// Numbas version: finer_feedback_settings {"name": "Management PGT 2025/26", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], []], "questions": [{"name": "AC16 Rearrange Formulae", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Luigi Pivano", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18182/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "
Rearrange a specific formula. No randomisation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Rearrange the following equation, to make $y$ the subject:
\n\\[{cy -b = 3x}\\]
", "advice": "In order to rearrange the equation so that it is in terms of $y$, we must first add $b$ to both sides, and then divide both sides of the equation by $c$:
\n\\begin{split} cy-b &= 3x \\\\ cy &= 3x + b \\\\ y &=\\frac{3x+b}{c} \\end{split}
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$y=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(3x+b)/c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "b", "value": ""}, {"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AC19 Cancelling algebraic fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Luke Park", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/826/"}, {"name": "Anna Strzelecka", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2945/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "A question to practice simplifying fractions with the use of factorisation (for binomial and quadratic expressions).
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Simplify the following algebraic expression.
", "advice": "\\[\\frac{{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}}{{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}}\\]
\nIn this question there is a quadratic expression which needs to be factorised into the products of binomials in both the numerator and denominator.
\n\\[\\frac{({\\simplify{n+{e1}}})({\\simplify{n+{e2}}})}{({\\simplify{n+{e1}}})({\\simplify{n+{e3}}})}\\]
\nThe repeated binomials in the numerator and denominator cancel, leaving:
\n\\[\\frac{({\\simplify{n+{e2}}})}{({\\simplify{n+{e3}}})}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"e2": {"name": "e2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "e3": {"name": "e3", "group": "Ungrouped variables", "definition": "random(-5..5 except 0 except e2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["e1", "e2", "e3"], "variable_groups": [], "functions": {"": {"parameters": [], "type": "number", "language": "jme", "definition": ""}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\[\\frac{\\simplify{(n^2+({e1}+{e2})n+{e1}{e2})}}{\\simplify{(n^2+({e1}+{e3})n+{e1}{e3})}}\\]
", "answer": "(n+{e2})/(n+{e3})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["^2", "^"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "n", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF01 Sigma Notation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Basic calculation from a sum given in Sigma notation.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate:
\n\\[\\displaystyle{\\Sigma_{n=1}^3} \\var{b}n.\\]
\n", "advice": "The sigma notation $\\displaystyle\\sum_{n=1}^{3}\\var{b}n$ is asking us to find the sum of the first three terms of the sequence $\\var{b}n$.
\n\\[\\begin{split}\\Sigma_{n=1}^3 \\var{b}n &\\, = (\\var{b}\\times 1) + (\\var{b}\\times 2) + (\\var{b}\\times 3) \\\\ &\\, = \\var{b1} + \\var{b2} + \\var{b3} \\\\ &\\, = \\var{sum}.\\end{split}\\]
\nUse this link to find resources to help you revise sigma notation.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "b*1", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "b*2", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "b*3", "description": "", "templateType": "anything", "can_override": false}, "sum": {"name": "sum", "group": "Ungrouped variables", "definition": "b1+b2+b3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "b1", "b2", "b3", "sum"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AF02 Straight Line Graphs", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Calculating gradient and finding intercept from a geogebra graph.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "{app}
Find the gradient of the line.
Firstly draw a right angled 'step' from left to right. This triangle can be anywhere, but it is more helpful for it to have corners on the vertices (whole number points) of the graph and it is easier to calculate with postive numbers.
\n{app_advice}
\nBefore we start to calculate, notice that the line is {uod}, so the gradient will be {pon} and the line is {sos}, so the absolute value of the number will be {mol}.
Now find the coordinates of the places your triangle meets the line
$(x_1,y_1)=(\\var{ax},\\var{ay})$ and $(x_2,y_2)=(\\var{bx},\\var{by})$
\nWe need to compare the 'rise on the y-axis' to the 'run across the x-axis', we can say that:
\n$\\text{gradient} = \\frac{\\text{rise}}{\\text{run}}$
\nThis is equivalent to using the formula:
$ m = \\frac{y_2 - y_1}{x_2 - x_1} $
and substitute the coordinates of the vertices of the triangle:
$\\begin{split} &\\, m = \\frac{\\var{by} - \\var{ay}}{\\var{bx} - \\var{ax}} \\\\
&\\, = \\frac{\\var{by-ay}}{\\var{bx-ax}} \\\\
&\\, = \\var[fractionNumbers]{m} \\\\
\\end{split} $
if(m=abs(m),'positive','negative')
", "templateType": "anything", "can_override": false}, "ax": {"name": "ax", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "templateType": "anything", "can_override": false}, "ay": {"name": "ay", "group": "Ungrouped variables", "definition": "random(0,1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "bx": {"name": "bx", "group": "Ungrouped variables", "definition": "random(ax+1..3) \n", "description": "", "templateType": "anything", "can_override": false}, "by": {"name": "by", "group": "Ungrouped variables", "definition": "random(0..4 except ay)\n", "description": "", "templateType": "anything", "can_override": false}, "app_advice": {"name": "app_advice", "group": "Ungrouped variables", "definition": "geogebra_applet(\n 800,500,\n [\n A: [\n definition: p1,\n label_visible: false,\n visible: true\n ],\n B: [\n definition: p2,\n label_visible: false,\n visible: true \n ],\n \n C: [\n definition: p3,\n label_visible: false,\n visible: false \n ],\n \n line1: [\n definition: \"Line(A,B)\",\n label_visible: false,\n visible: true\n ],\n \n line2: [\n definition: \"Segment(A,C)\",\n label_visible: false,\n visible: true\n ],\n \n \n \n line3: [\n definition: \"Segment(C,B)\",\n label_visible: false,\n visible: true\n ]\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "p3": {"name": "p3", "group": "Ungrouped variables", "definition": "vector(bx,ay)", "description": "", "templateType": "anything", "can_override": false}, "pon": {"name": "pon", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(m=abs(m),'a positive number','a negative number'))", "description": "", "templateType": "anything", "can_override": false}, "sos": {"name": "sos", "group": "Ungrouped variables", "definition": "if(m=0,'horizontal',if(abs(m)<1,'shallow','steep'))", "description": "", "templateType": "anything", "can_override": false}, "mol": {"name": "mol", "group": "Ungrouped variables", "definition": "if(m=0,'zero',if(abs(m)<1,'less than 1','greater than or equal to 1'))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "m<>1", "maxRuns": 100}, "ungrouped_variables": ["app", "m", "c", "P1", "P2", "uod", "ax", "ay", "bx", "by", "app_advice", "p3", "pon", "sos", "mol"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "It looks like you have incorrectly rounded this answer. You might want to look at some resources on rounded decimals. You can also leave your answer in fraction form as
$\\var[fractionNumbers]{m}$
Solve linear equations with unkowns on both sides. Including brackets and fractions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "Given $\\simplify{{m}w-{n} = {p}w+{q}}$, we can get all the $w$'s on the left hand side and all the numbers on the right hand side, and then divide both sides by the coefficient of $w$ to get $w$ by itself.
\n\n| \n | \n | \n |
| \n | \n | \n |
| $\\simplify{{m}w+{n}}$ | \n$=$ | \n$\\simplify{{p}w+{q}}$ | \n
| \n | \n | \n |
| $\\simplify[!cancelTerms,unitFactor]{{m}w-{n}-{p}w}$ | \n$=$ | \n$\\simplify[!cancelTerms,unitFactor]{{p}w+{q}-{p}w}$ | \n
| \n | \n | \n |
| $\\simplify{{m-p}w-{n}}$ | \n$=$ | \n$\\var{q}$ | \n
| \n | \n | \n |
| $\\var{m-p}w-\\var{n}+\\var{n}$ | \n$=$ | \n$\\var{q}+\\var{n}$ | \n
| \n | \n | \n |
| $\\var{m-p}w$ | \n$=$ | \n$\\var{q+n}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{m-p}w}{\\var{m-p}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{q+n}}{\\var{m-p}}}$ | \n
| \n | \n | \n |
| $w$ | \n$=$ | \n$\\displaystyle{\\simplify{{q+n}/{m-p}}} = \\var{precround(ansA,1)} \\text{ to 1 dp}$ | \n
Use this link to find resources to help you revise how to solve linear equations
Solve $\\simplify{({m}w-{n}) = {p}w+{q}}$
\n$w=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansA", "maxValue": "ansA", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "AS03 Simultaneous Equations (2 linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["Category: Simultaneous equations"], "metadata": {"description": "Solving a pair of linear simultaneous equations, giving answers as integers or fractions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the simultaneous equations for x and y, giving your answers as integers or fractions, but not decimals.
\n\\[ \\begin{split} \\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y} &\\,=\\var{c1} \\end{split}\\]
", "advice": "\\[\\begin{split}\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\,=\\var{c} \\qquad\\qquad&(1)\\\\ \\simplify[!noLeadingminus,unitFactor]{{a1}x +{b1}y} &\\,=\\var{c1} \\qquad\\qquad&(2)\\end{split}\\]
\n{advice1}
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-2..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-8..8 except [0,1,a])", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-5..8 except [0,1])", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(2..10 except [round(a1*b/a),b,0,1])", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-7..7 except 0)", "description": "", "templateType": "anything", "can_override": false}, "aorsb": {"name": "aorsb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfb": {"name": "torfb", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgn": {"name": "sgn", "group": "Ungrouped variables", "definition": "if(b*abs(b1)=b1*abs(b),-1,1)", "description": "", "templateType": "anything", "can_override": false}, "xn": {"name": "xn", "group": "Ungrouped variables", "definition": "c*abs(b1)+sgn*c1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xd": {"name": "xd", "group": "Ungrouped variables", "definition": "a*abs(b1)+sgn*a1*abs(b)", "description": "", "templateType": "anything", "can_override": false}, "xsimp": {"name": "xsimp", "group": "Ungrouped variables", "definition": "xn/xd", "description": "", "templateType": "anything", "can_override": false}, "samex": {"name": "samex", "group": "Ungrouped variables", "definition": "\"For these equations, it is easiest to get a solution for $y$ first, due to the $x$-terms having {eqoroppa} coefficients.
\\nIf we {aorsa} equation (2) {torfa} equation (1) this eliminates the $x$-terms leaving us with one equation in terms of $y$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1)})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgna*(c1)}}\\\\\\\\ \\\\simplify{{b+sgna*(b1)}y} &\\\\,= \\\\simplify{{c+sgna*(c1)}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a}x + \\\\var{b} \\\\times \\\\simplify[all, fractionNumbers]{{c+sgna*(c1)}/{b+sgna*(b1)}} &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{a}x &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c} - {c*b+b*sgna*(c1)}/{b+sgna*(b1)}} \\\\\\\\ x &\\\\,= \\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "eqoroppb": {"name": "eqoroppb", "group": "Ungrouped variables", "definition": "if(abs(b)*b1=abs(b1)*b,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "eqoroppa": {"name": "eqoroppa", "group": "Ungrouped variables", "definition": "if(abs(a)*a1=abs(a1)*a,'equal','equal and opposite')", "description": "", "templateType": "anything", "can_override": false}, "samey": {"name": "samey", "group": "Ungrouped variables", "definition": "\"For these equations, it is easiest to get a solution for $x$ first, due to the $y$-terms having {eqoroppb} coefficients.
