain

\\n

\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c*abs(a1/a)+sgna*c1}/{(b*abs(a1/a))+sgna*b1})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c*abs(a1/a))+b*sgna*c1}/{(b*abs(a1/a))+sgna*b1})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c*abs(a1/a)+b*sgna*c1)/(b*abs(a1/a)+sgna*b1)}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "advice1": {"name": "advice1", "group": "Ungrouped variables", "definition": "if(abs(b)=abs(b1), {samey},if(abs(a)=abs(a1),{samex},if(lcm(abs(b),abs(b1))=abs(b),{lcmb},if(lcm(abs(b),abs(b1))=abs(b1),{lcmb1},if(lcm(abs(a),abs(a1))=abs(a),{lcma},if(lcm(abs(a),abs(a1))=abs(a1),{lcma1},{full}))))))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(b-b1)>1 and\nabs(a-a1)>1 and\ngcd(a,c)=1 and\ngcd(a1,c1)=1", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "a1", "b1", "c", "c1", "aorsa", "torfa", "aorsb", "torfb", "sgna", "sgn", "xn", "xd", "xsimp", "eqoroppa", "eqoroppb", "advice1", "samey", "samex", "lcmb", "lcmb1", "lcma", "lcma1", "full"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$ [[0]]

\n

$y=$ [[1]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c-a*xsimp)/b}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS04 Simultaneous Equations (one non-linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "

Solving a pair of simultaneous equations of the form $a_1x+y=c_1$ and $a_2x^2+b_2xy=c_2$ by forming a quadratic equation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve the following simultaneous equations:

\n

\\[ \\begin{split} \\simplify{{a1}x+y} &\\,= \\var{c1} \\\\ \\simplify{{a2}x^2+{b2}x*y} &\\,= \\var{c2} \\end{split} \\]

\n

\n

Give your answers to 2 decimal places where necessary.

", "advice": "

To solve a pair of simultaneous equations of this type we want to rearrange the linear equation such that $y$ is the subject, which we can then substitute into the equation with the quadratic $x$-term. This will result in a quadratic equation in terms of $x$ only.

\n

For the equations 

\n

\\[ \\begin{split} \\simplify{{a1}x+y} &\\,= \\var{c1} \\qquad \\qquad &(1) \\\\\\simplify{{a2}x^2+{b2}x*y} &\\,= \\var{c2} \\qquad \\qquad &(2) \\end{split} \\]

\n

we can rearrange equation (1) to make $y$ the subject:

\n

\\[ y = \\simplify{{c1}-{a1}x}. \\qquad\\qquad (3)\\]

\n

Substituting this into equation (2):

\n

\\[ \\begin{split}\\simplify{{a2}x^2+{b2}x({c1}-{a1}x)} &\\,=\\var{c2} \\\\ \\simplify[!cancelTerms,unitFactor]{{a2}x^2+{b2*c1}x-{b2*a1}x^2} &\\,=\\var{c2}. \\end{split} \\]

\n

Collecting similar terms:

\n

\\[ \\simplify{({a2}-{b2*a1})x^2+{b2*c1}x-{c2}} =0. \\qquad\\qquad (4) \\]

\n

Using the quadratic formula, we find two solutions for $x$:

\n

{check}

\n

Therefore, the 2 pairs of solutions for these simultaneous equations are

\n

\\[ (x_1,y_1) = (\\var{x1dp},\\var{y1dp}) \\] and \\[ (x_2,y_2) = (\\var{x2dp},\\var{y2dp}). \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-5..-1)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(0..10)", "description": "", "templateType": "anything", "can_override": false}, "solx1": {"name": "solx1", "group": "Ungrouped variables", "definition": "(-b2*c1-sqrt((b2^2*c1^2)+4(a2-a1*b2)*c2))/(2(a2-b2*a1))", "description": "", "templateType": "anything", "can_override": false}, "solx2": {"name": "solx2", "group": "Ungrouped variables", "definition": "(-b2*c1+sqrt((b2^2*c1^2)+4(a2-a1*b2)*c2))/(2(a2-b2*a1))", "description": "", "templateType": "anything", "can_override": false}, "soly1": {"name": "soly1", "group": "Ungrouped variables", "definition": "c1-a1*solx1", "description": "", "templateType": "anything", "can_override": false}, "soly2": {"name": "soly2", "group": "Ungrouped variables", "definition": "c1-a1*solx2", "description": "", "templateType": "anything", "can_override": false}, "x2dp": {"name": "x2dp", "group": "Ungrouped variables", "definition": "precround(solx2,2)", "description": "", "templateType": "anything", "can_override": false}, "y1dp": {"name": "y1dp", "group": "Ungrouped variables", "definition": "precround(soly1,2)", "description": "", "templateType": "anything", "can_override": false}, "y2dp": {"name": "y2dp", "group": "Ungrouped variables", "definition": "precround(soly2,2)", "description": "", "templateType": "anything", "can_override": false}, "x1dp": {"name": "x1dp", "group": "Ungrouped variables", "definition": "precround(solx1,2)", "description": "", "templateType": "anything", "can_override": false}, "solutions1": {"name": "solutions1", "group": "Ungrouped variables", "definition": "matrix([x1dp,y1dp])", "description": "", "templateType": "anything", "can_override": false}, "solutions2": {"name": "solutions2", "group": "Ungrouped variables", "definition": "matrix([x2dp,y2dp])", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(x1dp=round(x1dp) and x2dp=round(x2dp),'{text}', if(x1dp=round(x1dp),'{text1}',if(x2dp=round(x2dp),'{text2}','{text3}')))", "description": "", "templateType": "anything", "can_override": false}, "text1": {"name": "text1", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\, \\\\text{ (2 d.p.)} \\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\, \\\\text{(2 d.p.)} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "text2": {"name": "text2", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\, \\\\text{ (2 d.p.)}\\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\text{(2 d.p.)} \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "text3": {"name": "text3", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\,  \\\\text{ (2 d.p.)}\\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp} \\\\, \\\\text{(2 d.p.)} \\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\, \\\\text{(2 d.p.)} \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\, \\\\text{(2 d.p.)} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "text": {"name": "text", "group": "Ungrouped variables", "definition": "\"

\\\\[ x_1 = \\\\var{x1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad x_2=\\\\var{x2dp}\\\\]

\\n

To find the corresponding $y$-values, we can plug these solutions for $x$ back into equation (3), which gives:

\\n

\\\\[ y_1 = \\\\var{y1dp} \\\\,  \\\\quad \\\\text{and} \\\\quad y_2=\\\\var{y2dp} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}}, "variablesTest": {"condition": "(a2-a1*b2)>0 and (b2^2*c1^2+4(a2-a1*b2)*c2)>0 and gcd(a2,b2)=1", "maxRuns": 100}, "ungrouped_variables": ["a1", "c1", "a2", "b2", "c2", "solx1", "solx2", "soly1", "soly2", "x1dp", "y1dp", "x2dp", "y2dp", "solutions1", "solutions2", "check", "text", "text1", "text2", "text3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$(x_1,y_1)=$[[0]]

\n

$(x_2,y_2)=$[[1]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "correctAnswer": "solutions2", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "correctAnswer": "solutions1", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "correctAnswer": "solutions1", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "correctAnswer": "solutions2", "correctAnswerFractions": false, "numRows": 1, "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS05 Solve Linear equations with fractions 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Solve linear equations with unkowns on both sides. Including brackets and fractions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

To solve an equation like

\n

$\\displaystyle{\\frac{\\var{a}}{y}=\\frac{\\var{b}}{y+\\var{c}}},$

\n

the first thing to deal with is that the unknown ($y$) that you are trying to find is in the denominator (on the bottom) of the fractions. In order to do that you first times by $y$ on both sides and $(y+\\var{c})$ on both sides leading to

\n

\\[\\var{a}(y+\\var{c}) = \\var{b}y.\\]

\n

From here, multiply out the brackets,

\n

\\[\\var{a}y +\\var{a*c} = \\var{b}y.\\]

\n

 Now collect the $y$-terms on one side and the numbers on the other,

\n

\\[\\var{a-b}y=\\var{-a*c}.\\]

\n

Finally divide by the coefficient of $y$,

\n

\\[y=\\frac{\\var{-a*c}}{\\var{a-b}}.\\]

\n

\n

Use this link to find resources to help you revise how to solve linear equations

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "(-a*c)/(a-b)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a<>b AND GCD(-a*c,a-b)<(a-b)", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "ans1"], "variable_groups": [{"name": "e", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve $\\displaystyle{\\frac{\\var{a}}{y}=\\frac{\\var{b}}{y+\\var{c}}}$.