\\nIf we {aorsb} equation (2) {torfb} equation (1) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1)})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c}+{sgn*(c1)}}\\\\\\\\ \\\\simplify{{a+sgn*(a1)}x} &\\\\,= \\\\simplify{{c+sgn*(c1)}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a} \\\\times\\\\simplify[fractionNumbers]{{c+sgn*(c1)}/{a+sgn*(a1)}} + \\\\var{b}y &\\\\,= \\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{c} - {c*a+a*sgn*(c1)}/{a+sgn*(a1)}} \\\\\\\\ y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb": {"name": "lcmb", "group": "Ungrouped variables", "definition": "\"To get a solution for $x$, if we multiply equation (2) by $\\\\simplify{{abs(b/b1)}}$ we will have two equations with {eqoroppb} $y$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b/b1)}x +{b1*abs(b/b1)}y} &\\\\,=\\\\var{c1*abs(b/b1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]
\\nIf we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({a}+{sgn*(a1*abs(b/b1))})x} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgn*(c1*abs(b/b1))}}\\\\\\\\ \\\\simplify{{a+sgn*(a1*abs(b/b1))}x} &\\\\,= \\\\simplify{{c+sgn*(c1*abs(b/b1))}} \\\\\\\\ x &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgn*(c1*abs(b/b1))}/{a+sgn*(a1*abs(b/b1))}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c)+a*sgn*c1*abs(b/b1)}/{(a)+sgn*a1*abs(b/b1)})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c+a*sgn*c1*abs(b/b1))/(a+sgn*a1*abs(b/b1))}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "lcmb1": {"name": "lcmb1", "group": "Ungrouped variables", "definition": "\"To get a solution for $x$, if we multiply equation (1) by $\\\\simplify{{abs(b1/b)}}$ we will have two equations with {eqoroppb} $y$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1/b)}x +{b*abs(b1/b)}y} &\\\\,=\\\\var{c*abs(b1/b)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4)\\\\\\\\ \\\\end{split} \\\\]
\\nIf we {aorsb} equation (4) {torfb} equation (3) this eliminates the $y$-terms, leaving us with one equation in terms of $x$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(a*abs(b1/b))}+{sgn*a1})x} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(b1/b))}+{sgn*c1}}\\\\\\\\ \\\\simplify{{(a*abs(b1/b))+sgn*a1}x} &\\\\,= \\\\simplify{{(c*abs(b1/b))+sgn*c1}} \\\\\\\\ x &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $y$ we can substitute this $x$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\var{a}\\\\times\\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({(c*abs(b1/b))+sgn*c1}/{(a*abs(b1/b))+sgn*a1}) + {b}y} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(a*c*abs(b1/b))+a*sgn*c1}/{(a*abs(b1/b))+sgn*a1})} \\\\\\\\ \\\\simplify{{b}y} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(a*c*abs(b1/b)+a*sgn*c1)/(a*abs(b1/b)+sgn*a1)}} \\\\\\\\ y &\\\\,=\\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "full": {"name": "full", "group": "Ungrouped variables", "definition": "\"To get a solution for $x$, if we multiply equation (1) by $\\\\var{abs(b1)}$ and equation (2) by $\\\\var{abs(b)}$, we will have two equations with {eqoroppb} $y$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(b1)}x+{b*abs(b1)}y} &\\\\,=\\\\var{c*abs(b1)} \\\\qquad\\\\qquad&(3)\\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(b)}x +{b1*abs(b)}y} &\\\\,=\\\\var{c1*abs(b)} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]
\\nNow, {aorsb} equation (4) {torfb} equation (3) to eliminate the $y$ terms:
\\n\\\\[ \\\\begin{split} (\\\\simplify[!collectNumbers]{{a*abs(b1)} +{sgn*a1*abs(b)}}) x &\\\\,= \\\\simplify[!collectNumbers]{{c*abs(b1)}+{sgn*c1*abs(b)}} \\\\\\\\ \\\\simplify{{a*abs(b1)+sgn*a1*abs(b)}} x &\\\\,= \\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}} .\\\\end{split} \\\\]
\\nSo the solution for $x$ is \\\\[ x=\\\\simplify{{c*abs(b1)+sgn*c1*abs(b)}/{a*abs(b1)+sgn*a1*abs(b)}}.\\\\]
\\nTo obtain a solution for $y$ we can substitute this value of $x$ into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\simplify[noLeadingminus,fractionNumbers,unitFactor]{{a} {xsimp} + {b}y} &\\\\,=\\\\var{c} \\\\\\\\ \\\\var{b}y &\\\\,= \\\\simplify[!collectNumbers,fractionNumbers]{{c}-{a*xsimp}} \\\\\\\\\\\\var{b}y &\\\\,= \\\\simplify[fractionNumbers]{{c-a*xsimp}} \\\\\\\\y &\\\\,= \\\\simplify[fractionNumbers]{{(c-a*xsimp)/b}} \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "aorsa": {"name": "aorsa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'subtract','add')", "description": "", "templateType": "anything", "can_override": false}, "torfa": {"name": "torfa", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,'from','to')", "description": "", "templateType": "anything", "can_override": false}, "sgna": {"name": "sgna", "group": "Ungrouped variables", "definition": "if(a*abs(a1)=abs(a)*a1,-1,1)", "description": "", "templateType": "anything", "can_override": false}, "lcma": {"name": "lcma", "group": "Ungrouped variables", "definition": "\"To get a solution for $y$, if we multiply equation (2) by $\\\\simplify{{abs(a/a1)}}$ we will have two equations with {eqoroppa} $x$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a}x+{b}y} &\\\\,=\\\\var{c} \\\\qquad\\\\qquad&(3)\\\\\\\\ \\\\simplify[!noLeadingminus,unitFactor]{{a1*abs(a/a1)}x +{b1*abs(a/a1)}y} &\\\\,=\\\\var{c1*abs(a/a1)} \\\\qquad\\\\qquad&(4)\\\\end{split}\\\\]
\\nIf we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({b}+{sgna*(b1*abs(a/a1))})y} &\\\\,= \\\\simplify[all, !collectNumbers, !noLeadingminus]{{c}+{sgna*(c1*abs(a/a1))}}\\\\\\\\ \\\\simplify{{b+sgna*(b1*abs(a/a1))}y} &\\\\,= \\\\simplify{{c+sgna*(c1*abs(a/a1))}} \\\\\\\\ y &\\\\,= \\\\simplify[all,fractionNumbers]{{c+sgna*(c1*abs(a/a1))}/{b+sgna*(b1*abs(a/a1))}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c+sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c)+b*sgna*c1*abs(a/a1)}/{(b)+sgna*b1*abs(a/a1)})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c+b*sgna*c1*abs(a/a1))/(b+sgna*b1*abs(a/a1))}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "lcma1": {"name": "lcma1", "group": "Ungrouped variables", "definition": "\"To get a solution for $y$, if we multiply equation (1) by $\\\\simplify{{abs(a1/a)}}$ we will have two equations with {eqoroppa} $x$-coefficients:
\\n\\\\[ \\\\begin{split} \\\\simplify[!noLeadingminus,unitFactor]{{a*abs(a1/a)}x +{b*abs(a1/a)}y} &\\\\,=\\\\var{c*abs(a1/a)} \\\\qquad\\\\qquad&(3) \\\\\\\\\\\\simplify[!noLeadingminus,unitFactor]{{a1}x+{b1}y} &\\\\,=\\\\var{c1} \\\\qquad\\\\qquad&(4) \\\\end{split}\\\\]
\\nIf we {aorsa} equation (4) {torfa} equation (3) this eliminates the $x$-terms, leaving us with one equation in terms of $y$:
\\n\\\\[ \\\\begin{split} \\\\simplify[!collectNumbers, !noLeadingminus]{({(b*abs(a1/a))}+{sgna*b1})y} &\\\\,= \\\\simplify[!collectNumbers, !noLeadingminus]{{(c*abs(a1/a))}+{sgna*c1}}\\\\\\\\ \\\\simplify{{(b*abs(a1/a))+sgna*b1}y} &\\\\,= \\\\simplify{{(c*abs(a1/a))+sgna*c1}} \\\\\\\\ y &\\\\,= \\\\simplify[all, fractionNumbers]{{(c*abs(a1/a))+sgna*c1}/{(b*abs(a1/a))+sgna*b1}}. \\\\end{split} \\\\]
\\n\\nTo obtain a solution for $x$ we can substitute this $y$-value into either of our initial equations. Using equation (1), we obtain
\\n\\\\[ \\\\begin{split} \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{{a}x + {b}}\\\\times \\\\simplify[all, !noLeadingminus, !expandBrackets, fractionNumbers]{({c*abs(a1/a)+sgna*c1}/{(b*abs(a1/a))+sgna*b1})} &\\\\,= \\\\var{c} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c} -({(b*c*abs(a1/a))+b*sgna*c1}/{(b*abs(a1/a))+sgna*b1})} \\\\\\\\ \\\\simplify{{a}x} &\\\\,= \\\\simplify[all, !noLeadingminus, fractionNumbers]{{c -(b*c*abs(a1/a)+b*sgna*c1)/(b*abs(a1/a)+sgna*b1)}} \\\\\\\\ x &\\\\,=\\\\simplify[fractionNumbers]{{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "advice1": {"name": "advice1", "group": "Ungrouped variables", "definition": "if(abs(b)=abs(b1), {samey},if(abs(a)=abs(a1),{samex},if(lcm(abs(b),abs(b1))=abs(b),{lcmb},if(lcm(abs(b),abs(b1))=abs(b1),{lcmb1},if(lcm(abs(a),abs(a1))=abs(a),{lcma},if(lcm(abs(a),abs(a1))=abs(a1),{lcma1},{full}))))))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(b-b1)>1 and\nabs(a-a1)>1 and\ngcd(a,c)=1 and\ngcd(a1,c1)=1", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "a1", "b1", "c", "c1", "aorsa", "torfa", "aorsb", "torfb", "sgna", "sgn", "xn", "xd", "xsimp", "eqoroppa", "eqoroppb", "advice1", "samey", "samex", "lcmb", "lcmb1", "lcma", "lcma1", "full"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=$ [[0]]
\n$y=$ [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c*abs(b1)+sgn*c1*abs(b))/(a*abs(b1)+sgn*a1*abs(b))}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(c-a*xsimp)/b}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA04 Inequalities (understanding notation)", "extensions": ["chemistry", "geogebra", "jsxgraph", "codewords", "permutations", "polynomials", "quantities", "random_person", "stats", "visjs"], "custom_part_types": [{"source": {"pk": 28, "author": {"name": "Marie Nicholson", "pk": 1799}, "edit_page": "/part_type/28/edit"}, "name": "True/False", "short_name": "true-false", "description": "The answer is either 'True' or 'False'
", "help_url": "", "input_widget": "radios", "input_options": {"correctAnswer": "if(eval(settings[\"correct_answer_expr\"]), 0, 1)", "hint": {"static": true, "value": ""}, "choices": {"static": true, "value": ["True", "False"]}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nif(studentanswer=correct_answer,\n correct(),\n incorrect()\n)\n\ninterpreted_answer:\nstudentAnswer=0\n\ncorrect_answer:\nif(eval(settings[\"correct_answer_expr\"]),0,1)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=correct_answer,\n correct(),\n incorrect()\n)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "studentAnswer=0"}, {"name": "correct_answer", "description": "", "definition": "if(eval(settings[\"correct_answer_expr\"]),0,1)"}], "settings": [{"name": "correct_answer_expr", "label": "Is the answer \"True\"", "help_url": "", "hint": "", "input_type": "mathematical_expression", "default_value": "true", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Identify the truth value of an inequality (T/F) between two numbers
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "The symbol is a comparitor that $<$ says that the object to its left is less than the object to its right. Similarly, $>$ says the object to its left is greater than the object to its right.
\nIn each case the sentence can be read in two ways e.g. $a<b$ can be read as \"$a$ is less than $b$\" OR \"$b$ is greater than $a$\".
\nThe symbol $\\leq$ just changes the sentence to include \"...or equal to...\". This can be of particular relevance when dealing with integers (whole numbers) e.g. $x \\geq 4$ and $x$ is a whole number means that $x$ could be $4, 5, 6,$ or $7$ and so on. Whereas, $x>4$ and $x$ is a whole number means that $x$ could be $5,6,$... etc. Notably in the second case $x$ cannot be $4$.
\n\n
Use this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..15)", "description": "", "templateType": "anything", "can_override": false}, "operations": {"name": "operations", "group": "Ungrouped variables", "definition": "[latex(\"\\\\gt\"),latex(\"\\\\ge\")]", "description": "", "templateType": "anything", "can_override": false}, "values": {"name": "values", "group": "Ungrouped variables", "definition": "[a,-random(1..15),random(1..15),random(1..15)]", "description": "", "templateType": "anything", "can_override": false}, "disp_values": {"name": "disp_values", "group": "Ungrouped variables", "definition": "shuffle(values)[0..2]", "description": "", "templateType": "anything", "can_override": false}, "disp_op": {"name": "disp_op", "group": "Ungrouped variables", "definition": "operations[random(0,1)]", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..15)", "description": "", "templateType": "anything", "can_override": false}, "operations2": {"name": "operations2", "group": "Ungrouped variables", "definition": "[latex(\"\\\\lt\"),latex(\"\\\\le\")]", "description": "", "templateType": "anything", "can_override": false}, "values2": {"name": "values2", "group": "Ungrouped variables", "definition": "[a2,-random(1..15),random(1..15),random(1..15)]", "description": "", "templateType": "anything", "can_override": false}, "disp_values2": {"name": "disp_values2", "group": "Ungrouped variables", "definition": "shuffle(values2)[0..2]", "description": "", "templateType": "anything", "can_override": false}, "disp_op2": {"name": "disp_op2", "group": "Ungrouped variables", "definition": "operations2[random(0,1)]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "operations", "values", "disp_values", "disp_op", "a2", "operations2", "values2", "disp_values2", "disp_op2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "true-false", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Is the following statement true or false?
\n\\(\\var{disp_values[0]}\\var{disp_op}\\var{disp_values[1]}\\)
\n", "alternatives": [{"type": "true-false", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "settings": {"correct_answer_expr": "eval(expression(disp_values[0]+if(disp_op=\"\\\\gt\",\">\",\">=\")+disp_values[1]))"}}], "settings": {"correct_answer_expr": "eval(expression(disp_values[0]+if(disp_op=\"\\\\gt\",\">\",\">=\")+disp_values[1]))"}}, {"type": "true-false", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Is the following statement true or false?
\n\\(\\var{disp_values2[0]}\\var{disp_op2}\\var{disp_values2[1]}\\)
\n", "settings": {"correct_answer_expr": "eval(expression(disp_values2[0]+if(disp_op2=\"\\\\lt\",\"<\",\"<=\")+disp_values2[1]))"}}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA05 Number sequences - find a missing number", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Number sequences - find a missing number
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Find the missing number from the following sequence
\n\\[\\var{a}, \\var{a+d}, \\var{a+2*d}, \\var{a+3d}, ?, \\var{a+5d}, \\var{a+6d}, \\var{a+7d}, \\ldots\\]
", "advice": "In this sequence it is important to spot that the terms are changing by the same amount each time ($\\var{d}$ in this case). This type of sequence is called an Arithmetic Sequence.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(30..40)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-20..30)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "d", "n"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a+4d}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA09 BIDMAS without a division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nAnd is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing teh same sum gets the same answer. In this case the first thing that is in the question is Multiplication.
\nFirst work through the expression from left to right, evaluating any multiplication as you come to them. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus:
\n\\[\\var{a}-\\var{b} \\times \\var{c}\\]
\n\\[=\\var{a}-\\var{b*c}\\]
\n\\[=\\var{a-b*c}\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..8 except [a,b])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..11 except a)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate
\n$\\var{a}-\\var{b} \\times\\var{c}$
", "minValue": "{a-b*c}", "maxValue": "{a-b*c}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA10 BIDMAS with a division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Questions testing understanding of the precedence of operators using BIDMAS, applied to integers. These questions only test DMAS. That is, only Division/Multiplcation and Addition/Subtraction.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following expression:
", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\n\nAnd is a way for us to remember guidance about the order in which calculations are carried out to ensure that everyone doing teh same sum gets the same answer. In this case the first thing that is in the question is Division.
\nFirst work through the expression from left to right, evaluating any division as you come to it. You should be left with an expression involving only pluses and minuses. Evaluate this expression, again working from left to right. Thus:
\n\n\\[\\var{h}-\\var{a2*b2} \\div \\var{b2}\\]
\n\\[=\\var{h}-\\var{a2}\\]
\n\\[=\\var{h-a2}\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..9 except a2)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(7..15)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["h", "a2", "b2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{h}-\\var{a2*b2} \\div \\var{b2}$
", "minValue": "{h-a2}", "maxValue": "{h-a2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA11 BIDMAS with a division 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Applying the order of operators.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "To calculate the following expression you press a sequence of buttons on your calculator.
\n\\begin{align}\\frac{\\var{num}}{\\var{a}\\times\\var{b}}\\end{align}
\nWhich of the following would give the WRONG answer?
\n", "advice": "BIDMAS stands for:
\nBrackets
\nIndices
\nDivision
\nMultiplication
\nAddition
\nSubtraction
\nThis is the standardized order of operations that we carry out and is part of how the calculator is designed to work. The most effective way to use most modern calculators is to use either the fraction button (on scientific calculators) or as is hinted at in this question, use brackets.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 20#1)", "description": "", "templateType": "randrange", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "a*b*3", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a<>b", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "num"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\var{num}\\div (\\var{a}\\times\\var{b})$", "$\\var{num} \\div \\var{a} \\times \\var{b}$", "$\\var{num} \\div \\var{a} \\div \\var{b}$"], "matrix": [0, "1", 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA12 Negatives (add/subtract) 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculations with negative numbers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate $\\var{x}+(\\var{y})$.