\n

$y=$ [[0]] (Give your answer as a fraction)

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "fraction", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans1", "maxValue": "ans1", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "LM01 Matrices dimensions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The following questions are designed to explore the dimensions of matrices and what you can and can't do with matrices of differing dimensions.

", "advice": "

Rows and Columns

\n

The convention in Matrix notation is to give the dimensions of a matrix in the order \"rows\" by \"columns\".

\n

For $\\var{Dimensions}$ there are $\\var{rows[0]}$ rows and $\\var{columns[0]}$ columns. We write this as \"this is a $\\var{rows[0]}$X$\\var{columns[0]}$ matrix\".

\n

When can you add and subtract matrices?

\n

Two Matrices can be added or subtracted if they have the exact same dimensions as each other. For example $\\var{canadd1}$ and $\\var{canadd2}$ are both $\\var{rows[1]}$X$\\var{columns[1]}$ matrices and therefore can be added (or subtracted). However, $\\var{cantaddsub1}$ is a $\\var{rows[3]}$X$\\var{columns[3]}$ matrix and $\\var{cantaddsub2}$ is a $\\var{rows[3]}$X$\\var{columns[3]+1}$ matrix. Since these dimensions are different these matrices cannot be added or subtracted.

\n

Multiplying Dimensions

\n

When you multiply two matrices together the number of columns in the first matrix must match the number of rows in the second matrix. For example in the calculation $\\var{Mult3}$X$\\var{Mult4}$ the first matrix has $3$ columns and the second matrix has $3$ rows so they can be multiplied. In addition to this when multiplying two matrices (that can be multiplied) the result will be a single matrix that has the number of rows of the first matrix and the number of columns of the second matrix. In this example the first matrix has $\\var{rows[0]}$ rows and the second matrix has $\\var{columns[1]}$ columns, so the result of multiplying the two matrices will be a $\\var{rows[0]}$X$\\var{columns[1]}$ matrix.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"rows": {"name": "rows", "group": "Ungrouped variables", "definition": "repeat(random(1..4),6)", "description": "", "templateType": "anything", "can_override": false}, "columns": {"name": "columns", "group": "Ungrouped variables", "definition": "repeat(random(1..4),6)", "description": "", "templateType": "anything", "can_override": false}, "dimensions": {"name": "dimensions", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[0]),rows[0]))", "description": "", "templateType": "anything", "can_override": false}, "canadd1": {"name": "canadd1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),rows[1]))", "description": "", "templateType": "anything", "can_override": false}, "canadd2": {"name": "canadd2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),rows[1]))", "description": "", "templateType": "anything", "can_override": false}, "cansub1": {"name": "cansub1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[2]),rows[2]))", "description": "", "templateType": "anything", "can_override": false}, "cansub2": {"name": "cansub2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[2]),rows[2]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub1": {"name": "cantaddsub1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[3]),rows[3]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub2": {"name": "cantaddsub2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[3]+1),rows[3]))", "description": "", "templateType": "anything", "can_override": false}, "cantaddsub3": {"name": "cantaddsub3", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),rows[3]),columns[3]))", "description": "", "templateType": "anything", "can_override": false}, "Mult1": {"name": "Mult1", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[4]),rows[4]))", "description": "", "templateType": "anything", "can_override": false}, "Mult2": {"name": "Mult2", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[5]),rows[5]))", "description": "", "templateType": "anything", "can_override": false}, "correctanswertomult": {"name": "correctanswertomult", "group": "Ungrouped variables", "definition": "IF(columns[4]=rows[5],\"yes\",\"no\")", "description": "", "templateType": "anything", "can_override": false}, "incorrectanswertomult": {"name": "incorrectanswertomult", "group": "Ungrouped variables", "definition": "IF(columns[4]=rows[5],\"no\",\"yes\")", "description": "", "templateType": "anything", "can_override": false}, "Mult3": {"name": "Mult3", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),3),rows[0]))", "description": "", "templateType": "anything", "can_override": false}, "Mult4": {"name": "Mult4", "group": "Ungrouped variables", "definition": "matrix(repeat(repeat(random(-9..9),columns[1]),3))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "(rows[0]>1 OR columns[0]>1) AND (rows[3]<>columns[3])", "maxRuns": 100}, "ungrouped_variables": ["rows", "columns", "dimensions", "canadd1", "canadd2", "cansub1", "cansub2", "cantaddsub1", "cantaddsub2", "cantaddsub3", "Mult1", "Mult2", "correctanswertomult", "incorrectanswertomult", "Mult3", "Mult4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Rows and Columns", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What are the dimensions of the following matrix?

\n

$\\var{dimensions}$

\n

[[0]]X[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Rows", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{rows[0]}", "maxValue": "{rows[0]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Columns", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{columns[0]}", "maxValue": "{columns[0]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "m_n_2", "useCustomName": true, "customName": "When can you add and subtract matrices?", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following calculations are defined?

\n

(Indicate ALL possible answers by ticking the corresponding box(es))

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "0", "minAnswers": 0, "maxAnswers": "2", "warningType": "warn", "showCellAnswerState": true, "markingMethod": "score per matched cell", "choices": ["$\\var{canadd1}+\\var{canadd2}\\\\$", "$\\var{cansub1}-\\var{cansub2}\\\\$", "$\\var{cantaddsub1}-\\var{cantaddsub2}\\\\$", "$\\var{cantaddsub1}+\\var{cantaddsub3}\\\\$"], "matrix": ["1", "1", "0", "0"], "distractors": ["", "", "", ""]}, {"type": "gapfill", "useCustomName": true, "customName": "When can you multiply two matrices?", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Is this calculation defined?

\n

$\\var{Mult1}$X$\\var{Mult2}$

\n

[[0]]

", "gaps": [{"type": "1_n_2", "useCustomName": true, "customName": "Yesno", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["{correctanswertomult}", "{incorrectanswertomult}"], "matrix": ["1", 0], "distractors": ["", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Dimensions of multiplication answer", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What will be the dimensions of the matrix you get when you multiply these two matrices?

\n

$\\var{Mult3}$X$\\var{Mult4}$.

\n

\n

[[0]]X[[1]]

\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Rows", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "rows[0]", "maxValue": "rows[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Cols", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "columns[1]", "maxValue": "columns[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA03 Dosage Calculation 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Division resulting in decimals in the context of a dose per hour.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

You are required to give an infusion of a drug of {d}ml over {t}hours, what is the rate per hour?

\n

(answer to 1 decimal place)

", "advice": "\n\n\n\n\n\n
\n
\n

If there is {d}ml in {t} hours, then {d} should be divided by {t} to get {answert}ml per hour.

\n

\n

Make use of the following resource(s) to revise if necessary:

\n

Use this link to find some resources which will help you revise this topic

\n

If you were unsure how to round your answer then look at the following resource(s):

\n

Use this link to find some resources which will help you revise this topic

\n
\n
\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(250 .. 1000#50)", "description": "", "templateType": "randrange", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(4 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "answert": {"name": "answert", "group": "Ungrouped variables", "definition": "dpformat(answer,1)", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "d/t", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["d", "t", "answert", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]] ml per hour

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "d/t", "maxValue": "d/t", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "0", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA09 BIDMAS without a division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following expression:

", "advice": "

BIDMAS stands for:

\n

Brackets

\n

Indices

\n

Division

\n

Multiplication

\n

Addition

\n

Subtraction

\n

\n

And is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing teh same sum gets the same answer. In this case the first thing that is in the question is Multiplication.