", "advice": "When you add a negative number that is the same as subtracting the number so
\n\\[\\var{x}+(\\var{y})=\\var{x}-\\var{-y}=\\var{x+y}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-50..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x}+{y}", "maxValue": "{x}+{y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA13 Negatives (add/subtract) 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculations with negative numbers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate $\\var{x}-(\\var{y})$.
", "advice": "When you subtract a negative number that is the same as adding the number so
\n\\[\\var{x}-(\\var{y})=\\var{x}+\\var{-y}=\\var{x-y}\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-50..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x}-{y}", "maxValue": "{x}-{y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA14 Multiplying Negatives 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculations with negative numbers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate $\\var{x}\\times(\\var{y})$.
", "advice": "When you multiply by a negative number that is the same as doing the multiplication as if the numbers were positive and then making the result negative. This means we have
\n\\[\\var{x}\\times(\\var{y})=-(\\var{x}\\times\\var{-y})=\\var{x*y}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x*y}", "maxValue": "{x*y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA15 Multiplying Negatives 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculations with negative numbers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate $(\\var{x})\\times(\\var{y})$.
", "advice": "Multiplying two negative numbers gives a positive so we just calculate the multiplication as if both numbers were positive. This means we have
\n\\[(\\var{x})\\times(\\var{y})=\\var{-x}\\times\\var{-y}=\\var{x*y}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x*y}", "maxValue": "{x*y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA16 Dividing Negatives", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculations with negative numbers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Calculate $(\\var{x})\\div(\\var{y})$.
", "advice": "When we divide two numbers the rule is,
\nIn this calculation we have
\n\\[(\\var{x})\\div(\\var{y})=\\var{x/y}.\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(-10..10)*y", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x/y}", "maxValue": "{x/y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NA17 Worded proportion", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Proportional calculation in context.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "If {n1} adult cinema tickets cost £{n1price}, how much would it cost for {n2} adults to buy tickets to the cinema?
", "advice": "If {n1} tickets cost £{n1price} then we can calculate that one ticket costs
\n\\[£\\var{n1price}\\div\\var{n1}=£\\var{price}.\\]
\nThis means that {n2} tickets cost $\\var{n2}\\times£\\var{price}=£\\var{n2price}$
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "price": {"name": "price", "group": "Ungrouped variables", "definition": "precround(random(2..9 # 0.01),2)", "description": "", "templateType": "anything", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "random(2..9 except n1)", "description": "", "templateType": "anything", "can_override": false}, "n1price": {"name": "n1price", "group": "Ungrouped variables", "definition": "precround(n1*price,2)", "description": "", "templateType": "anything", "can_override": false}, "n2price": {"name": "n2price", "group": "Ungrouped variables", "definition": "precround(n2*price,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n1", "price", "n2", "n1price", "n2price"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "£[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "n2*price", "maxValue": "n2*price", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF01 Rounding DP", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}], "tags": [], "metadata": {"description": "Round numbers to a given number of decimal places.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "We can approximate numbers by rounding.
\nRound $\\var{c1}$ to a given number of decimal places.
", "advice": "The first thing to do when we are rounding numbers is to identify the last digit we are keeping.
\nWhen you're asked to round your answer to a number of decimal places, you need to decide whether to keep the last digit the same (rounding down) or increase it by 1 (rounding up). If the following digit is less than 5 we round down and we round up when the next digit is 5 or more.
\nTo write it down in steps:
\nIt is important to keep in mind that if the digit we are increasing is 9, it becomes zero and we increase the previous digit instead. If this digit is 9 as well, we move along to the left side until we find a digit less than 9.
\nTo round a number to a given number $n$ of decimal places, we look at the $n$th digit after the decimal point.
\nWe have $\\var{c1}$.
\ni)
\nWe look at the first digit after the decimal point. This is $\\var{cdig[4]}$ and the following digit is $\\var{cdig[3]}$ so we round updown to get $\\var{precround(c1, 1)}$.
\nii)
\nThe second digit after the decimal point is $\\var{cdig[3]}$. It is followed by $\\var{cdig[2]}$ so we round updown to get $\\var{precround(c1, 2)}$.
\niii)
\nThe 3rd decimal place is $\\var{cdig[2]}$, followed by $\\var{cdig[1]}$. We get $\\var{precround(c1, 3)}$. The 4th decimal place is $\\var{cdig[1]}$, followed by $\\var{cdig[0]}$. We get $\\var{precround(c1, 4)}$.
\nUse this link to find some resources which will help you revise this topic
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"c1": {"name": "c1", "group": "Ungrouped variables", "definition": "n_from_digits(cdig)*10^(-5) + random(1..5)", "description": "Random number with 5 decimal places.
", "templateType": "anything", "can_override": false}, "cdig": {"name": "cdig", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 5)", "description": "", "templateType": "anything", "can_override": false}, "dp": {"name": "dp", "group": "Ungrouped variables", "definition": "random(3..4)", "description": "Number of decimal places to round.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["dp", "cdig", "c1"], "variable_groups": [], "functions": {"n_from_digits": {"parameters": [["digits", "list"]], "type": "number", "language": "jme", "definition": "if(\n len(digits)=0,\n 0,\n digits[0]+10*n_from_digits(digits[1..len(digits)])\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "i) $\\var{c1}$ rounded to 1 decimal place is: [[0]]
\nii) $\\var{c1}$ rounded to 2 decimal places is: [[1]]
\niii) $\\var{c1}$ rounded to {dp} decimal places is: [[2]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, 1)", "maxValue": "precround(c1, 1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, 2)", "maxValue": "precround(c1, 2)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "precround(c1, dp)", "maxValue": "precround(c1, dp)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF06 Percentage increase", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculate the percentage increase (as a percentage) given a number and the size of the increase.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "What is the percentage increase in a class of {total} if {additional} more are added to it?
\nGive your answer to 2 decimal places.
", "advice": "To calculate a percentage increase you need to find how much the increase is as a percentage of the original number. In this question the increase is {additional} and the original number is {total} so the percentage is
\n\\[ \\frac{\\var{additional}}{\\var{total}}\\times100\\%=\\var{dpformat(additional/total,4)}\\times 100\\%=\\var{dpformat(percentage,2)}\\%\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"total": {"name": "total", "group": "Ungrouped variables", "definition": "random(15..60)", "description": "", "templateType": "anything", "can_override": false}, "additional": {"name": "additional", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "percentage": {"name": "percentage", "group": "Ungrouped variables", "definition": "additional/total*100", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["total", "additional", "percentage"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]%
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "percentage", "maxValue": "percentage", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF07 Percentage change (decrease then increase)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Compound percentage change.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "The value of a car is initially {StartingPrice}. If the value decreases by {dec}%, and then increases by {inc}%, what is the final value?
\nGive your answer correct to two decimal places.
", "advice": "There is a {dec}% decrease in price. This means that price after the decrease will be {100-dec}% of the old price.
\n\\[\\frac{\\var{100-dec}}{100} \\times \\var{StartingPrice} = \\var{(100-dec)/100*StartingPrice}\\]
\nThen there is a {inc}% increase in price. This means the final price will be {100+inc}% of the price after the decrease.
\n\\[\\frac{\\var{100+inc}}{100} \\times \\var{(100-dec)/100*StartingPrice} = £\\var{dpformat((100+inc)/100*(100-dec)/100*StartingPrice,2)}\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"dec": {"name": "dec", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "inc": {"name": "inc", "group": "Ungrouped variables", "definition": "random(1..50)", "description": "", "templateType": "anything", "can_override": false}, "FinalPrice": {"name": "FinalPrice", "group": "Ungrouped variables", "definition": "StartingPrice*(1-dec/100)*(1+inc/100)", "description": "", "templateType": "anything", "can_override": false}, "StartingPrice": {"name": "StartingPrice", "group": "Ungrouped variables", "definition": "random(600..8000 # 10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["dec", "inc", "FinalPrice", "StartingPrice"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n£[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "FinalPrice", "maxValue": "FinalPrice", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF08 Reverse percentages", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": ["decrease", "percentages", "taxonomy"], "metadata": {"description": "Find the original price before a discount by dividing the new price by the percentage discount.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "{name1} and {name2} are friends. {name1} noticed {name2}'s new {item} when he came over to visit her house. He immediately knew he wanted to buy the same model. When he got home, he bought the {item} online for £{newprice}.
", "advice": "We need to find the original price paid by {name2}. This value represents 100%.
\nBy the time {name1} bought the {item}, the price had decreased by {percentage}%.
\n{name1} therefore paid {100-percentage}% of the price {name2} paid.
\n\nWe use the unitary method to find the original price. We know the price paid by {name1}.
\n\\[\\var{100-percentage}\\text{%} = \\var{newprice} \\text{.}\\]
\nDivide both sides by {100-percentage} to get
\n\\[\\begin{align} 1\\text{%} &= \\var{newprice} \\div \\var{100-percentage} \\\\&= \\var{newprice/(100-percentage)} \\text{.} \\end{align}\\]
\nMultiply both sides by 100 to get
\n\\[\\begin{align} 100\\text{%} &= \\var{newprice/(100-percentage)} \\times 100 \\\\&= \\var{newprice/(100-percentage)*100} \\\\&= \\var{oldprice}\\text{.} \\end{align}\\]
\nThis is the original price paid by {name2} before the {percentage}% decrease.
\nWe can check our answer with a different method.
\n\\[\\begin{align} \\var{100-percentage}\\text{% of } \\var{oldprice} &= \\var{(100-percentage)/100} \\times \\var{oldprice} \\\\&= \\var{(100-percentage)/100*oldprice} \\\\&= \\var{precround((100-percentage)/100*oldprice, 2)} \\text{.} \\end{align}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"newprice": {"name": "newprice", "group": "Ungrouped variables", "definition": "precround(oldprice*(100-percentage)/100,2)", "description": "", "templateType": "anything", "can_override": false}, "name2": {"name": "name2", "group": "Ungrouped variables", "definition": "random(\"Kaden\",\"Ola\",\"Pat\",\"Skylar\",\"Wren\",\"Zendaya\")", "description": "", "templateType": "anything", "can_override": false}, "name1": {"name": "name1", "group": "Ungrouped variables", "definition": "random(\"Adair\",\"Aya\",\"Bergen\",\"Dua\",\"Fadhili\",\"Harper\")", "description": "", "templateType": "anything", "can_override": false}, "oldprice": {"name": "oldprice", "group": "Ungrouped variables", "definition": "switch(\n item = \"TV\", random(179.99..1199.99 #10), \n item = \"laptop\", random(209.99..799.99 #10),\n item = \"smartphone\", random(109.99..799.99 #10),\n item = \"PC\", random(209.99..969.99 #10),\n item = \"gaming console\", random(89.99..349.99 #10),\n 399.99)", "description": "", "templateType": "anything", "can_override": false}, "percentage": {"name": "percentage", "group": "Ungrouped variables", "definition": "random(5..30)", "description": "Discount percentage.
", "templateType": "anything", "can_override": false}, "item": {"name": "item", "group": "Ungrouped variables", "definition": "random(\"TV\", \"laptop\", \"smartphone\", \"PC\", \"gaming console\")", "description": "The bought item.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "precround(precround(oldprice*(100-percentage)/100,2)*100/(100-percentage),2) = oldprice", "maxRuns": "1000"}, "ungrouped_variables": ["item", "name1", "percentage", "name2", "oldprice", "newprice"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "When {name1} told {name2} how much he had paid for the {item}, {name2} said the price had decreased by {percentage}% since she bought it.
\nHow much did {name2} pay for the {item}?
\n£ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "oldprice", "maxValue": "oldprice", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF09 Percentage of amount 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Find a percentage of an amount.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "What is {x}% of {y}?
", "advice": "Taking {x}% of {y} is calculated by multiplying,
\n\\[\\frac{\\var{x}}{100}\\times\\var{y}.\\]
\nFor this question we can calculate this by noticing that 10% of {y} is {y*0.1} and then since $\\var{x}\\%=\\var{x/10}\\times10\\%$ we can calculate {x}% of {y} as,
\\[\\var{x/10}\\times10\\%\\times \\var{y}=\\var{x/10}\\times\\var{y*0.1}=\\var{x/100*y}.\\]
Use this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(10..90 #10)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(10.. 100 # 10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "y*(x/100)", "maxValue": "y*(x/100)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF10 Percentage of amount 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Calculate one number as percentage of another.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "To find the percentage of a number we can use the formula:
\n\\[ \\text{New value } = \\text{Original value } \\times \\text{Percentage in decimal form} \\]
\nFirstly, to convert a percentage into decimal form we need to divide by $100$:
\n\\[ \\var{p} \\% = \\var{p/100} \\]
\nTherefore,
\n\\[ \\begin{split} \\var{p} \\% \\,\\text{ of } \\var{og} &\\,= \\var{og} \\times \\var{p/100} \\\\ &\\,= \\var{ans} \\end{split} \\]
\n\nUse this link to find resources to help you revise how to work out percentages.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"p": {"name": "p", "group": "Ungrouped variables", "definition": "random(1..99)", "description": "", "templateType": "anything", "can_override": false}, "og": {"name": "og", "group": "Ungrouped variables", "definition": "random(101..999)", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "og*p*0.01", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["p", "og", "ans"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find {p}% of {og}
", "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF11 One number as a percentage of another", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Adelle Colbourn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2083/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Given the number of international students enrolled on a course of $n$ students, calculate the percentage of 'home' students.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "\n\n\n\n{num_students} of the {class_size} students enrolled on a course are international students. What percentage are 'home' students?
", "advice": "First work out the number of students who are not international. In this case it is {class_size} - {num_students} = {class_size-num_students} students.
\nThen write this as a fraction out of {class_size}. $ \\frac{\\var{class_size-num_students}} {\\var{class_size}} $
\nThen convert this to a percentage. You should put this fraction into your calculator and then multiply by 100:
\n$ \\frac{\\var{class_size-num_students}} {\\var{class_size}} \\times 100 = \\var{(class_size-num_students)/class_size*100}\\%$
\nUse this link to find resources to help you revise how to calculate percentages.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"num_students": {"name": "num_students", "group": "Ungrouped variables", "definition": "per*class_size/100\n", "description": "The number of students in the class who do speak a language other than English.