\n

First work through the expression from left to right, evaluating any multiplication as you come to them. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus:

\n

\\[\\var{a}-\\var{b} \\times \\var{c}\\]

\n

\\[=\\var{a}-\\var{b*c}\\]

\n

\\[=\\var{a-b*c}\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..8 except [a,b])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..11 except a)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate

\n

$\\var{a}-\\var{b} \\times\\var{c}$

", "minValue": "{a-b*c}", "maxValue": "{a-b*c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA12 Negatives (add/subtract) 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations with negative numbers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate $\\var{x}+(\\var{y})$.

", "advice": "

When you add a negative number that is the same as subtracting the number so

\n

\\[\\var{x}+(\\var{y})=\\var{x}-\\var{-y}=\\var{x+y}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-50..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x}+{y}", "maxValue": "{x}+{y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA13 Negatives (add/subtract) 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations with negative numbers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate $\\var{x}-(\\var{y})$.

", "advice": "

When you subtract a negative number that is the same as adding the number so

\n

\\[\\var{x}-(\\var{y})=\\var{x}+\\var{-y}=\\var{x-y}\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-50..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x}-{y}", "maxValue": "{x}-{y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA14 Multiplying Negatives 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations with negative numbers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate $\\var{x}\\times(\\var{y})$.

", "advice": "

When you multiply by a negative number that is the same as doing the multiplication as if the numbers were positive and then making the result negative. This means we have

\n

\\[\\var{x}\\times(\\var{y})=-(\\var{x}\\times\\var{-y})=\\var{x*y}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x*y}", "maxValue": "{x*y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA15 Multiplying Negatives 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations with negative numbers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate $(\\var{x})\\times(\\var{y})$.

", "advice": "

Multiplying two negative numbers gives a positive so we just calculate the multiplication as if both numbers were positive. This means we have

\n

\\[(\\var{x})\\times(\\var{y})=\\var{-x}\\times\\var{-y}=\\var{x*y}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x*y}", "maxValue": "{x*y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA16 Dividing Negatives", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculations with negative numbers.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Calculate $(\\var{x})\\div(\\var{y})$.

", "advice": "

When we divide two numbers the rule is,

\n\n

In this calculation we have

\n

\\[(\\var{x})\\div(\\var{y})=\\var{x/y}.\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(-10..10)*y", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x/y}", "maxValue": "{x/y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF01 Rounding DP", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "

Round numbers to a given number of decimal places.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

We can approximate numbers by rounding.

\n

Round $\\var{c1}$ to a given number of decimal places.

", "advice": "

The first thing to do when we are rounding numbers is to identify the last digit we are keeping.

\n

When you're asked to round your answer to a number of decimal places, you need to decide whether to keep the last digit the same (rounding down) or increase it by 1 (rounding up). If the following digit is less than 5 we round down and we round up when the next digit is 5 or more.

\n

To write it down in steps:

\n
    \n
      \n
        \n
          \n
        1. Identify the last digit we need to keep.
        2. \n
        3. Look at the following digit.
        4. \n
        5. If it's 5 or more, increase the previous digit by one.
        6. \n
        7. If it's 4 or less, keep the previous digit the same.
        8. \n
        9. Fill any spaces to the right of the digit with zeros if needed.
        10. \n
        \n
      \n
    \n
\n

It is important to keep in mind that if the digit we are increasing is 9, it becomes zero and we increase the previous digit instead. If this digit is 9 as well, we move along to the left side until we find a digit less than 9.

\n
\n

To round a number to a given number $n$ of decimal places, we look at the $n$th digit after the decimal point.

\n

We have $\\var{c1}$.

\n

i)

\n

We look at the first digit after the decimal point. This is $\\var{cdig[4]}$ and the following digit is $\\var{cdig[3]}$ so we round updown to get $\\var{precround(c1, 1)}$.

\n

ii)

\n

The second digit after the decimal point is $\\var{cdig[3]}$. It is followed by $\\var{cdig[2]}$ so we round updown to get $\\var{precround(c1, 2)}$.

\n

iii)

\n

The 3rd decimal place is $\\var{cdig[2]}$, followed by $\\var{cdig[1]}$. We get $\\var{precround(c1, 3)}$. The 4th decimal place is $\\var{cdig[1]}$, followed by $\\var{cdig[0]}$. We get $\\var{precround(c1, 4)}$.

\n

Use this link to find some resources which will help you revise this topic

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "n_from_digits(cdig)*10^(-5) + random(1..5)", "description": "

Random number with 5 decimal places.

", "templateType": "anything", "can_override": false}, "cdig": {"name": "cdig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 5)", "description": "", "templateType": "anything", "can_override": false}, "dp": {"name": "dp", "group": "Ungrouped variables", "definition": "random(3..4)", "description": "

Number of decimal places to round.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["dp", "cdig", "c1"], "variable_groups": [], "functions": {"n_from_digits": {"parameters": [["digits", "list"]], "type": "number", "language": "jme", "definition": "if(\n len(digits)=0,\n 0,\n digits[0]+10*n_from_digits(digits[1..len(digits)])\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

i)   $\\var{c1}$ rounded to 1 decimal place is:  [[0]]

\n

ii)   $\\var{c1}$ rounded to 2 decimal places is:  [[1]]

\n

iii)   $\\var{c1}$ rounded to {dp} decimal places is:  [[2]]

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, 1)", "maxValue": "precround(c1, 1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, 2)", "maxValue": "precround(c1, 2)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, dp)", "maxValue": "precround(c1, dp)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF05 Percentage decrease", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": ["decrease", "discount", "percentages", "taxonomy"], "metadata": {"description": "

Given a student discount, calculate a discounted price.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

{pname} is buying a new {item}. The price of the model he picked is £{price}. On a website with discounts for students, he found a voucher for a discount of {percentage}%.

", "advice": "

There are multiple methods to approach this problem. The first method involves working out the discounted price as a percentage of the original, while the second method calculates the value of the discount and subtracts that from the listed price.

\n

Method 1

\n

There is a {percentage}% decrease in price. This means that the new price will be {100-percentage}% of the old price.

\n

\\[\\begin{align} \\frac{\\var{100-percentage}}{100} \\times \\var{price} &= \\var{dpformat((100-percentage)/100*price,4)} \\\\&= \\var{dpformat((100-percentage)/100*price, 2)}\\text{.} \\end{align}\\]

\n

Or, using the multiplier method,

\n

\\[\\begin{align} \\var{(100-percentage)/100} \\times \\var{price} &= \\var{dpformat((100-percentage)/100*price,4)}\\\\&= \\var{dpformat((100-percentage)/100*price, 2)}\\text{.} \\end{align}\\]

\n

When we are talking about money, it is usually assumed that we will round the answer to 2 decimal places.

\n

Method 2

\n

We find the discount first. This is

\n

\\[\\frac{\\var{percentage}}{100} \\times \\var{price} = \\var{dpformat((percentage)/100*price,4)}\\text{.}\\]

\n

Or using a decimal multiplier,

\n

\\[\\var{(percentage)/100} \\times \\var{price} = \\var{dpformat((percentage)/100*price,4)}\\text{.}\\]

\n

Then we subtract the discount from the original price to get the new price:

\n

\\[ \\var{price} - \\var{dpformat(discount,2)} = \\var{dpformat(price - discount, 2)}\\text{.} \\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"discount": {"name": "discount", "group": "Ungrouped variables", "definition": "percentage*price/100", "description": "", "templateType": "anything", "can_override": false}, "pname": {"name": "pname", "group": "Ungrouped variables", "definition": "random(\"Adair\",\"Aya\",\"Bergen\",\"Dua\",\"Fadhili\",\"Harper\",\"Kaden\",\"Ola\",\"Pat\",\"Skylar\",\"Wren\",\"Zendaya\")", "description": "

Names.