", "templateType": "anything", "can_override": false}, "class_size": {"name": "class_size", "group": "Ungrouped variables", "definition": "random(80..300)", "description": "", "templateType": "anything", "can_override": false}, "per": {"name": "per", "group": "Ungrouped variables", "definition": "random(5..90 except 50)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "num_students = precround(num_students,0) AND (num_students<>class_size/2 AND class_size<>100)", "maxRuns": 100}, "ungrouped_variables": ["num_students", "class_size", "per"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$\\var{class_size-num_students}\\%$", "$\\var{num_students*100/class_size}\\%$", "$\\var{num_students}\\%$", "$\\var{(class_size-num_students)/class_size*100}\\%$"], "matrix": [0, 0, 0, "1"], "distractors": ["Have you converted this to a percentage? Click on Reveal Answer and scroll down for Advice regarding this question.", "How many students do NOT speak a language other than English at home? Click on Reveal Answer and scroll down for Advice regarding this question.", "How many students do NOT speak a language other than English at home? Then convert this to a percentage. Click on Reveal Answer and scroll down for Advice regarding this question.", "Well done!"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF12 Simplify (cancel down) Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Calculating the LCM and HCF of numbers by using prime factorisation.", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Express the fraction below in its simplest form:
\n\\[\\frac{\\var{x}}{\\var{y}}\\]
", "advice": "To simplify a fraction we need to divide both numbers by their common factors.
\nWe can write $\\var{x}$ and $\\var{y}$ as a product of prime factors as follows:
\n$\\var{x}=\\var{show_factors(x)}$
\n$\\var{y}=\\var{show_factors(y)}$.
\nSo to fully simplify the fraction we need to divide both $\\var{x}$ and $\\var{y}$ by
\n\\[\\var{show_factors(hcf_xy)}.\\]
\nThis gives us the fraction
\n\\[\\frac{\\var{x/hcf_xy}}{\\var{y/hcf_xy}}\\]
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x_powers": {"name": "x_powers", "group": "Ungrouped variables", "definition": "[random(1..3),random(0..3),random(0,1)]", "description": "", "templateType": "anything", "can_override": false}, "y_powers": {"name": "y_powers", "group": "Ungrouped variables", "definition": "[random(1..3),random(0..3),random(0,1)]", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "2^x_powers[0]*3^x_powers[1]*5^x_powers[2]", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "2^y_powers[0]*3^y_powers[1]*5^y_powers[2]", "description": "", "templateType": "anything", "can_override": false}, "hcf_xy": {"name": "hcf_xy", "group": "Ungrouped variables", "definition": "2^min(x_powers[0],y_powers[0])*3^min(x_powers[1],y_powers[1])*5^min(x_powers[2],y_powers[2])", "description": "", "templateType": "anything", "can_override": false}, "lcm_xy": {"name": "lcm_xy", "group": "Ungrouped variables", "definition": "2^max(x_powers[0],y_powers[0])*3^max(x_powers[1],y_powers[1])*5^max(x_powers[2],y_powers[2])", "description": "", "templateType": "anything", "can_override": false}, "primes": {"name": "primes", "group": "Ungrouped variables", "definition": "[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "500"}, "ungrouped_variables": ["x_powers", "y_powers", "x", "y", "hcf_xy", "lcm_xy", "primes"], "variable_groups": [], "functions": {"show_factors": {"parameters": [["n", "number"]], "type": "string", "language": "jme", "definition": "latex( // mark the output as a string of raw LaTeX\n join(\n map(\n if(a=1,p,p+'^{'+a+'}'), // when the exponent is 1, return p, otherwise return p^{exponent}\n [p,a],\n filter(x[1]>0,x,zip(primes,factorise(n))) // for all the primes p which are factors of n, return p and its exponent\n ),\n ' \\\\times ' // join all the prime powers up with \\times symbols\n )\n)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x/y}", "maxValue": "{x/y}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": true, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF13 Converting mixed numbers to top heavy", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": ["converting improper fractions to mixed numbers", "converting mixed numbers to improper fractions", "equivalent fractions", "improper fractions", "mixed numbers"], "metadata": {"description": "This question tests the student's ability to identify equivalent fractions through spotting a fraction which is not equivalent amongst a list of otherwise equivalent fractions. It also tests the students ability to convert mixed numbers into their equivalent improper fractions. It then does the reverse and tests their ability to convert an improper fraction into an equivalent mixed number.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "A mixed number is a number consisting of an integer and a proper fraction, i.e. a number in the form $ a \\displaystyle \\frac{b}{c}$ where $a$ is an integer and $\\displaystyle\\frac{b}{c}$ is a proper fraction: $b$ is smaller than $c$.
\nAn improper fraction is a fraction where the numerator is larger than the denominator, i.e. a number of the form $\\displaystyle\\frac{d}{e}$ where the numerator, $d$, is greater than the denominator, $e$.
\nTo convert a mixed number into an improper fraction, multiply the integer part of the mixed number, $a$, by the denominator, $c$.
\nThe numerator of the improper fraction will be equal to this added to what was already on the numerator of the proper fraction.
\nThe denominator of the proper fraction will stay the same when it converts to an improper fraction to give a final answer of
\n$\\displaystyle\\frac{({a}\\times{c})+b}{c}$.
\n\\[
{\\var{f}\\frac{\\var{g_coprime}}{\\var{h_coprime}}} = \\frac{({\\var{f}}\\times{\\var{h_coprime}})+{\\var{g_coprime}}}{{\\var{h_coprime}}}=\\simplify{{num}/{h_coprime}}\\text{.}
\\]
Use this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"g": {"name": "g", "group": "Ungrouped variables", "definition": "random(1..h except h)", "description": "Random number between 1 and 15
", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "Ungrouped variables", "definition": "g/gcd_gh", "description": "PART C
", "templateType": "anything", "can_override": false}, "gcd_gh": {"name": "gcd_gh", "group": "Ungrouped variables", "definition": "gcd(g,h)", "description": "PART C
", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "((h_coprime*f)+g_coprime)", "description": "numerator for the improper fraction c(i)
", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(10 .. 24#1)", "description": "Random number between 1 and 24
", "templateType": "randrange", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "Ungrouped variables", "definition": "h/gcd_gh", "description": "PART C
", "templateType": "anything", "can_override": false}, "gcdb": {"name": "gcdb", "group": "Ungrouped variables", "definition": "gcd({num},{h_coprime})", "description": "gcd of num and h
", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(2 .. 5#1)", "description": "Random number between 1 and 5
", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["f", "g", "h", "gcd_gh", "g_coprime", "h_coprime", "num", "gcdb"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Write the mixed number as an improper fraction and reduce it down to its simplest form.
\n$\\displaystyle{\\var{f}\\frac{\\var{g_coprime}}{\\var{h_coprime}}} =$
Manipulate fractions in order to add and subtract them. The difficulty escalates through the inclusion of a whole integer and a decimal, which both need to be converted into a fraction before the addition/subtraction can take place.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following addition, giving the fraction in its simplest form.
", "advice": "$\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}+\\frac{\\var{c_coprime}}{\\var{d_coprime}}$
\nTo add or subtract fractions, we need to have a common denominator on both fractions.
\nTo get a common denominator, we need to find the lowest common multiple of the two denominators.
\nThe lowest common multiple of $\\var{b_coprime}$ and $\\var{d_coprime}$ is $\\var{lcm}.$
\nThis will be the new denominator, and we need to multiply each fraction individually to ensure we get this denominator.
\nFor $\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}$, we need to multiply the fraction by $\\displaystyle\\frac{\\var{lcm_b}}{\\var{lcm_b}}$ to give $\\displaystyle\\frac{\\var{alcm_b}}{\\var{lcm}}.$
\nFor $\\displaystyle\\frac{\\var{c_coprime}}{\\var{d_coprime}}$, we need to multiply the fraction by $\\displaystyle\\frac{\\var{lcm_d}}{\\var{lcm_d}}$ to give $\\displaystyle\\frac{\\var{clcm_d}}{\\var{lcm}}.$
\nNow that we have each fraction in terms of a common denominator, we can now add the fractions together.
\n$\\displaystyle\\frac{\\var{alcm_b}}{\\var{lcm}}+\\frac{\\var{clcm_d}}{\\var{lcm}}=\\frac{(\\var{alcm_b}+\\var{clcm_d})}{\\var{lcm}}=\\frac{\\var{alcmclcm}}{\\var{lcm}}.$
\nFrom this, we can try to simplify the result down by finding the greatest common divisor of the numerator and denominator and dividing the whole fraction by this amount.
\nThe greatest common divisor of $\\var{alcmclcm}$ and $\\var{lcm}$ is $\\var{gcd}.$
\nSimplifying using this value gives a final answer of $\\displaystyle\\frac{\\var{num}}{\\var{denom}}.$
\nTherefore, the expression cannot be simplified further, and $\\displaystyle\\frac{\\var{num}}{\\var{denom}}$ is the final answer.
\n\nFind out more about this topic using our resource
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"d_coprime": {"name": "d_coprime", "group": "Part a", "definition": "d/gcd_cd", "description": "", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Part a", "definition": "lcm/gcd", "description": "PART A answer for the denominator of part a
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Part a", "definition": "random(1..5)", "description": "PART A variable a - random number between 1 and 5.
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Part a", "definition": "random(5..15)", "description": "PART A variable d - random number between 5 and 15.
", "templateType": "anything", "can_override": false}, "c_coprimeb_coprime": {"name": "c_coprimeb_coprime", "group": "Part a", "definition": "c_coprime*b_coprime", "description": "PART A variable c times variable b
", "templateType": "anything", "can_override": false}, "gcd_ab": {"name": "gcd_ab", "group": "Part a", "definition": "gcd(a,b)", "description": "PART A simplification of fractions in the question.
", "templateType": "anything", "can_override": false}, "lcm_b": {"name": "lcm_b", "group": "Part a", "definition": "lcm/b_coprime", "description": "PART A lcm of b and d, divided by b
", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Part a", "definition": "alcmclcm/gcd", "description": "PART A answer for the numerator input
", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part a", "definition": "random(5..10 except d)", "description": "PART A variable b - random number between 5 and 10 and not the same value as d.
", "templateType": "anything", "can_override": false}, "a_coprimed_coprime": {"name": "a_coprimed_coprime", "group": "Part a", "definition": "a_coprime*d_coprime", "description": "PART A variable a times variable d
", "templateType": "anything", "can_override": false}, "lcm_d": {"name": "lcm_d", "group": "Part a", "definition": "lcm/d_coprime", "description": "PART A lcm of b and d, divided by d
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Part a", "definition": "random(1..5)", "description": "PART A variable c - random number between 1 and 5.
", "templateType": "anything", "can_override": false}, "clcm_d": {"name": "clcm_d", "group": "Part a", "definition": "c_coprime*lcm_d", "description": "PART A variable c times the lcm of b and d, divided by d
", "templateType": "anything", "can_override": false}, "gcd": {"name": "gcd", "group": "Part a", "definition": "gcd(alcmclcm,lcm)", "description": "PART A greatest common divisor of the variables alcmclcm and lcm
", "templateType": "anything", "can_override": false}, "alcm_b": {"name": "alcm_b", "group": "Part a", "definition": "a_coprime*lcm_b", "description": "PART A variable a times the lcm of b and d, divided by b
", "templateType": "anything", "can_override": false}, "a_coprime": {"name": "a_coprime", "group": "Part a", "definition": "a/gcd_ab", "description": "PART A
", "templateType": "anything", "can_override": false}, "b_coprime": {"name": "b_coprime", "group": "Part a", "definition": "b/gcd_ab", "description": "PART A
", "templateType": "anything", "can_override": false}, "gcd_cd": {"name": "gcd_cd", "group": "Part a", "definition": "gcd(c,d)", "description": "PART A
", "templateType": "anything", "can_override": false}, "lcm": {"name": "lcm", "group": "Part a", "definition": "lcm(b_coprime,d_coprime)", "description": "PART A lowest common multiple of variable b_coprime and variable d_coprime.
", "templateType": "anything", "can_override": false}, "alcmclcm": {"name": "alcmclcm", "group": "Part a", "definition": "alcm_b+clcm_d", "description": "PART A
", "templateType": "anything", "can_override": false}, "c_coprime": {"name": "c_coprime", "group": "Part a", "definition": "c/gcd_cd", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["a", "a_coprime", "b", "b_coprime", "gcd_ab", "c", "c_coprime", "d", "d_coprime", "gcd_cd", "lcm", "a_coprimed_coprime", "c_coprimeb_coprime", "lcm_b", "lcm_d", "alcm_b", "clcm_d", "alcmclcm", "gcd", "num", "denom"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}+\\frac{\\var{c_coprime}}{\\var{d_coprime}}=$
Manipulate fractions in order to add and subtract them. The difficulty escalates through the inclusion of a whole integer and a decimal, which both need to be converted into a fraction before the addition/subtraction can take place.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following additions and subtractions, giving each fraction in its simplest form. Write the numerator (the top number) as negative if the fraction is negative.
", "advice": "$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}-\\frac{\\var{h_coprime}}{\\var{j_coprime}}+2.$
\n\nThe two fractions can be individually multiplied to achieve a common denominator of the lowest common multiple, $\\var{lcm2}.$
\n$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}$ becomes $\\displaystyle\\frac{\\var{flcm2_g}}{\\var{lcm2}}$ and $\\displaystyle\\frac{\\var{h_coprime}}{\\var{j_coprime}}$ becomes $\\displaystyle\\frac{\\var{hlcm2_j}}{\\var{lcm2}}.$
\nWe can now subtract the second fraction from the first.
\n$\\displaystyle\\frac{\\var{flcm2_g}}{\\var{lcm2}}-\\frac{\\var{hlcm2_j}}{\\var{lcm2}}=\\frac{\\var{flcmhlcm}}{\\var{lcm2}}.$
\n\nFind out more about this topic using our resource.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"hlcm2_j": {"name": "hlcm2_j", "group": "Part b", "definition": "h_coprime*lcm2_j", "description": "PART B
", "templateType": "anything", "can_override": false}, "lcm2": {"name": "lcm2", "group": "Part b", "definition": "lcm(g_coprime,j_coprime)", "description": "PART B
", "templateType": "anything", "can_override": false}, "gcd_fg": {"name": "gcd_fg", "group": "Part b", "definition": "gcd(f,g)", "description": "PART B gcd of first fraction num and denom
", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Part b", "definition": "random(2..10 except h)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Part b", "definition": "random(1..10)", "description": "PART B
", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Part b", "definition": "random(1..10)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "Part b", "definition": "h/gcd_hj", "description": "PART B
", "templateType": "anything", "can_override": false}, "lcm2_j": {"name": "lcm2_j", "group": "Part b", "definition": "lcm2/j_coprime", "description": "PART B
", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "Part b", "definition": "j/gcd_hj", "description": "PART B
", "templateType": "anything", "can_override": false}, "flcmhlcm": {"name": "flcmhlcm", "group": "Part b", "definition": "flcm2_g-hlcm2_j", "description": "PART B
", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "Part b", "definition": "g/gcd_fg", "description": "PART B g_coprime
", "templateType": "anything", "can_override": false}, "gcd_hj": {"name": "gcd_hj", "group": "Part b", "definition": "gcd(h,j)", "description": "PART B
", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Part b", "definition": "random(2..10 except f except j)", "description": "PART B
", "templateType": "anything", "can_override": false}, "flcm2_g": {"name": "flcm2_g", "group": "Part b", "definition": "f_coprime*lcm2_g", "description": "PART B
", "templateType": "anything", "can_override": false}, "lcm2_g": {"name": "lcm2_g", "group": "Part b", "definition": "lcm2/g_coprime", "description": "PART B
", "templateType": "anything", "can_override": false}, "f_coprime": {"name": "f_coprime", "group": "Part b", "definition": "f/gcd_fg", "description": "PART B
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part b", "variables": ["f", "f_coprime", "g", "g_coprime", "gcd_fg", "h", "h_coprime", "j", "j_coprime", "gcd_hj", "lcm2", "lcm2_g", "flcm2_g", "lcm2_j", "hlcm2_j", "flcmhlcm"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}-\\frac{\\var{h_coprime}}{\\var{j_coprime}}=$
Several problems involving the multiplication of fractions, with increasingly difficult examples, including a mixed fraction and a squared fraction. The final part is a word problem.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following multiplication, giving the answer in its simplest form.
", "advice": "\nTo multiply $\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$, address the numerators and denominators separately.
\nMultiply the numerators across both fractions.
\n$\\var{a_coprime}\\times\\var{b_coprime}=\\var{ab}$,
\nand then multiply the denominators across both fractions.
\n$\\var{c_coprime}\\times\\var{d_coprime}=\\var{cd}$.
\nThe values of the multiplied numerators and denominators will be the numerator and denominator of the new fraction: $\\displaystyle\\frac{\\var{ab}}{\\var{cd}}$.
\nThis answer may need simplifying down, and to do this, find the greatest common divisor in both the numerator and denominator and divide by this number.
\nThe greatest common divisor of $\\var{ab}$ and $\\var{cd}$ is $\\var{gcd}$.
\nBy using $\\var{gcd}$ to cancel down the fraction, the final answer is $\\displaystyle\\simplify{{ab}/{cd}}$.
\n\nUse this link to find some resources which will help you revise this topic.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"k": {"name": "k", "group": "Part b", "definition": "random(1..7 except j)", "description": "Random number between 1 and 20
", "templateType": "anything", "can_override": false}, "bb": {"name": "bb", "group": "Part d", "definition": "28*aa", "description": "", "templateType": "anything", "can_override": false}, "cc": {"name": "cc", "group": "Part d", "definition": "bb/7", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Part b", "definition": "random(1 .. 7#1)", "description": "Random number between 1 and 20.
", "templateType": "randrange", "can_override": false}, "cd": {"name": "cd", "group": "Part a", "definition": "c_coprime*d_coprime", "description": "Variable c times variable d.
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Part a", "definition": "random(2..12 except c)", "description": "Random number from 1 to 12.
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Part a", "definition": "random(2 .. 12#1)", "description": "Random number from 1 to 12.
", "templateType": "randrange", "can_override": false}, "l": {"name": "l", "group": "Part c", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "numif": {"name": "numif", "group": "Part b", "definition": "(f*h_coprime)+g_coprime", "description": "Numerator of the improper fraction converted from a mixed number.
", "templateType": "anything", "can_override": false}, "gcd_gh": {"name": "gcd_gh", "group": "Part b", "definition": "gcd(g,h)", "description": "", "templateType": "anything", "can_override": false}, "fh": {"name": "fh", "group": "Part b", "definition": "f*h_coprime", "description": "Variable f times variable h
", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "Part b", "definition": "g/gcd_gh", "description": "", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "Part b", "definition": "j/gcd_kj", "description": "", "templateType": "anything", "can_override": false}, "gcd_kj": {"name": "gcd_kj", "group": "Part b", "definition": "gcd(k,j)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Part b", "definition": "random(1 .. 4#1)", "description": "Random number between 1 and 4 - integer part of the mixed number.
", "templateType": "randrange", "can_override": false}, "c_coprime": {"name": "c_coprime", "group": "Part a", "definition": "c/gcd_ac", "description": "", "templateType": "anything", "can_override": false}, "gcd": {"name": "gcd", "group": "Part a", "definition": "gcd(ab,cd)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part a", "definition": "random(2 .. 12#1)", "description": "Random number from 1 to 12.
", "templateType": "randrange", "can_override": false}, "d_coprime": {"name": "d_coprime", "group": "Part a", "definition": "d/gcd_bd", "description": "", "templateType": "anything", "can_override": false}, "ddcc": {"name": "ddcc", "group": "Part d", "definition": "dd*cc", "description": "", "templateType": "anything", "can_override": false}, "gcdb": {"name": "gcdb", "group": "Part b", "definition": "gcd(num,denom)", "description": "", "templateType": "anything", "can_override": false}, "gcd_ac": {"name": "gcd_ac", "group": "Part a", "definition": "gcd(a,c)", "description": "PART A
", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Part b", "definition": "j_coprime*(h_coprime/gcda)", "description": "Denominator of new fraction.
", "templateType": "anything", "can_override": false}, "l_coprime": {"name": "l_coprime", "group": "Part c", "definition": "l/gcd_lm", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Part c", "definition": "random(1..12 except l)", "description": "", "templateType": "anything", "can_override": false}, "a_coprime": {"name": "a_coprime", "group": "Part a", "definition": "a/gcd_ac", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Part b", "definition": "random(7 .. 10#1)", "description": "Random number between 1 and 20.
", "templateType": "randrange", "can_override": false}, "num": {"name": "num", "group": "Part b", "definition": "k_coprime*{numif/gcda}", "description": "Numerator of gap 0
", "templateType": "anything", "can_override": false}, "m_coprime": {"name": "m_coprime", "group": "Part c", "definition": "m/gcd_lm", "description": "", "templateType": "anything", "can_override": false}, "aa": {"name": "aa", "group": "Part d", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "gcda": {"name": "gcda", "group": "Part b", "definition": "gcd({numif},{h_coprime})", "description": "gcd of the numerator of the improper fraction
", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "Part b", "definition": "h/gcd_gh", "description": "", "templateType": "anything", "can_override": false}, "ee": {"name": "ee", "group": "Part d", "definition": "ddcc/4", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Part a", "definition": "random(3,5,7,11)", "description": "Random number from 1 to 12.
", "templateType": "anything", "can_override": false}, "b_coprime": {"name": "b_coprime", "group": "Part a", "definition": "b/gcd_bd", "description": "", "templateType": "anything", "can_override": false}, "l_coprime2": {"name": "l_coprime2", "group": "Part c", "definition": "l_coprime^2/gcd_lcmc", "description": "", "templateType": "anything", "can_override": false}, "k_coprime": {"name": "k_coprime", "group": "Part b", "definition": "k/gcd_kj", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Part b", "definition": "Random(3,5,7,11,13,17)", "description": "Random number between 1 and 20
", "templateType": "anything", "can_override": false}, "dd": {"name": "dd", "group": "Part d", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "gcd_lcmc": {"name": "gcd_lcmc", "group": "Part c", "definition": "gcd((l_coprime)^2,(m_coprime)^2)", "description": "", "templateType": "anything", "can_override": false}, "m_coprime2": {"name": "m_coprime2", "group": "Part c", "definition": "m_coprime^2/gcd_lcmc", "description": "", "templateType": "anything", "can_override": false}, "gcd_lm": {"name": "gcd_lm", "group": "Part c", "definition": "gcd(l,m)", "description": "", "templateType": "anything", "can_override": false}, "ab": {"name": "ab", "group": "Part a", "definition": "a_coprime*b_coprime", "description": "Variable a times variable b
", "templateType": "anything", "can_override": false}, "gcd_bd": {"name": "gcd_bd", "group": "Part a", "definition": "gcd(b,d)", "description": "", "templateType": "anything", "can_override": false}, "gcd2": {"name": "gcd2", "group": "Part b", "definition": "gcd(num,denom)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["a", "b", "c", "d", "a_coprime", "b_coprime", "c_coprime", "d_coprime", "gcd_ac", "gcd_bd", "ab", "cd", "gcd"]}, {"name": "Part b", "variables": ["f", "g", "g_coprime", "h", "h_coprime", "gcd_gh", "k", "k_coprime", "j", "j_coprime", "gcd_kj", "fh", "numif", "num", "denom", "gcda", "gcdb", "gcd2"]}, {"name": "Part d", "variables": ["aa", "bb", "cc", "dd", "ddcc", "ee"]}, {"name": "Part c", "variables": ["l", "m", "gcd_lm", "l_coprime", "m_coprime", "gcd_lcmc", "l_coprime2", "m_coprime2"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$ =
Several problems involving dividing fractions, with increasingly difficult examples, including mixed numbers and complex fractions.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following sums involving division of fractions. Simplify your answers where possible.
", "advice": "When faced with dividing fractions, it much easier to switch one of the fractions around and multiply them together instead of divide them.
\n\\[ \\left( \\frac{\\var{f_coprime}}{\\var{g_coprime}}\\div\\frac{\\var{h_coprime}}{\\var{j_coprime}} \\right) \\equiv \\left( \\frac{\\var{f_coprime}}{\\var{g_coprime}}\\times\\frac{\\var{j_coprime}}{\\var{h_coprime}} \\right) = \\frac{\\var{fj}}{\\var{gh}} \\]
\nThen, simplify by finding the highest common divisor in the numerator and denominator which in this case is $\\var{gcd1}$.
\nThis gives a final answer of $\\displaystyle\\simplify{{fj}/{gh}}$.
\n\n\nUse this link to find some resources which will help you revise this topic
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"f4h4": {"name": "f4h4", "group": "Ungrouped variables", "definition": "f4*h4_coprime", "description": "variable f4 times h4.
\nUsed in part c)
", "templateType": "anything", "can_override": false}, "g4_coprime": {"name": "g4_coprime", "group": "Ungrouped variables", "definition": "g4/gcd(g4,h4)", "description": "PART C
", "templateType": "anything", "can_override": false}, "h4": {"name": "h4", "group": "Ungrouped variables", "definition": "random(5..8 except g4)", "description": "Random number but not the same number as variable g4.
\nUsed in part c.
", "templateType": "anything", "can_override": false}, "h3_coprime": {"name": "h3_coprime", "group": "Ungrouped variables", "definition": "h3/gcd(g3,h3)", "description": "PART C
", "templateType": "anything", "can_override": false}, "f_coprime": {"name": "f_coprime", "group": "part a", "definition": "f/gcd(f,g)", "description": "PART A
", "templateType": "anything", "can_override": false}, "g_coprime": {"name": "g_coprime", "group": "part a", "definition": "g/gcd(f,g)", "description": "PART A
", "templateType": "anything", "can_override": false}, "j1_coprime": {"name": "j1_coprime", "group": "Ungrouped variables", "definition": "j1/gcd(h1,j1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "gcd2": {"name": "gcd2", "group": "Ungrouped variables", "definition": "gcd(f1j1,g1h1)", "description": "greatest common divisor of variables f1j1 and g1h1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "g1_coprime": {"name": "g1_coprime", "group": "Ungrouped variables", "definition": "g1/gcd(f1,g1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h1_coprime": {"name": "h1_coprime", "group": "Ungrouped variables", "definition": "h1/gcd(h1,j1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "gcd3": {"name": "gcd3", "group": "Ungrouped variables", "definition": "gcd(num,denom)", "description": "greatest common denominator for part c.
", "templateType": "anything", "can_override": false}, "j1": {"name": "j1", "group": "Ungrouped variables", "definition": "random(h1..11 except h1)", "description": "Random number between 2 and 20 and not the same value as variable h1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "g1h1": {"name": "g1h1", "group": "Ungrouped variables", "definition": "g1_coprime*h1_coprime", "description": "variable g1 times h1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "part a", "definition": "random(2..10)", "description": "Random number between 2 and 10.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "f4": {"name": "f4", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "Random number.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "Random number between 2 and 20.
\nUsed in part b)
", "templateType": "anything", "can_override": false}, "g3": {"name": "g3", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "Random number.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "f3h3": {"name": "f3h3", "group": "Ungrouped variables", "definition": "f3*h3_coprime", "description": "variable f3 times h3.
", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "part a", "definition": "random(2..10)", "description": "Random number from 2 to 10.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "gh": {"name": "gh", "group": "part a", "definition": "g_coprime*h_coprime", "description": "variable g times variable h.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "j_coprime": {"name": "j_coprime", "group": "part a", "definition": "j/gcd(h,j)", "description": "PART A
", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Ungrouped variables", "definition": "h3_coprime*(f4h4+g4_coprime)", "description": "Unsimplified denominator of part c.
", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "part a", "definition": "random(h..12 except h)", "description": "Random number between 2 and 10 and not the same value as h.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "f1j1": {"name": "f1j1", "group": "Ungrouped variables", "definition": "f1_coprime*j1_coprime", "description": "variable f1 times j1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "h4_coprime": {"name": "h4_coprime", "group": "Ungrouped variables", "definition": "h4/gcd(g4,h4)", "description": "PART C
", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Ungrouped variables", "definition": "random(f1..11 except f1) ", "description": "Random number between 2 and 30 and not the same value as variable f1.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "fj": {"name": "fj", "group": "part a", "definition": "f_coprime*j_coprime", "description": "variable f times variable j.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "f3": {"name": "f3", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "Random number between 2 and 6.
\nUsed in part c).
", "templateType": "randrange", "can_override": false}, "f1_coprime": {"name": "f1_coprime", "group": "Ungrouped variables", "definition": "f1/gcd(f1,g1)", "description": "PART B
", "templateType": "anything", "can_override": false}, "h3": {"name": "h3", "group": "Ungrouped variables", "definition": "random(5..8)", "description": "Random number and not the same value as variable g3.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "gcd1": {"name": "gcd1", "group": "part a", "definition": "gcd(fj,gh)", "description": "greatest common divisor of variable fj and gh.
\nUsed in part a).