", "templateType": "anything", "can_override": false}, "discountrounded": {"name": "discountrounded", "group": "Ungrouped variables", "definition": "precround(discount,2)", "description": "", "templateType": "anything", "can_override": false}, "price": {"name": "price", "group": "Ungrouped variables", "definition": "switch(\n item = \"TV\", random(170.99..1199.99), \n item = \"laptop\", random(200.99..799.99),\n item = \"smartphone\", random(100.99..799.99),\n item = \"PC\", random(200.99..969.99),\n item = \"gaming console\", random(80.99..349.99),\n random(110.99..649.99))\n", "description": "

Price of an item.

", "templateType": "anything", "can_override": false}, "item": {"name": "item", "group": "Ungrouped variables", "definition": "random(\"TV\", \"laptop\", \"smartphone\", \"PC\", \"gaming console\", \"fridge\")", "description": "

The bought item.

", "templateType": "anything", "can_override": false}, "percentage": {"name": "percentage", "group": "Ungrouped variables", "definition": "random(5..40 #5)", "description": "

Discount percentage.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "1000"}, "ungrouped_variables": ["item", "pname", "price", "percentage", "discount", "discountrounded"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What will the discounted price of the {item} be?

\n

Round your answer to the nearest penny.

\n

£ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "(100-percentage)/100*price", "maxValue": "(100-percentage)/100*price", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "0", "precisionMessage": "

Your answer does not make sense in real life, we cannot divide a penny any further. Shops always round their prices for items. That is why you should have rounded your answer to $\\var{precround((100-percentage)/100*price, 2)}$.

", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF06 Percentage increase", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Calculate the percentage increase (as a percentage) given a number and the size of the increase.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

What is the percentage increase in a class of {total} if {additional} more are added to it?

\n

Give your answer to 2 decimal places.

", "advice": "

To calculate a percentage increase you need to find how much the increase is as a percentage of the original number. In this question the increase is {additional} and the original number is {total} so the percentage is

\n

\\[ \\frac{\\var{additional}}{\\var{total}}\\times100\\%=\\var{dpformat(additional/total,4)}\\times 100\\%=\\var{dpformat(percentage,2)}\\%\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"total": {"name": "total", "group": "Ungrouped variables", "definition": "random(15..60)", "description": "", "templateType": "anything", "can_override": false}, "additional": {"name": "additional", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "percentage": {"name": "percentage", "group": "Ungrouped variables", "definition": "additional/total*100", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["total", "additional", "percentage"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]%

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "percentage", "maxValue": "percentage", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF11 One number as a percentage of another", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Adelle Colbourn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2083/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "

Given the number of international students enrolled on a course of $n$ students, calculate the percentage of 'home' students.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
\n
\n
\n
\n

{num_students} of the {class_size} students enrolled on a course are international students.  What percentage are 'home' students?

", "advice": "

First work out the number of students who are not international. In this case it is {class_size} - {num_students} = {class_size-num_students} students.

\n

Then write this as a fraction out of {class_size}.   $ \\frac{\\var{class_size-num_students}} {\\var{class_size}} $

\n

Then convert this to a percentage. You should put this fraction into your calculator and then multiply by 100:

\n

 $ \\frac{\\var{class_size-num_students}} {\\var{class_size}} \\times 100 = \\var{(class_size-num_students)/class_size*100}\\%$

\n

Use this link to find resources to help you revise how to calculate percentages.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"num_students": {"name": "num_students", "group": "Ungrouped variables", "definition": "per*class_size/100\n", "description": "

The number of students in the class who do speak a language other than English. 

", "templateType": "anything", "can_override": false}, "class_size": {"name": "class_size", "group": "Ungrouped variables", "definition": "random(80..300)", "description": "", "templateType": "anything", "can_override": false}, "per": {"name": "per", "group": "Ungrouped variables", "definition": "random(5..90 except 50)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "num_students = precround(num_students,0) AND (num_students<>class_size/2 AND class_size<>100)", "maxRuns": 100}, "ungrouped_variables": ["num_students", "class_size", "per"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
\n

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\var{class_size-num_students}\\%$", "$\\var{num_students*100/class_size}\\%$", "$\\var{num_students}\\%$", "$\\var{(class_size-num_students)/class_size*100}\\%$"], "matrix": [0, 0, 0, "1"], "distractors": ["Have you converted this to a percentage? Click on Reveal Answer and scroll down for Advice regarding this question.", "How many students do NOT speak a language other than English at home? Click on Reveal Answer and scroll down for Advice regarding this question.", "How many students do NOT speak a language other than English at home? Then convert this to a percentage. Click on Reveal Answer and scroll down for Advice regarding this question.", "Well done!"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF19 Ordering fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Put fractions in size order.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Which of these two fractions is the largest?

", "advice": "

To find which is bigger of $\\frac{\\var{top1}}{\\var{bot1}}$ and $\\frac{\\var{top2}}{\\var{bot2}}$ we need them to have the same denominator. A way to do this is to multiply the top and bottom of $\\frac{\\var{top1}}{\\var{bot1}}$ by $\\var{bot2}$ and multiply the top and bottom of $\\frac{\\var{top2}}{\\var{bot2}}$ by {bot1}. This doesn't change the the value of the fractions as this is just like multiplying by one.

\n

\\[\\frac{\\var{top1}}{\\var{bot1}}=\\frac{\\var{top1*bot2}}{\\var{bot1*bot2}},\\quad \\frac{\\var{top2}}{\\var{bot2}}=\\frac{\\var{top2*bot1}}{\\var{bot1*bot2}}\\]

\n

Now we can easily see which is bigger by comparing the numerator.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"top1": {"name": "top1", "group": "Ungrouped variables", "definition": "random(1..(bot1-1))", "description": "", "templateType": "anything", "can_override": false}, "top2": {"name": "top2", "group": "Ungrouped variables", "definition": "random(1..(bot2-1))", "description": "", "templateType": "anything", "can_override": false}, "bot1": {"name": "bot1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "bot2": {"name": "bot2", "group": "Ungrouped variables", "definition": "random(1..10 except bot1)", "description": "", "templateType": "anything", "can_override": false}, "frac1": {"name": "frac1", "group": "Ungrouped variables", "definition": "top1/bot1", "description": "", "templateType": "anything", "can_override": false}, "frac2": {"name": "frac2", "group": "Ungrouped variables", "definition": "top2/bot2", "description": "", "templateType": "anything", "can_override": false}, "Is1Bigger": {"name": "Is1Bigger", "group": "Ungrouped variables", "definition": "award(1,frac1>frac2)", "description": "", "templateType": "anything", "can_override": false}, "Is2Bigger": {"name": "Is2Bigger", "group": "Ungrouped variables", "definition": "award(1,frac2>frac1)", "description": "", "templateType": "anything", "can_override": false}, "Question": {"name": "Question", "group": "Ungrouped variables", "definition": "[string(top1)+\"/\"+string(bot1),string(top2)+\"/\"+string(bot2)]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(frac1-frac2)>0", "maxRuns": "250"}, "ungrouped_variables": ["top1", "top2", "bot1", "bot2", "frac1", "frac2", "Is1Bigger", "Is2Bigger", "Question"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": "Question", "matrix": "[Is1Bigger,Is2Bigger]"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF20 FDP convert 1 - Percentage into fraction", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Convert a percentage to a fraction.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Convert $\\var{perc}$% into its equivalent fraction expressed in its simplest form.