", "templateType": "anything", "can_override": false}, "g3_coprime": {"name": "g3_coprime", "group": "Ungrouped variables", "definition": "g3/gcd(g3,h3)", "description": "PART C
", "templateType": "anything", "can_override": false}, "h_coprime": {"name": "h_coprime", "group": "part a", "definition": "h/gcd(h,j)", "description": "PART A
", "templateType": "anything", "can_override": false}, "g4": {"name": "g4", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "Random number.
\nUsed in part c).
", "templateType": "anything", "can_override": false}, "h1": {"name": "h1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "Random number between 2 and 20.
\nUsed in part b).
", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "h4_coprime*(f3h3+g3_coprime)", "description": "numerator of the improper fraction in part c. Unsimplified.
", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "part a", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["f1", "g1", "f1_coprime", "g1_coprime", "h1", "j1", "h1_coprime", "j1_coprime", "f1j1", "g1h1", "gcd2", "f3", "g3", "h3", "g3_coprime", "h3_coprime", "f4", "g4", "h4", "g4_coprime", "h4_coprime", "f3h3", "f4h4", "num", "denom", "gcd3"], "variable_groups": [{"name": "part a", "variables": ["g", "f", "f_coprime", "g_coprime", "h", "j", "h_coprime", "j_coprime", "fj", "gh", "gcd1"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle\\frac{\\var{f_coprime}}{\\var{g_coprime}}\\div\\frac{\\var{h_coprime}}{\\var{j_coprime}}=$
Put fractions in size order.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Which of these two fractions is the largest?
", "advice": "To find which is bigger of $\\frac{\\var{top1}}{\\var{bot1}}$ and $\\frac{\\var{top2}}{\\var{bot2}}$ we need them to have the same denominator. A way to do this is to multiply the top and bottom of $\\frac{\\var{top1}}{\\var{bot1}}$ by $\\var{bot2}$ and multiply the top and bottom of $\\frac{\\var{top2}}{\\var{bot2}}$ by {bot1}. This doesn't change the the value of the fractions as this is just like multiplying by one.
\n\\[\\frac{\\var{top1}}{\\var{bot1}}=\\frac{\\var{top1*bot2}}{\\var{bot1*bot2}},\\quad \\frac{\\var{top2}}{\\var{bot2}}=\\frac{\\var{top2*bot1}}{\\var{bot1*bot2}}\\]
\nNow we can easily see which is bigger by comparing the numerator.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"top1": {"name": "top1", "group": "Ungrouped variables", "definition": "random(1..(bot1-1))", "description": "", "templateType": "anything", "can_override": false}, "top2": {"name": "top2", "group": "Ungrouped variables", "definition": "random(1..(bot2-1))", "description": "", "templateType": "anything", "can_override": false}, "bot1": {"name": "bot1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "bot2": {"name": "bot2", "group": "Ungrouped variables", "definition": "random(1..10 except bot1)", "description": "", "templateType": "anything", "can_override": false}, "frac1": {"name": "frac1", "group": "Ungrouped variables", "definition": "top1/bot1", "description": "", "templateType": "anything", "can_override": false}, "frac2": {"name": "frac2", "group": "Ungrouped variables", "definition": "top2/bot2", "description": "", "templateType": "anything", "can_override": false}, "Is1Bigger": {"name": "Is1Bigger", "group": "Ungrouped variables", "definition": "award(1,frac1>frac2)", "description": "", "templateType": "anything", "can_override": false}, "Is2Bigger": {"name": "Is2Bigger", "group": "Ungrouped variables", "definition": "award(1,frac2>frac1)", "description": "", "templateType": "anything", "can_override": false}, "Question": {"name": "Question", "group": "Ungrouped variables", "definition": "[string(top1)+\"/\"+string(bot1),string(top2)+\"/\"+string(bot2)]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(frac1-frac2)>0", "maxRuns": "250"}, "ungrouped_variables": ["top1", "top2", "bot1", "bot2", "frac1", "frac2", "Is1Bigger", "Is2Bigger", "Question"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": "Question", "matrix": "[Is1Bigger,Is2Bigger]"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NF22 FDP convert 3 - Fraction into decimal", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Convert a fraction into a decimal.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Write $\\frac{\\var{x}}{\\var{y}}$ as a decimal. Round your answer to 3 decimal places.
", "advice": "You can calculate the decimals by hand using long division of $\\var{x}.000$ divided by $\\var{y}$.
\nIn some cases you may be able to simplify the fraction to something that you know the decimal for.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..(y-1))", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "x/y", "maxValue": "x/y", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "NU01 Convert Currency", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "tags": [], "metadata": {"description": "Exchange rates.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "On a particular day, 1 Pound Sterling (£) is equivalent to {exchanget} United States Dollars (\\$). If you have \\$ {amount}, what does this equate to in Pound Sterling?
", "advice": "To convert Dollars (\\$) into Pounds (£) you will need to caculate:
\n\\begin{align}
\\frac{\\var{amount}}{\\var{exchange}} &= \\var{answer}\\\\
&= \\var{answert},
\\end{align}
ensuring to round off to the nearest penny.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"exchange": {"name": "exchange", "group": "Ungrouped variables", "definition": "random(0.9 .. 1.2#0.01)", "description": "Pound to dollar exchange rate.
", "templateType": "randrange", "can_override": false}, "amount": {"name": "amount", "group": "Ungrouped variables", "definition": "random(100 .. 1000#5)", "description": "Amount of dollars.
", "templateType": "randrange", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "amount/exchange", "description": "", "templateType": "anything", "can_override": false}, "answert": {"name": "answert", "group": "Ungrouped variables", "definition": "currency(answer,\"\u00a3\",\"p\")", "description": "", "templateType": "anything", "can_override": false}, "exchanget": {"name": "exchanget", "group": "Ungrouped variables", "definition": "dpformat(exchange,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["exchange", "amount", "answer", "answert", "exchanget"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "answer", "maxValue": "answer", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "answert", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SD02 Interpret Pie Charts", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "This question is about correctly interpreting pie charts.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "{geogebra_applet{\"https://www.geogebra.org/calculator/pmvumdrv\",[C: C,M: M]}}
\nThe Pie Chart above shows the responses to a question asked by someone trying to plan a social event for their workplace. It shows answers given to the question \"Where would you like to go for a staff social?\" with the options \"Meal\", \"Cinema\" and \"Games Cafe\".
", "advice": "A Pie chart of this type can only be used to make statements about the proportions of data in each category and does not provide information about the actual frequencies.
\nFor more information on Pie Charts follow this link.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"C": {"name": "C", "group": "Ungrouped variables", "definition": "random(60 .. 70#5)", "description": "", "templateType": "randrange", "can_override": false}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "random(5 .. 25#5)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "C<>M", "maxRuns": 100}, "ungrouped_variables": ["C", "M"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "From the following comments which can you say are definitely true, definitely false and which do you not have enough information to know?
", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["50 people responded that they would like to go to the cinema.", "About one third of people said they wanted to go for a meal.", "Over half the people responding said they wanted to go to the Games Cafe."], "matrix": [[0, 0, "1"], [0, "1", 0], ["1", 0, 0]], "layout": {"type": "all", "expression": ""}, "answers": ["Definitely true.", "Definitely false.", "Not enough information to know."]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SD03 Interpret Bar Chart", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Gareth Woods", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/978/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}], "tags": [], "metadata": {"description": "Reading a value from a simple bar chart.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "The bar heights give the values of the spend.
Each company has two bars, the left one for last year (in red) and the right one for this year (in purple).
Isolate last years spend by looking at the the bars on the right side, and choose the tallest bar, corresponding to the highest value.
Use this link to find some resources which will help you revise this topic.
", "rulesets": {"std": ["all", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"answervector": {"name": "answervector", "group": "Ungrouped variables", "definition": "vector((yo5-yo0)/yo0*100, (yo6-yo1)/yo1*100,(yo7-yo2)/yo2*100,(yo8-yo3)/yo3*100, (yo9-yo4)/yo4*100)", "description": "", "templateType": "anything", "can_override": false}, "cc": {"name": "cc", "group": "Ungrouped variables", "definition": "random(0.7..1.3#0.01 except 1 except aa except bb)", "description": "", "templateType": "anything", "can_override": false}, "aa": {"name": "aa", "group": "Ungrouped variables", "definition": "random(0.7..1.3#0.01 except 1)", "description": "", "templateType": "anything", "can_override": false}, "year": {"name": "year", "group": "Ungrouped variables", "definition": "yearvector[ii]", "description": "", "templateType": "anything", "can_override": false}, "yn": {"name": "yn", "group": "Ungrouped variables", "definition": "map(vsc*y+vsh,y,yo)", "description": "new y values after the transformation
", "templateType": "anything", "can_override": false}, "eee": {"name": "eee", "group": "Ungrouped variables", "definition": "random(1.1..1.3#0.01 except a except b except c except d)", "description": "", "templateType": "anything", "can_override": false}, "yo": {"name": "yo", "group": "Ungrouped variables", "definition": "repeat(random(-5..5),5)", "description": "the (random) original y values which relate to the x values
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1.1..1.3#0.01 except a except b except c)", "description": "", "templateType": "anything", "can_override": false}, "yo9": {"name": "yo9", "group": "Ungrouped variables", "definition": "random(41..70#1 except yo5 except yo6 except yo7 except yo8)", "description": "", "templateType": "anything", "can_override": false}, "vsh": {"name": "vsh", "group": "Ungrouped variables", "definition": "if(selector='vsh',random(-3..3#0.5 except 0),0)\n", "description": "vertical shift
", "templateType": "anything", "can_override": false}, "vsc": {"name": "vsc", "group": "Ungrouped variables", "definition": "if(selector='vsc',random(-2,-1,-0.5,0.5,2),1)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1.1..1.3#0.01 except a except b)", "description": "", "templateType": "anything", "can_override": false}, "bb": {"name": "bb", "group": "Ungrouped variables", "definition": "random(0.7..1.3#0.01 except 1 except aa)", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "max([yo1,yo0,yo2,yo3,yo4])", "description": "", "templateType": "anything", "can_override": false}, "students": {"name": "students", "group": "Ungrouped variables", "definition": "random(120..320#1)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1.1..1.3#0.01)", "description": "", "templateType": "anything", "can_override": false}, "yo2": {"name": "yo2", "group": "Ungrouped variables", "definition": "random(20..40#1 except yo1 except yo0)", "description": "", "templateType": "anything", "can_override": false}, "yo5": {"name": "yo5", "group": "Ungrouped variables", "definition": "random(41..70#1)", "description": "", "templateType": "anything", "can_override": false}, "yo8": {"name": "yo8", "group": "Ungrouped variables", "definition": "random(41..70#1 except yo5 except yo6 except yo7)", "description": "", "templateType": "anything", "can_override": false}, "yo1": {"name": "yo1", "group": "Ungrouped variables", "definition": "random(20..40#1 except yo0)", "description": "", "templateType": "anything", "can_override": false}, "yo7": {"name": "yo7", "group": "Ungrouped variables", "definition": "random(41..70#1 except yo5 except yo6)", "description": "", "templateType": "anything", "can_override": false}, "maxx": {"name": "maxx", "group": "Ungrouped variables", "definition": "max(map(abs(a),a,xn)+5)+1", "description": "", "templateType": "anything", "can_override": false}, "yearvector": {"name": "yearvector", "group": "Ungrouped variables", "definition": "vector(2007,2008,2009,2010,2011,2012,2013)", "description": "", "templateType": "anything", "can_override": false}, "ii": {"name": "ii", "group": "Ungrouped variables", "definition": "random(3..6#1)", "description": "", "templateType": "anything", "can_override": false}, "yo3": {"name": "yo3", "group": "Ungrouped variables", "definition": "random(20..40#1 except yo1 except yo0 except yo2)", "description": "", "templateType": "anything", "can_override": false}, "selector": {"name": "selector", "group": "Ungrouped variables", "definition": "'vsc'", "description": "", "templateType": "anything", "can_override": false}, "fakeanswer1": {"name": "fakeanswer1", "group": "Ungrouped variables", "definition": "random([yo1,yo0,yo2,yo3,yo4] except answer)", "description": "", "templateType": "anything", "can_override": false}, "hsh": {"name": "hsh", "group": "Ungrouped variables", "definition": "if(selector='hsh',random(-3..3 except 0),0)", "description": "horizontal shift
", "templateType": "anything", "can_override": false}, "fakeanswer4": {"name": "fakeanswer4", "group": "Ungrouped variables", "definition": "random([yo9,yo7,yo8] except fakeanswer3)", "description": "", "templateType": "anything", "can_override": false}, "dd": {"name": "dd", "group": "Ungrouped variables", "definition": "random(0.7..1.3#0.01 except 1 except aa except bb except cc)", "description": "", "templateType": "anything", "can_override": false}, "percent": {"name": "percent", "group": "Ungrouped variables", "definition": "random(5..15#0.1 except 5 except 6 except 7 except 8 except 9 except 10 except 11 except 12 except 13 except 14 except 15)", "description": "", "templateType": "anything", "can_override": false}, "yo0": {"name": "yo0", "group": "Ungrouped variables", "definition": "random(20..40#1)", "description": "", "templateType": "anything", "can_override": false}, "xn": {"name": "xn", "group": "Ungrouped variables", "definition": "map((x-hsh)/hsc,x,xo)", "description": "new transformed x values
", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1.1..1.3#0.01 except a)", "description": "", "templateType": "anything", "can_override": false}, "xo": {"name": "xo", "group": "Ungrouped variables", "definition": "list(-2..2)", "description": "original x values
", "templateType": "anything", "can_override": false}, "yo4": {"name": "yo4", "group": "Ungrouped variables", "definition": "random(20..40#1 except yo1 except yo0 except yo2 except yo3)", "description": "", "templateType": "anything", "can_override": false}, "fakeanswer2": {"name": "fakeanswer2", "group": "Ungrouped variables", "definition": "random([yo1,yo0,yo2,yo3,yo4] except answer except fakeanswer1)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1.1..1.3#0.01 except a except b except c except d except e)", "description": "", "templateType": "anything", "can_override": false}, "yo51": {"name": "yo51", "group": "Ungrouped variables", "definition": "eee*yo5", "description": "", "templateType": "anything", "can_override": false}, "fakeanswer3": {"name": "fakeanswer3", "group": "Ungrouped variables", "definition": "random([yo6,yo7,yo8])", "description": "", "templateType": "anything", "can_override": false}, "increase": {"name": "increase", "group": "Ungrouped variables", "definition": "random(10..40#5)", "description": "", "templateType": "anything", "can_override": false}, "yo6": {"name": "yo6", "group": "Ungrouped variables", "definition": "random(41..70#1 except yo5)", "description": "", "templateType": "anything", "can_override": false}, "hsc": {"name": "hsc", "group": "Ungrouped variables", "definition": "if(selector='hsc',random(-2,-1,-0.5,0.5,2),1)", "description": "", "templateType": "anything", "can_override": false}, "yo41": {"name": "yo41", "group": "Ungrouped variables", "definition": "d*yo4", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["selector", "vsh", "hsh", "vsc", "hsc", "yo", "yn", "xo", "xn", "yo0", "yo1", "yo2", "yo3", "yo4", "maxx", "yo6", "yo7", "yo8", "yo9", "yo41", "yo5", "yo51", "a", "b", "c", "d", "eee", "f", "answer", "fakeanswer1", "fakeanswer2", "fakeanswer3", "fakeanswer4", "aa", "bb", "cc", "dd", "percent", "students", "yearvector", "ii", "year", "answervector", "increase"], "variable_groups": [], "functions": {}, "preamble": {"js": "function dragpoint_board() {\n var scope = question.scope;\n\n JXG.Options.text.display = 'internal';\n \n var yo0 = scope.variables.yo0.value;\n var yo1 = scope.variables.yo1.value;\n var yo2 = scope.variables.yo2.value;\n var yo3 = scope.variables.yo3.value;\n var yo4 = scope.variables.yo4.value;\n var yo5 = scope.variables.yo5.value;\n var yo6 = scope.variables.yo6.value;\n var yo7 = scope.variables.yo7.value; \n var yo8 = scope.variables.yo8.value;\n var yo9 = scope.variables.yo9.value; \n \n var div = Numbas.extensions.jsxgraph.makeBoard('550px','550px',{boundingBox:[-0.8,82,16,-8], axis:false, grid:true});\n \n question.display.html.querySelector('#dragpoint').append(div);\n \n var board = div.board;\n \n// board.suspendUpdate(); \n\n \n var dataArr = [yo0,yo5,0,yo1,yo6,0,yo2,yo7,0,yo3,yo8,0,yo4,yo9]; \n \n var xaxis = board.create('axis', [[0, 0], [12, 0]], {withLabel: true, name: \"Bank\", label: {offset: [250,-30]}});\n \n xaxis.removeAllTicks(); \n \n board.create('axis', [[0, 0], [0, 10]], {hideTicks:true, withLabel: false, name: \"\", label: {offset: [-110,300]}});\n \n var pop0 = board.create('point', [1.5,0],{name:'Morgan',fixed:true,size:0,color:'black',face:'diamond', label:{offset:[-20,-8]}});\n var pop1 = board.create('point',[4.5,0],{name:'Strome',fixed:true,size:0,color:'black',face:'diamond', label:{offset:[-20,-8]}});\n var pop2 = board.create('point',[7.5,0],{name:'Bentley',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n var pop3 = board.create('point',[10.5,0],{name:'Sand',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n var pop4 = board.create('point',[13.5,0],{name:'Karchen',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n var leg1 = board.create('point',[12,75],{name:'last year',fixed:true,size:6,color:'#DA2228', face:'square', label:{offset:[9,0]}});\n var leg2 = board.create('point',[12,72],{name:'this year',fixed:true,size:6,color:'#6F1B75', face:'square', label:{offset:[9,0]}});\n \n \n// var chart = board.createElement('chart', dataArr, \n // {chartStyle:'bar', fillOpacity:1, width:1,\n // colorArray:['#8E1B77','#8E1B77','Red','Red','blue','red','blue','red','red','blue', 'red','blue','red','red'], shadow:false});\n \n//var chart = board.createElement('chart', dataArr, \n // {chartStyle:'bar', width:1,fillOpacity:1, fillColor:'red', shadow:false}); \n \n \n var a = board.create('chart', [[1,2,3],[yo0,yo5,0]], {chartStyle:'bar',colors:['#DA2228','#6F1B75','#6F1B75'],width:1,fillOpacity:1});\n var b = board.create('chart', [[4,5,6],[yo1,yo6,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var c = board.create('chart', [[7,8,9],[yo2,yo7,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var d = board.create('chart', [[10,11,12],[yo3,yo8,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var e = board.create('chart', [[13,14],[yo4,yo9]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75'],fillOpacity:1});\n \n board.unsuspendUpdate();\n \n var txt1 = board.create('text',[-0.3,30, 'Investment \u00a3(m)'], {fontColor:'black', fontSize:14, rotate:90});\n \n // var txt = board.create('text',[0.5,75, 'Investment (m)'], {fontSize:14, rotate:90});\n \n // var txt1 = board.create('text',[8,76, 'red bars represent 2010'], {fontColor:'red', fontSize:14, rotate:90});\n \n // var txt2 = board.create('text',[8,73, 'blue bars represents 2011'], {fontSize:14, rotate:90});\n\n // var myColors = new Array('red', 'blue', 'white','red', 'blue', 'white','red', 'blue', 'white','red', 'blue', 'white','red', 'blue');\n \n \n \n //board.unsuspendUpdate();\n\n // Rotate text around the lower left corner (-2,-1) by 30 degrees.\n // var tRot = board.create('transform', [90.0*Math.PI/180.0, -1,40], {type:'rotate'}); \n // tRot.bindTo(txt);\n // board.update();\n\n \n//var chart2 = board.createElement('chart', dataArr, {chartStyle:'line,point'});\n//chart2[0].setProperty('strokeColor:black','strokeWidth:2','shadow:true');\n//for(var i=0; i<11;i++) {\n // chart2[1][i].setProperty({strokeColor:'black',fillColor:'white',face:'[]', size:4, strokeWidth:2});\n//}\n//board.unsuspendUpdate(); \n \n //board.unsuspendUpdate();\n\n}\n\nquestion.signals.on('HTMLAttached',function() {\n dragpoint_board();\n});", "css": "table#values th {\n background: none;\n text-align: center;\n}"}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n
What was the maximum spend by a single company last year?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["£{answer} m
", "£{fakeanswer1} m
", "£{fakeanswer2} m
", "£{fakeanswer3} m
", "£{fakeanswer4} m
"], "matrix": ["1", 0, 0, 0, 0], "distractors": ["", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SD04 Interpret a Box Plot", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "Interpreting the elements of a box plot
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "The diagram below shows a box plot of some data.
\n{geogebra_applet{\"https://www.geogebra.org/m/aj2hcbhg\",[lv: lv,lq: lq,m: m,uq: uq,hv: hv]}}
\n", "advice": "A boxplot (also known as a box-and-whisker diagram or plot) is a convenient way of graphically depicting groups of numerical data through their five-number summaries: the smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation (sample maximum). A boxplot may also indicate which observations, if any, might be considered outliers.
\nFor more information on box plots follow this link.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"lv": {"name": "lv", "group": "Ungrouped variables", "definition": "random(2 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "lq": {"name": "lq", "group": "Ungrouped variables", "definition": "random(7 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(11 .. 14#1)", "description": "", "templateType": "randrange", "can_override": false}, "uq": {"name": "uq", "group": "Ungrouped variables", "definition": "random(15 .. 22#1)", "description": "", "templateType": "randrange", "can_override": false}, "hv": {"name": "hv", "group": "Ungrouped variables", "definition": "random(23 .. 30#1)", "description": "", "templateType": "randrange", "can_override": false}, "IQR": {"name": "IQR", "group": "Ungrouped variables", "definition": "uq-lq", "description": "", "templateType": "anything", "can_override": false}, "range": {"name": "range", "group": "Ungrouped variables", "definition": "hv-lv", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["lv", "lq", "m", "uq", "hv", "IQR", "range"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which of these statements are true and which are false?
", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": false, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["The range of the data is $\\var{range}$.", "The Interquarttile range of the data is larger than the range of the data.", "You can calculate the mean of the data from this Box plot.", "The median of the data is $\\var{m}$.
", "The mode of the data is $\\var{lv-3}$."], "matrix": [["1", 0], [0, "1"], [0, "1"], ["1", 0], [0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["True.", "False."]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SD06 Reading a Histogram", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Gareth Woods", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/978/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "Reading a value from a histogram.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "The histogram shows information about distances run on a Sunday by some randomly asked people in a park.
\n\n", "advice": "a)
\nTo calculate the frequencies using the following formula:
\nfrequency = class width $\\times$ frequency density
\nHence our table becomes:
\n| Distance, $km$ | \nFrequency | \n
| $0 < t \\leq 10$ | \n$10 \\times \\var{yo0} = \\var{freq0}$ | \n
| $10 < t \\leq 15$ | \n$5 \\times \\var{yo1} = \\var{freq1}$ | \n
| $15 < t \\leq 20$ | \n$5 \\times \\var{yo2} = \\var{freq2}$ | \n
| $20 < t \\leq 30$ | \n$10 \\times \\var{yo3} = \\var{freq3}$ | \n
Hence, to find the total number of people that ran that day:
\n$\\var{freq0} + \\var{freq1} + \\var{freq2} + \\var{freq3} = \\var{total}.$
\nb)
\nThe frequency of runners that ran less than $10km$ is found by calculating the frequency from the first bar on the histogram:
\nclass width $\\times$ frequency density $= 10 \\times \\var{yo0} = \\var{freq0}$.
\nc)
\nThe frequency of runners that ran between $15km$ and $20km$ is found by calculating the frequency from the third bar on the histogram:
\nclass width $\\times$ frequency density $= 5 \\times \\var{yo2} = \\var{freq2}$.
\nd)
\nTo estimate how many runners ran more than $25km$ we need again need to use the frequency = class width \\times frequency density formula.
\nHere the class width is $5$ because we are looking for the frequency of runners that ran between $25km$ and $30km$ from the college.
\nFrequency $= 5 \\times \\var{yo3} = \\var{5*yo3}.$
\nIf this number is a decimal we round up to get $\\var{m25}$.
\ne)
\nAs in part d),to estimate how many runners ran less than $7km$ we use the frequency = class width \\times frequency density formula.
\nHere the class width is $7$ because we are looking for the frequency of runners that ran between 0 and 7 km.
\nFrequency $= 7 \\times \\var{yo0} = \\var{7*yo0}.$
\nIf this number is a decimal we round up to get $\\var{l7}$.
\nf)
\nTo estimate how many runners ran between $5km$ and $12.5km$ we use a method similar to that in part d) and e) but, this time, we need to use information from both the first and second bar on the histogram.
\nLet's first calculate how many runners ran between $5km$ and $10km$:
\nfrequency $=$ class width $\\times$ frequency density $= 5 \\times \\var{yo0} = \\var{5*yo0}$.
\nNow we need to calculate how many runners ran between $10km$ and $12.5km$:
\nfrequency $=$ class width $\\times$ frequency density $= 2.5 \\times \\var{yo1} = \\var{2.5*yo1}$.
\nPutting this together the number of runners that ran between $5km$ and $12.5km$ is $\\var{5*yo0} + \\var{2.5*yo1} = \\var{5*yo0 + 2.5*yo1}.$
\nIf this number is a decimal we round up to get $\\var{ef}.$
\ng)
\nThe number of runners that ran between $10km$ and $14km$ is $4 \\times \\var{yo1} = \\var{4*yo1}.$
If this number is a decimal we round up to get $\\var{eh}.$
i)
\nThe number of runners that ran further than $18km$ is:
\n$2 \\times \\var{yo2} + 10 \\times \\var{yo3} = \\var{2*yo2} + \\var{freq3} = \\var{2*yo2+freq3}.$
If this number is a decimal we round up to get $\\var{ej}.$
Did you get a decimal answer? Were you surprised to see a whole number answer when you got a decimal on one of the estimate questions? Look at the context of the question, you cannot have $0.5$ of a student so we round our answers up to the next whole number!
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {"std": ["all", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"yo2": {"name": "yo2", "group": "Ungrouped variables", "definition": "random(1 .. 39#1)", "description": "Frequency Density
", "templateType": "randrange", "can_override": false}, "yo1": {"name": "yo1", "group": "Ungrouped variables", "definition": "random(1 .. 39#1)", "description": "Frequency Density
", "templateType": "randrange", "can_override": false}, "yo3": {"name": "yo3", "group": "Ungrouped variables", "definition": "random(1 .. 39#1)", "description": "Frequency Density
", "templateType": "randrange", "can_override": false}, "selector": {"name": "selector", "group": "Ungrouped variables", "definition": "'vsc'", "description": "", "templateType": "anything", "can_override": false}, "yo0": {"name": "yo0", "group": "Ungrouped variables", "definition": "random(1 .. 39#1)", "description": "Frequency Density
", "templateType": "randrange", "can_override": false}, "total": {"name": "total", "group": "Ungrouped variables", "definition": "freq0+freq1+freq2+freq3", "description": "Sum of frequencies
", "templateType": "anything", "can_override": false}, "freq0": {"name": "freq0", "group": "Ungrouped variables", "definition": "10*yo0", "description": "Frequency
", "templateType": "anything", "can_override": false}, "freq1": {"name": "freq1", "group": "Ungrouped variables", "definition": "yo1*5", "description": "Frequency
", "templateType": "anything", "can_override": false}, "freq2": {"name": "freq2", "group": "Ungrouped variables", "definition": "5*yo2", "description": "Frequency
", "templateType": "anything", "can_override": false}, "freq3": {"name": "freq3", "group": "Ungrouped variables", "definition": "10*yo3", "description": "Frequency
", "templateType": "anything", "can_override": false}, "m25": {"name": "m25", "group": "Ungrouped variables", "definition": "round(5*yo3)", "description": "How many people ran more than 25km
", "templateType": "anything", "can_override": false}, "l7": {"name": "l7", "group": "Ungrouped variables", "definition": "round(7*yo0)", "description": "How many runners ran less than 7km
", "templateType": "anything", "can_override": false}, "Ef": {"name": "Ef", "group": "Ungrouped variables", "definition": "round(5*yo0 + 2.5*yo1)", "description": "Number of people running between 5 & 12.5 km
", "templateType": "anything", "can_override": false}, "eh": {"name": "eh", "group": "Ungrouped variables", "definition": "round(4*yo1)", "description": "Number of runners running between 10 & 14km
", "templateType": "anything", "can_override": false}, "ej": {"name": "ej", "group": "Ungrouped variables", "definition": "round(2*yo2 + freq3)", "description": "Number of runners running more than 18km
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["selector", "yo0", "yo1", "yo2", "yo3", "total", "freq0", "freq1", "freq2", "freq3", "m25", "l7", "Ef", "eh", "ej"], "variable_groups": [], "functions": {}, "preamble": {"js": "function dragpoint_board() {\n var scope = question.scope;\n\n JXG.Options.text.display = 'internal';\n \n var yo0 = scope.variables.yo0.value;\n var yo1 = scope.variables.yo1.value;\n var yo2 = scope.variables.yo2.value;\n var yo3 = scope.variables.yo3.value;\n \n var div = Numbas.extensions.jsxgraph.makeBoard('550px','550px',{boundingBox:[-5,42,35,-5], axis:false, grid:true});\n \n question.display.html.querySelector('#dragpoint').append(div);\n \n var board = div.board;\n \nboard.suspendUpdate(); \n\n var dataArr = [yo0,0,yo1,0,yo2,0,yo3]; \n \n var xaxis = board.create('axis', [[0, 0], [12, 0]], {withLabel: true, name: \"Distance, km\", label: {offset: [250,-30]}});\n \n var yaxis = board.create('axis', [[0, 0], [0, 10]], {hideTicks:true, withLabel: true, name: \"Frequency Density\", label: {rotation: 90, offset: [-60,300]}});\n// var yaxis = board.create('axis', [[0, 0], [0, 10]], {hideTicks:true, withLabel: false, name: \"Frequency Density\", label: {rotation: 90, offset: [-60,300]}});\n//var Rot board.create('transform',[Math.PI/2,0,5],{type:'rotate'});\n// var ylabel = board.create('text', [0,5,\"Frequency Density\"], {label: {rotation: 90}});\n// Rot.bindTo(ylabel);\n// board.update();\n\n \n var a = board.create('chart', [[5,10],[yo0,0]], {chartStyle:'bar',colors:['#76ba1e'],width:10,fillOpacity:0.4});\n var b = board.create('chart', [[12.5,15],[yo1,0]], {chartStyle:'bar',width:5,colors:['#89CFF0'],fillOpacity:0.4});\n var c = board.create('chart', [[17.5,20],[yo2,0]], {chartStyle:'bar',width:5,colors:['#76ba1e'],fillOpacity:0.4});\n var d = board.create('chart', [[25,30],[yo3,0]], {chartStyle:'bar',width:10,colors:['#89CFF0'],fillOpacity:0.4});\n \n}\n\nquestion.signals.on('HTMLAttached',function() {\n dragpoint_board();\n});", "css": "table#values th {\n background: none;\n text-align: center;\n}"}, "parts": [{"type": "numberentry", "useCustomName": true, "customName": "a)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "How many people were asked about the distance they ran that day?