", "advice": "

Percentages can be converted to fractions by treating them as fractions out of $100$:

\n

\\[\\frac{\\var{perc}}{100},\\]

\n

and then simplifying. In this case giving:

\n

\\[\\frac{\\var{ansn}}{\\var{ansd}}\\]

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"perc": {"name": "perc", "group": "Ungrouped variables", "definition": "random(20 .. 90#10)", "description": "", "templateType": "randrange", "can_override": false}, "ansn": {"name": "ansn", "group": "Ungrouped variables", "definition": "perc/GCD(perc,100)", "description": "", "templateType": "anything", "can_override": false}, "ansd": {"name": "ansd", "group": "Ungrouped variables", "definition": "100/GCD(perc,100)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["perc", "ansn", "ansd"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]] numerator

\n
\n

[[1]] denominator

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Numerator", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansn", "maxValue": "ansn", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Denominator", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansd", "maxValue": "ansd", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF21 FDP convert 2 - Decimal into fraction", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Convert a decimal to a fraction.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express $\\var{dec}$ as a fraction in simplest form. 

", "advice": "

{advice}

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"dec": {"name": "dec", "group": "Ungrouped variables", "definition": "random(0.1 .. 0.9#0.1)", "description": "", "templateType": "randrange", "can_override": false}, "ansn": {"name": "ansn", "group": "Ungrouped variables", "definition": "10*dec/GCD(10*dec,10)", "description": "", "templateType": "anything", "can_override": false}, "ansd": {"name": "ansd", "group": "Ungrouped variables", "definition": "10/GCD(10*dec,10)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(GCD(10*dec,10)=1,adviceno,adviceyes)", "description": "", "templateType": "anything", "can_override": false}, "adviceno": {"name": "adviceno", "group": "Ungrouped variables", "definition": "\"

Decimals can be converted to fractions using place value. This decimal only has 1 decimal place and therefore finishes in the \\\"tenths\\\" column. Hence, we can write it as: 

\\n

\\\\[\\\\frac{\\\\var{dec*10}}{10},\\\\]

\\n

and then simplifying (if necessary). In this case no simplification is needed.

\"", "description": "", "templateType": "long string", "can_override": false}, "adviceyes": {"name": "adviceyes", "group": "Ungrouped variables", "definition": "\"

Decimals can be converted to fractions using place value. This decimal only has 1 decimal place and therefore finishes in the \\\"tenths\\\" column. Hence, we can write it as: 

\\n

\\\\[\\\\frac{\\\\var{dec*10}}{10},\\\\]

\\n

and then simplifying (if necessary). In this case giving:

\\n

\\\\[\\\\frac{\\\\var{ansn}}{\\\\var{ansd}}\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec", "ansn", "ansd", "advice", "adviceno", "adviceyes"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]] Numerator

\n

--------------

\n

[[1]] Denominator

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "Numerator", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansn", "maxValue": "ansn", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Denominator", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansd", "maxValue": "ansd", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF22 FDP convert 3 - Fraction into decimal", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Convert a fraction into a decimal.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Write $\\frac{\\var{x}}{\\var{y}}$ as a decimal. Round your answer to 3 decimal places.

", "advice": "

You can calculate the decimals by hand using long division of $\\var{x}.000$ divided by $\\var{y}$.

\n

In some cases you may be able to simplify the fraction to something that you know the decimal for.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..(y-1))", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x/y", "maxValue": "x/y", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF24 Dividing amounts in ratios", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Dividing amounts in ratios

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

The ratio of ethanol to water is {a}:{b} for an experiment. If I have {volWater}ml of water, how much ethanol do I need?

", "advice": "

If there is a ratio of {a}:{b} for ethanol:water then that means for every {b}ml of water we need {a}ml of ethanol.

\n

In our experiment there is {volwater}ml of water so to find the amount of ethanol we divide by {b} and then multiply by {a}.

\n

\\[\\var{volwater}\\text{ml}\\times\\frac{\\var{a}}{\\var{b}}=\\var{volwater*a/b}\\text{ml}\\]

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..12 except a)", "description": "", "templateType": "anything", "can_override": false}, "volwater": {"name": "volwater", "group": "Ungrouped variables", "definition": "UsedforVol-mod(UsedforVol,b)", "description": "", "templateType": "anything", "can_override": false}, "UsedforVol": {"name": "UsedforVol", "group": "Ungrouped variables", "definition": "random(70..1000)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "volwater", "UsedforVol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]ml

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "volwater/b*a", "maxValue": "volwater/b*a", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NS01 standard form (large)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["converting", "scientific notation", "standard form"], "metadata": {"description": "

Convert numbers greater than 1 into standard form/scientific notation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Write the following numbers in scientific notation.

", "advice": "

Suppose we have the number $\\var{q2}$. In scientific notation, this number would start with $\\var{dec2}$ since we only want one digit in front of the decimal point. The decimal point is currently to the right of the last digit in $\\var{q2}$ and needs to be between the first and second digits, i.e $\\var{dec2}$. Count the places that the digits must move and you get $\\var{pow2}$ places. That is,

\n

\n

\\[\\var{q2}=\\var{dec2}\\times 10^{\\var{pow2}}\\]

\n

\n

We have a positive $\\var{pow2}$ as the power because we need to make the number $\\var{dec2}$ bigger to get to $\\var{q2}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"pow2": {"name": "pow2", "group": "Ungrouped variables", "definition": "random(4..8)", "description": "", "templateType": "anything", "can_override": false}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "precround(dec2*10^pow2,0)", "description": "", "templateType": "anything", "can_override": false}, "dec2": {"name": "dec2", "group": "Ungrouped variables", "definition": "random(1.1..9.9#0.001)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec2", "pow2", "q2"], "variable_groups": [], "functions": {"spacenumber": {"parameters": [["n", "number"]], "type": "string", "language": "javascript", "definition": "var parts=n.toString().split(\".\");\n if(parts[1] && parts[1].length<2) {\n parts[1]+='0';\n }\n return parts[0].replace(/\\B(?=(\\d{3})+(?!\\d))/g, \" \") + (parts[1] ? \", \" + parts[1] : \"\");"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{q2} =$ [[0]]$\\times 10$ [[1]] 

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{dec2}", "maxValue": "{dec2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{pow2}", "maxValue": "{pow2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NS02 standard form (small)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": ["converting", "scientific notation", "standard form"], "metadata": {"description": "

Convert numbers between 0 and 1 intro standard form/scientific notation.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Write the following numbers in scientific notation.

", "advice": "

Suppose we have the number $\\var{q2}$. In scientific notation, this number would start with $\\var{dec2}$ since we only want one digit in front of the decimal point.  Count the places that the digits must move and you get $\\var{-pow2}$ places to the right. That is,

\n

\\[\\var{q2}=\\var{dec2}\\times 10^{\\var{pow2}}\\]

\n

\n

We have a negative $\\var{-pow2}$ as the power because we need to make the number $\\var{dec2}$ smaller to get to $\\var{q2}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"pow2": {"name": "pow2", "group": "Ungrouped variables", "definition": "random(list(-6..-1))", "description": "", "templateType": "anything", "can_override": false}, "dec2": {"name": "dec2", "group": "Ungrouped variables", "definition": "random(1.1..9.9#0.001)", "description": "", "templateType": "anything", "can_override": false}, "q2": {"name": "q2", "group": "Ungrouped variables", "definition": "precround(dec2*10^pow2,adjpow)", "description": "", "templateType": "anything", "can_override": false}, "adjpow": {"name": "adjpow", "group": "Ungrouped variables", "definition": "If(round(mod(dec2*1000,10))<>0,3-pow2,If(round(mod(dec2*1000,100))<>0,2-pow2,If(round(mod(dec2*1000,1000))<>0,1-pow2,0-pow2)))", "description": "", "templateType": "anything", "can_override": false}, "test": {"name": "test", "group": "Ungrouped variables", "definition": "mod(1000*dec2,10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec2", "pow2", "q2", "adjpow", "test"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{q2}$ = [[0]]$\\times 10$ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{dec2}", "maxValue": "{dec2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{pow2}", "maxValue": "{pow2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU01 Convert Currency", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Exchange rates.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

On a particular day, 1 Pound Sterling (£) is equivalent to {exchanget} United States Dollars (\\$). If you have \\$ {amount}, what does this equate to in Pound Sterling? 

", "advice": "

To convert Dollars (\\$) into Pounds (£) you will need to caculate:

\n

\\begin{align}
\\frac{\\var{amount}}{\\var{exchange}} &= \\var{answer}\\\\
&= \\var{answert},
\\end{align}

\n

ensuring to round off to the nearest penny.

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"exchange": {"name": "exchange", "group": "Ungrouped variables", "definition": "random(0.9 .. 1.2#0.01)", "description": "

Pound to dollar exchange rate.

", "templateType": "randrange", "can_override": false}, "amount": {"name": "amount", "group": "Ungrouped variables", "definition": "random(100 .. 1000#5)", "description": "

Amount of dollars.

", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "amount/exchange", "description": "", "templateType": "anything", "can_override": false}, "answert": {"name": "answert", "group": "Ungrouped variables", "definition": "currency(answer,\"\u00a3\",\"p\")", "description": "", "templateType": "anything", "can_override": false}, "exchanget": {"name": "exchanget", "group": "Ungrouped variables", "definition": "dpformat(exchange,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["exchange", "amount", "answer", "answert", "exchanget"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answert", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU02 Convert Units (m/s and km/h)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Unit conversion between two compound units.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

A Cheetah runs at a speed of {speedkm} kilometres per hour (km/h). What is the Cheetah's speed in metres per second (m/s)?

\n

Give your ansswer to 2 decimal places where appropriate.

", "advice": "

There are a number of ways to work out the conversion. Here are a couple of suggestions.

\n

METHOD 1

\n

Since there are $1000$m in $1$km we first multiply by $1000$ to get the speed in metres per hour:

\n

\\begin{equation} 1000*\\var{speedkm} = \\var{step1}\\end{equation}

\n

Then we divide by $3600$ since that is the number of seconds in an hour to get the speed in metres per second:

\n

\\begin{equation} \\frac{\\var{step1}}{3600} = \\var{speedms} \\end{equation}

\n

Finally we round off to 2 decimal places as required, $\\var{roundanswer}$m/s.

\n

METHOD 2

\n

We can actually do all of the above in one step of working by using a single conversion factor. Since there are $1000$m in a km and $3600$ seconds in an hour, we can calaculate the conversion factor:

\n

\\begin{equation} \\frac{3600}{1000} = 3.6 \\end{equation}

\n

and then simply divide by that conversion factor:

\n

\\begin{equation} \\frac{\\var{speedkm}}{3.6} = \\var{speedms} \\end{equation}

\n

finally rounding off as before, $\\var{roundanswer}$m/s.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"speedkm": {"name": "speedkm", "group": "Ungrouped variables", "definition": "random(70 .. 120#10)", "description": "", "templateType": "randrange", "can_override": false}, "speedms": {"name": "speedms", "group": "Ungrouped variables", "definition": "1000*speedkm/3600", "description": "", "templateType": "anything", "can_override": false}, "step1": {"name": "step1", "group": "Ungrouped variables", "definition": "1000*speedkm", "description": "", "templateType": "anything", "can_override": false}, "roundanswer": {"name": "roundanswer", "group": "Ungrouped variables", "definition": "dpformat(speedms,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["speedkm", "speedms", "step1", "roundanswer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]m/s

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "speedms", "maxValue": "speedms", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "speedms", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU03 Convert Units - volume - l to ml", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Simple unit conversion with metric units. 

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express {liquid} litres ($l$) in millilitres ($ml$). 

", "advice": "

There are $1000ml$ in $1l$. To work out the conversion: $\\var{liquid}*1000 = \\var{answer}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"liquid": {"name": "liquid", "group": "Ungrouped variables", "definition": "random(1 .. 6#0.01)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "liquid*1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["liquid", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$ml$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU05 Convert Units - metric prefixes - milligrams to grams", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

Using prefixes (milli) in this case.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express {x} milligrams ($mg$) in grams ($g$). Give your answer to 3 decimal places. 

", "advice": "

There are $1000mg$ in $1g$. To work out the conversion: $\\frac{\\var{x}}{1000} = \\var{answer}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x/1000", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$g$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU08 Convert Units - Volume - ml to cubic cm", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "

\"Convert\" from millilitres to cubic centimeters.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Express {x} millilitres ($ml$) in cubic centimetres ($cm^3$).

", "advice": "

$1 ml$ is the same measurement of volume as $1 cm^3$ so there is nothing to do to convert except change the units.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(100 .. 5200#1)", "description": "", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "x", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "answer"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

[[0]]$cm^3$

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "answer", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answer", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SD02 Interpret Pie Charts", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "

This question is about correctly interpreting pie charts.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

{geogebra_applet{\"https://www.geogebra.org/calculator/pmvumdrv\",[C: C,M: M]}}

\n

The Pie Chart above shows the responses to a question asked by someone trying to plan a social event for their workplace. It shows answers given to the question \"Where would you like to go for a staff social?\" with the options \"Meal\", \"Cinema\" and \"Games Cafe\".

", "advice": "

A Pie chart of this type can only be used to make statements about the proportions of data in each category and does not provide information about the actual frequencies.

\n

For more information on Pie Charts follow this link.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"C": {"name": "C", "group": "Ungrouped variables", "definition": "random(60 .. 70#5)", "description": "", "templateType": "randrange", "can_override": false}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "random(5 .. 25#5)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "C<>M", "maxRuns": 100}, "ungrouped_variables": ["C", "M"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

From the following comments which can you say are definitely true, definitely false and which do you not have enough information to know?

", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["50 people responded that they would like to go to the cinema.", "About one third of people said they wanted to go for a meal.", "Over half the people responding said they wanted to go to the Games Cafe."], "matrix": [[0, 0, "1"], [0, "1", 0], ["1", 0, 0]], "layout": {"type": "all", "expression": ""}, "answers": ["Definitely true.", "Definitely false.", "Not enough information to know."]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SD07 Interpreting Line Graphs", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Francesca recorded the number of customers in a supermarket every two hours.

\n

She began at 9 am and finished at 7 pm.

\n

The line graph below shows her results.

\n

{geogebra_applet{\"https://www.geogebra.org/classic/s4w7nmga\",[y1:y1,y3:y3,y4:y4,y6:y6]}}

", "advice": "

a) You want to find the point on the graph with the greatest frequency. You can see that this is at 1pm when there were $\\var{y3}$ cars in the car park.

\n

b) We find 11am on the $x$-axis and look vertically upwards until we find the point. From here we go horiztonally across to the $y$-axis to read the frequency. We can see that at 11am there were $\\var{y2}$ cars in the car park.

\n

c) We want to find $\\var{number}$ on the $y$-axis and then look horiztonally across until we find the point. From here we move down to the $x$-axis to see at which time there were $\\var{number}$ cars in the car park. We can see this occured at $\\var{answerc}\\var{time}$.

\n

d) We must find 6pm on the $x$-axis. This isn't marked on like the other times but we know it sits half way between 5pm and 7pm. From here we look vertically upwards until we meet the red line on our graph. Notice we don't have a point for this time, hence why this is an estimate. From here we move hortizontally across to the $y$-axis to find the frequency. At 6pm we estimate that there were $\\var{y56}$ cars in the car park.

\n

e) We must find the frequency of cars at 1pm and at 3pm using the same steps as in part b. At 3pm there were $\\var{y4}$ cars in the car park and we subtract this from $\\var{y3}$ which is the number of cars in the car park at 1pm. Hence, $\\var{y3}-\\var{y4}=\\var{y3-y4}$.

\n
\n
\n

Use this link to find some resources which will help you revise this topic.

\n
\n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"y6": {"name": "y6", "group": "Ungrouped variables", "definition": "random(10 .. 40#10)", "description": "

Number of customers in supermarket at 7pm.

", "templateType": "randrange", "can_override": false}, "y5": {"name": "y5", "group": "Ungrouped variables", "definition": "y6+20", "description": "

Number of customers in supermarket at 5pm.

", "templateType": "anything", "can_override": false}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(82 .. 100#1)", "description": "

Number of customers in supermarket at 1pm.

", "templateType": "randrange", "can_override": false}, "y4": {"name": "y4", "group": "Ungrouped variables", "definition": "random(50 .. 75#1)", "description": "

Number of customers in supermarket at 3pm.

", "templateType": "randrange", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "y1+10", "description": "

Number of customers in supermarket at 11am.

", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "random(10 .. 20#5)", "description": "

Number of customers in supermarket at 9am

", "templateType": "randrange", "can_override": false}, "y56": {"name": "y56", "group": "Ungrouped variables", "definition": "(y5+y6)/2", "description": "

Number of customers in supermarket at 6pm.

", "templateType": "anything", "can_override": false}, "number": {"name": "number", "group": "Ungrouped variables", "definition": "random(y1,y3,y4,y5,y6)", "description": "

Randomly select which number of customers user needs to identify associated time for.

", "templateType": "anything", "can_override": false}, "answerc": {"name": "answerc", "group": "Ungrouped variables", "definition": "if(number=y1,9,if(number=y3,1,if(number=y4,3,if(number=y5,5,if(number=y6,7,0)))))", "description": "

Associated time to randomly selected frequency variable (number)

", "templateType": "anything", "can_override": false}, "time": {"name": "time", "group": "Ungrouped variables", "definition": "if(answerc=9, 'am', if(answerc=11,'am',if(answerc=1,'pm',if(answerc=3,'pm',if(answerc=5,'pm',if(answerc=7,'pm',0))))))", "description": "

For printing am or pm depending on time selelected - to appear in advice only 

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["y6", "y5", "y3", "y4", "y2", "y1", "y56", "number", "answerc", "time"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": true, "customName": "a)", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

When were the most customers in the supermarker?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["9 am", "11 am", "1 pm", "3 pm", "5 pm", "7 pm"], "matrix": [0, 0, "1", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "numberentry", "useCustomName": true, "customName": "b)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

How many customers were in the supermarket at 11 am?

", "minValue": "y2", "maxValue": "y2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "c)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

At what time were there {number} customers in the supermarket?

\n

If your answer was 12pm you would just write 12 in the box.

", "minValue": "answerc", "maxValue": "answerc", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "d)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Estimate the number of customers in the supermarket at 6pm.

", "minValue": "y56", "maxValue": "y56", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "e)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

How many less customers were there in the supermarket at 3pm than 1pm?

", "minValue": "y3-y4", "maxValue": "y3-y4", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SE01 Types of data", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["continuous data", "discrete data", "taxonomy"], "metadata": {"description": "

Decide whether each of the described sets of data is drawn from a discrete or continuous distribution.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Decide whether the following data sets are discrete or continuous.

", "advice": "

Data can either be discrete or continuous.

\n\n

\n

a)

\n

Height is a continuous variable. For example, 180.3cm and 180.4cm have a valid midpoint 180.35cm.Weight is a continuous variable. For example, 54.5kg and 54.6kg have a valid midpoint 54.55kg.Time is a continuous variable. For example, 54.2s and 54.3s have a valid midpoint 54.25s.Temperature is a continuous variable, it can take any value between -273.15°C (absolute zero) and positive infinity. For example, 25°C and 26°C have a valid midpoint 25.5°C. Hence, this data is continuous.

\n

b)

\n

The number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not.The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy a half of a bar. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5. The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.

\n

c)

\n

The number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not..The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy a half of a bar. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5.The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.

\n

d)

\n

Height is a continuous variable. For example, 180.3cm and 180.4cm have a valid midpoint 180.35cm.Weight is a continuous variable. For example, 54.5kg and 54.6kg have a valid midpoint 54.55kg.Time is a continuous variable. For example, 54.2s and 54.3s have a valid midpoint 54.25s.Temperature is a continuous variable, it can take any value between -273.15°C (absolute zero) and positive infinity. For example, 25°C and 26°C have a valid midpoint 25.5°C. Hence, this data is continuous.

\n

e)

\n

When we round continuous variables to the nearest integer, this data becomes discrete, as there are no valid middle measurements between the integers. Therefore, the weight of a dog to the nearest kgthe height of Olympic medalists to the nearest cmthe time taken to run 10km to the nearest min is discrete and not continuous.

\n

f)

\n

The number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not.The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy half of a bar of chocolate. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5.The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.

\n

Use this link to find some resources which will help you revise this topic

\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"rand3": {"name": "rand3", "group": "Ungrouped variables", "definition": "random(0..5 except rand except rand2)", "description": "", "templateType": "anything", "can_override": false}, "cont": {"name": "cont", "group": "Ungrouped variables", "definition": "[\"The height of Newcastle University students.\", \"The weight of Olympic medalists.\", \"The time taken to brush teeth.\", \"The maximum daily temperature.\"]", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "[\"The number of Stage 1 students.\", \"The result of rolling 3 dice.\", \"Shoe sizes.\", \"The number of chocolate bars sold on Monday.\", \"The number of movies downloaded.\", \"The number of cinema tickets sold.\"]", "description": "", "templateType": "anything", "can_override": false}, "trick": {"name": "trick", "group": "Ungrouped variables", "definition": "[\"The weight of a dog to the nearest kg.\", \"The height of Olympic medalists to the nearest cm.\", \"The time taken to run 10km to the nearest min.\"]", "description": "", "templateType": "anything", "can_override": false}, "ranc2": {"name": "ranc2", "group": "Ungrouped variables", "definition": "random(0..3 except ranc)", "description": "", "templateType": "anything", "can_override": false}, "rant": {"name": "rant", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "rand": {"name": "rand", "group": "Ungrouped variables", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "rand2": {"name": "rand2", "group": "Ungrouped variables", "definition": "random(0..5 except rand)", "description": "", "templateType": "anything", "can_override": false}, "ranc": {"name": "ranc", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["disc", "cont", "trick", "ranc", "rant", "ranc2", "rand2", "rand3", "rand"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{cont[ranc]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{disc[rand]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{disc[rand2]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{cont[ranc2]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{trick[rant]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{disc[rand3]}

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Discrete

", "

Continuous

"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM02 Calculate Mean from a list", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "

Calculating the Mean from a basic list of integers.

", "licence": "None specified"}, "statement": "

Calculate the Mean from a list

", "advice": "

The MEAN is the sum, divided by the number of values summed i.e.

$\\frac{\\var{list[0]} + \\var{list[1]} + \\var{list[2]} + \\var{list[3]} + \\var{list[4]}}{5}$

\n

use your calculator to find

\n

mean = $\\var{mean}$.

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"list": {"name": "list", "group": "Ungrouped variables", "definition": "repeat(random(0..20), 5)", "description": "", "templateType": "anything", "can_override": false}, "mean": {"name": "mean", "group": "Ungrouped variables", "definition": "mean(list)", "description": "", "templateType": "anything", "can_override": false}, "median": {"name": "median", "group": "Ungrouped variables", "definition": "median(list)", "description": "", "templateType": "anything", "can_override": false}, "order": {"name": "order", "group": "Ungrouped variables", "definition": "sort(list)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["list", "mean", "median", "order"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given a list of numbers:

{list}

Calculate the mean:   [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "mean", "maxValue": "mean", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SN01 Correlation", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Richard Miles", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/882/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}], "tags": [], "metadata": {"description": "

Tests understanding of scatter plots and related concepts.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

The scatter plot below shows the relationship between an employee’s height in centimetres and how long it takes them to walk to work in minutes.

\n\n\n\n\n\n\n\n\n\n\n\n
time (mins){drawgraph()}
height (cm)
\n

\n

\n

\n

", "advice": "

The graph shows that there is a positive correlation between a person's height and how long it takes them to walk to work.

\n

A postive correlation is a relationship between two variables where both variables move in the same diection.

\n

This tells us that as a person's height increases, the time it takes to walk to work increases.

\n

Use this link to find some resources which will help you revise this topic

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"slope": {"name": "slope", "group": "Regression variables", "definition": "(6*sumxy-sumx*sumy)/(6*sumxx-(sumx)^2)", "description": "

s

", "templateType": "anything", "can_override": false}, "timemax": {"name": "timemax", "group": "Calculation variables", "definition": "max([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "minx": {"name": "minx", "group": "Graph Limits", "definition": "140", "description": "", "templateType": "anything", "can_override": false}, "miny": {"name": "miny", "group": "Graph Limits", "definition": "-10", "description": "", "templateType": "anything", "can_override": false}, "p3x": {"name": "p3x", "group": "Points", "definition": "random(166..175)", "description": "", "templateType": "anything", "can_override": false}, "p3y": {"name": "p3y", "group": "Points", "definition": "random(26..35)", "description": "", "templateType": "anything", "can_override": false}, "p5x": {"name": "p5x", "group": "Points", "definition": "random(146..155 except p1x)", "description": "", "templateType": "anything", "can_override": false}, "p5y": {"name": "p5y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "p1x": {"name": "p1x", "group": "Points", "definition": "random(146..155)", "description": "", "templateType": "anything", "can_override": false}, "p1y": {"name": "p1y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "timediff": {"name": "timediff", "group": "Calculation variables", "definition": "timemax-timemin", "description": "", "templateType": "anything", "can_override": false}, "maxx": {"name": "maxx", "group": "Graph Limits", "definition": "188", "description": "", "templateType": "anything", "can_override": false}, "maxy": {"name": "maxy", "group": "Graph Limits", "definition": "63", "description": "", "templateType": "anything", "can_override": false}, "roundedslope": {"name": "roundedslope", "group": "Regression variables", "definition": "precround(slope,2)", "description": "", "templateType": "anything", "can_override": false}, "yintercept": {"name": "yintercept", "group": "Regression variables", "definition": "(sumy-slope*sumx)/6", "description": "", "templateType": "anything", "can_override": false}, "timemin": {"name": "timemin", "group": "Calculation variables", "definition": "min([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "tallest": {"name": "tallest", "group": "Calculation variables", "definition": "max([p1x,p2x,p3x,p4x,p5x,p6x])", "description": "", "templateType": "anything", "can_override": false}, "regy1": {"name": "regy1", "group": "Regression variables", "definition": "slope*minx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "regy2": {"name": "regy2", "group": "Regression variables", "definition": "slope*maxx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "sumy": {"name": "sumy", "group": "Regression variables", "definition": "p1y+p2y+p3y+p4y+p5y+p6y", "description": "", "templateType": "anything", "can_override": false}, "sumx": {"name": "sumx", "group": "Regression variables", "definition": "p1x+p2x+p3x+p4x+p5x+p6x", "description": "", "templateType": "anything", "can_override": false}, "p6y": {"name": "p6y", "group": "Points", "definition": "random(46..55)", "description": "

p6y

", "templateType": "anything", "can_override": false}, "p6x": {"name": "p6x", "group": "Points", "definition": "random(176..185 except p4x)", "description": "", "templateType": "anything", "can_override": false}, "p4y": {"name": "p4y", "group": "Points", "definition": "random(36..45)", "description": "", "templateType": "anything", "can_override": false}, "p4x": {"name": "p4x", "group": "Points", "definition": "random(176..185)", "description": "", "templateType": "anything", "can_override": false}, "p2y": {"name": "p2y", "group": "Points", "definition": "random(16..25)", "description": "", "templateType": "anything", "can_override": false}, "p2x": {"name": "p2x", "group": "Points", "definition": "random(156..165)", "description": "", "templateType": "anything", "can_override": false}, "sumxx": {"name": "sumxx", "group": "Regression variables", "definition": "p1x^2+p2x^2+p3x^2+p4x^2+p5x^2+p6x^2", "description": "", "templateType": "anything", "can_override": false}, "sumxy": {"name": "sumxy", "group": "Regression variables", "definition": "p1x*p1y+p2x*p2y+p3x*p3y+p4x*p4y+p5x*p5y+p6x*p6y", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Graph Limits", "variables": ["minx", "maxx", "miny", "maxy"]}, {"name": "Points", "variables": ["p1x", "p1y", "p2x", "p2y", "p3x", "p3y", "p4x", "p4y", "p5x", "p5y", "p6x", "p6y"]}, {"name": "Calculation variables", "variables": ["tallest", "timemax", "timemin", "timediff"]}, {"name": "Regression variables", "variables": ["sumx", "sumy", "sumxy", "sumxx", "slope", "yintercept", "regy1", "regy2", "roundedslope"]}], "functions": {"drawgraph": {"parameters": [], "type": "html", "language": "javascript", "definition": " var miny = Numbas.jme.unwrapValue(scope.variables.miny);\n var maxy = Numbas.jme.unwrapValue(scope.variables.maxy);\n var minx = Numbas.jme.unwrapValue(scope.variables.minx);\n var maxx = Numbas.jme.unwrapValue(scope.variables.maxx);\n var regy1 = Numbas.jme.unwrapValue(scope.variables.regy1);\n var regy2 = Numbas.jme.unwrapValue(scope.variables.regy2);\n\n var p1x = Numbas.jme.unwrapValue(scope.variables.p1x);\n var p1y = Numbas.jme.unwrapValue(scope.variables.p1y);\n var p2x = Numbas.jme.unwrapValue(scope.variables.p2x);\n var p2y= Numbas.jme.unwrapValue(scope.variables.p2y);\n var p3x = Numbas.jme.unwrapValue(scope.variables.p3x);\n var p3y= Numbas.jme.unwrapValue(scope.variables.p3y);\n var p4x = Numbas.jme.unwrapValue(scope.variables.p4x);\n var p4y= Numbas.jme.unwrapValue(scope.variables.p4y);\n var p5x = Numbas.jme.unwrapValue(scope.variables.p5x);\n var p5y= Numbas.jme.unwrapValue(scope.variables.p5y);\n var p6x = Numbas.jme.unwrapValue(scope.variables.p6x);\n var p6y= Numbas.jme.unwrapValue(scope.variables.p6y);\n \n var div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox:[minx,maxy,maxx,miny],\n axis:false,\n showNavigation:false,\n grid:true});\n var brd = div.board; \n var xaxis=brd.createElement('axis', [[minx,0],[maxx,0]]);\n var yaxis=brd.createElement('axis', [[minx+5,miny],[minx+5,maxy]]);\n var li1=brd.create('line',[[minx,regy1],[maxx,regy2]],{fixed:true,withLabel:false});\n var pt1=brd.create('point',[p1x,p1y],{visible:true,withLabel:false}); \n var pt2=brd.create('point',[p2x,p2y],{visible:true,withLabel:false}); \n var pt3=brd.create('point',[p3x,p3y],{visible:true,withLabel:false}); \n var pt4=brd.create('point',[p4x,p4y],{visible:true,withLabel:false}); \n var pt5=brd.create('point',[p5x,p5y],{visible:true,withLabel:false}); \n var pt6=brd.create('point',[p6x,p6y],{visible:true,withLabel:false}); \nreturn div;\n "}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Mark the statement that best describes what this scatter plot shows.

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

In general, there is a positive correlation between a person's height and how long it takes them to walk to work.

", "

In general, there is a negative correlation between a person's height and how long it takes them to walk to work.

", "

In general, there is a no correlation between a person's height and how long it takes them to walk to work.

"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "

Thank you for completing the Skills Audit for Maths and Stats. Hopefully it has been useful in directing you to resources and services that can support your studies. The Skills Audit for Maths and Stats will remain open to you throughout the academic year and you can always revisit it again later.

\n

For any further information or questions please contact mash@sheffield.ac.uk

", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}], "extensions": ["geogebra", "jsxgraph", "stats"], "custom_part_types": [], "resources": []}