", "minValue": "total", "maxValue": "total", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "b)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "How many runners ran less than 10 km that day?
", "minValue": "freq0", "maxValue": "freq0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "c)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "How many people ran between 10 and 15 km that day?
", "minValue": "freq1", "maxValue": "freq1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "d)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Estimate how many runners ran more than 25 km that day?
", "minValue": "m25", "maxValue": "m25", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "e)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Estimate how many runners ran less than 7 km that day?
", "minValue": "l7", "maxValue": "l7", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "f)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Estimate how many people ran between 5 km and 12.5 km.
", "minValue": "Ef", "maxValue": "Ef", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SD07 Interpreting Line Graphs", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Francesca recorded the number of customers in a supermarket every two hours.
\nShe began at 9 am and finished at 7 pm.
\nThe line graph below shows her results.
\n{geogebra_applet{\"https://www.geogebra.org/classic/s4w7nmga\",[y1:y1,y3:y3,y4:y4,y6:y6]}}
", "advice": "a) You want to find the point on the graph with the greatest frequency. You can see that this is at 1pm when there were $\\var{y3}$ cars in the car park.
\nb) We find 11am on the $x$-axis and look vertically upwards until we find the point. From here we go horiztonally across to the $y$-axis to read the frequency. We can see that at 11am there were $\\var{y2}$ cars in the car park.
\nc) We want to find $\\var{number}$ on the $y$-axis and then look horiztonally across until we find the point. From here we move down to the $x$-axis to see at which time there were $\\var{number}$ cars in the car park. We can see this occured at $\\var{answerc}\\var{time}$.
\nd) We must find 6pm on the $x$-axis. This isn't marked on like the other times but we know it sits half way between 5pm and 7pm. From here we look vertically upwards until we meet the red line on our graph. Notice we don't have a point for this time, hence why this is an estimate. From here we move hortizontally across to the $y$-axis to find the frequency. At 6pm we estimate that there were $\\var{y56}$ cars in the car park.
\ne) We must find the frequency of cars at 1pm and at 3pm using the same steps as in part b. At 3pm there were $\\var{y4}$ cars in the car park and we subtract this from $\\var{y3}$ which is the number of cars in the car park at 1pm. Hence, $\\var{y3}-\\var{y4}=\\var{y3-y4}$.
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"y6": {"name": "y6", "group": "Ungrouped variables", "definition": "random(10 .. 40#10)", "description": "Number of customers in supermarket at 7pm.
", "templateType": "randrange", "can_override": false}, "y5": {"name": "y5", "group": "Ungrouped variables", "definition": "y6+20", "description": "Number of customers in supermarket at 5pm.
", "templateType": "anything", "can_override": false}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "random(82 .. 100#1)", "description": "Number of customers in supermarket at 1pm.
", "templateType": "randrange", "can_override": false}, "y4": {"name": "y4", "group": "Ungrouped variables", "definition": "random(50 .. 75#1)", "description": "Number of customers in supermarket at 3pm.
", "templateType": "randrange", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "y1+10", "description": "Number of customers in supermarket at 11am.
", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "random(10 .. 20#5)", "description": "Number of customers in supermarket at 9am
", "templateType": "randrange", "can_override": false}, "y56": {"name": "y56", "group": "Ungrouped variables", "definition": "(y5+y6)/2", "description": "Number of customers in supermarket at 6pm.
", "templateType": "anything", "can_override": false}, "number": {"name": "number", "group": "Ungrouped variables", "definition": "random(y1,y3,y4,y5,y6)", "description": "Randomly select which number of customers user needs to identify associated time for.
", "templateType": "anything", "can_override": false}, "answerc": {"name": "answerc", "group": "Ungrouped variables", "definition": "if(number=y1,9,if(number=y3,1,if(number=y4,3,if(number=y5,5,if(number=y6,7,0)))))", "description": "Associated time to randomly selected frequency variable (number)
", "templateType": "anything", "can_override": false}, "time": {"name": "time", "group": "Ungrouped variables", "definition": "if(answerc=9, 'am', if(answerc=11,'am',if(answerc=1,'pm',if(answerc=3,'pm',if(answerc=5,'pm',if(answerc=7,'pm',0))))))", "description": "For printing am or pm depending on time selelected - to appear in advice only
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["y6", "y5", "y3", "y4", "y2", "y1", "y56", "number", "answerc", "time"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": true, "customName": "a)", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "When were the most customers in the supermarker?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["9 am", "11 am", "1 pm", "3 pm", "5 pm", "7 pm"], "matrix": [0, 0, "1", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "numberentry", "useCustomName": true, "customName": "b)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "How many customers were in the supermarket at 11 am?
", "minValue": "y2", "maxValue": "y2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "c)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "At what time were there {number} customers in the supermarket?
\nIf your answer was 12pm you would just write 12 in the box.
", "minValue": "answerc", "maxValue": "answerc", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "d)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Estimate the number of customers in the supermarket at 6pm.
", "minValue": "y56", "maxValue": "y56", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "e)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "How many less customers were there in the supermarket at 3pm than 1pm?
", "minValue": "y3-y4", "maxValue": "y3-y4", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SE01 Types of data", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["continuous data", "discrete data", "taxonomy"], "metadata": {"description": "Decide whether each of the described sets of data is drawn from a discrete or continuous distribution.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Decide whether the following data sets are discrete or continuous.
", "advice": "Data can either be discrete or continuous.
\nHeight is a continuous variable. For example, 180.3cm and 180.4cm have a valid midpoint 180.35cm.Weight is a continuous variable. For example, 54.5kg and 54.6kg have a valid midpoint 54.55kg.Time is a continuous variable. For example, 54.2s and 54.3s have a valid midpoint 54.25s.Temperature is a continuous variable, it can take any value between -273.15°C (absolute zero) and positive infinity. For example, 25°C and 26°C have a valid midpoint 25.5°C. Hence, this data is continuous.
\nThe number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not.The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy a half of a bar. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5. The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.
\nThe number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not..The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy a half of a bar. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5.The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.
\nHeight is a continuous variable. For example, 180.3cm and 180.4cm have a valid midpoint 180.35cm.Weight is a continuous variable. For example, 54.5kg and 54.6kg have a valid midpoint 54.55kg.Time is a continuous variable. For example, 54.2s and 54.3s have a valid midpoint 54.25s.Temperature is a continuous variable, it can take any value between -273.15°C (absolute zero) and positive infinity. For example, 25°C and 26°C have a valid midpoint 25.5°C. Hence, this data is continuous.
\nWhen we round continuous variables to the nearest integer, this data becomes discrete, as there are no valid middle measurements between the integers. Therefore, the weight of a dog to the nearest kgthe height of Olympic medalists to the nearest cmthe time taken to run 10km to the nearest min is discrete and not continuous.
\nThe number of Stage 1 students will always be an integer. You cannot split one student into two, for example value 19.5 students does not make sense. Therefore, this is a discrete set of data.The result of rolling 3 dice can take values of integers from 3 up to 18. For example, values 3 and 4 do not have any valid middle measurement. Therefore, this is a discrete set of data.Shoe sizes are a discrete set of data. For example, sizes 39 and 40 mean something while the middle value 39.5 does not.The number of chocolate bars sold on Monday will always be an integer. There is no middle measurement between 1 and 2 bars sold. You cannot buy half of a bar of chocolate. Therefore, this is a discrete set of data.The number of movies downloaded will always be an integer. You can either download a movie successfully or unsuccessfuly, so this is a discrete set of data. It is impossible to split 0 and 1 movies downloaded into 0.5.The number of cinema tickets sold will always be a whole number. There is no middle measurement between 1 and 2 tickets sold. You simply cannot buy half of a ticket. Therefore, this is a discrete set of data.
\nUse this link to find some resources which will help you revise this topic
\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"rand3": {"name": "rand3", "group": "Ungrouped variables", "definition": "random(0..5 except rand except rand2)", "description": "", "templateType": "anything", "can_override": false}, "cont": {"name": "cont", "group": "Ungrouped variables", "definition": "[\"The height of Newcastle University students.\", \"The weight of Olympic medalists.\", \"The time taken to brush teeth.\", \"The maximum daily temperature.\"]", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "[\"The number of Stage 1 students.\", \"The result of rolling 3 dice.\", \"Shoe sizes.\", \"The number of chocolate bars sold on Monday.\", \"The number of movies downloaded.\", \"The number of cinema tickets sold.\"]", "description": "", "templateType": "anything", "can_override": false}, "trick": {"name": "trick", "group": "Ungrouped variables", "definition": "[\"The weight of a dog to the nearest kg.\", \"The height of Olympic medalists to the nearest cm.\", \"The time taken to run 10km to the nearest min.\"]", "description": "", "templateType": "anything", "can_override": false}, "ranc2": {"name": "ranc2", "group": "Ungrouped variables", "definition": "random(0..3 except ranc)", "description": "", "templateType": "anything", "can_override": false}, "rant": {"name": "rant", "group": "Ungrouped variables", "definition": "random(0..2)", "description": "", "templateType": "anything", "can_override": false}, "rand": {"name": "rand", "group": "Ungrouped variables", "definition": "random(0..5)", "description": "", "templateType": "anything", "can_override": false}, "rand2": {"name": "rand2", "group": "Ungrouped variables", "definition": "random(0..5 except rand)", "description": "", "templateType": "anything", "can_override": false}, "ranc": {"name": "ranc", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["disc", "cont", "trick", "ranc", "rant", "ranc2", "rand2", "rand3", "rand"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{cont[ranc]}
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Discrete
", "Continuous
"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{disc[rand]}
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Discrete
", "Continuous
"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{disc[rand2]}
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Discrete
", "Continuous
"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{cont[ranc2]}
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Discrete
", "Continuous
"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{trick[rant]}
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Discrete
", "Continuous
"], "matrix": ["1", 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{disc[rand3]}
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Discrete
", "Continuous
"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM01 Calculate Range", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["mean", "measures of average and spread", "median", "mode", "range", "taxonomy"], "metadata": {"description": "This question provides a list of data to the student. They are asked to find the \"range\".
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "A random sample of 20 residents from Newcastle were asked about the number of times they went to see a play at the theatre last year.
\nHere is the list of their answers:
\n| $\\var{a[0]}$ | \n$\\var{a[1]}$ | \n$\\var{a[2]}$ | \n$\\var{a[3]}$ | \n$\\var{a[4]}$ | \n$\\var{a[5]}$ | \n$\\var{a[6]}$ | \n$\\var{a[7]}$ | \n$\\var{a[8]}$ | \n$\\var{a[9]}$ | \n
| $\\var{a[10]}$ | \n$\\var{a[11]}$ | \n$\\var{a[12]}$ | \n$\\var{a[13]}$ | \n$\\var{a[14]}$ | \n$\\var{a[15]}$ | \n$\\var{a[16]}$ | \n$\\var{a[17]}$ | \n$\\var{a[18]}$ | \n$\\var{a[19]}$ | \n
Range is the difference between the highest and the lowest value in the data.
\nTo find this, we subtract the lowest value from the highest value:
\n\\[ \\var{max(a)} - \\var{min(a)} = \\var{range} \\text{.}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a2": {"name": "a2", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 20)", "description": "Option 2 for the list. Only used if there is only one mode and option 1 was not used.
", "templateType": "anything", "can_override": false}, "modea1": {"name": "modea1", "group": "Ungrouped variables", "definition": "mode(a1)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "repeat(random(1..9), 20)", "description": "Option 1 for the list. Only used if there is only one mode.
", "templateType": "anything", "can_override": false}, "a_s": {"name": "a_s", "group": "final list", "definition": "sort(a)", "description": "Sorted list.
", "templateType": "anything", "can_override": false}, "modea2": {"name": "modea2", "group": "Ungrouped variables", "definition": "mode(a2)", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "shuffle([ random(0..1),\n 2, \n random(4..6),\n random(0..3 except 2), \n random(0..3 except 2),\n random(4..6),\n 2,\n 2,\n random(4..6),\n random(7..8),\n random(0..3 except 2 except 1), \n random(4..6),\n 2,\n random(1..3 except 2), \n random(7..8),\n 2,\n random(7..8),\n random(4..6), \n random(0..3 except 2), \n 2\n])", "description": "Option 3 for the list. Ensures there is only one mode (2) while still randomising the data.
", "templateType": "anything", "can_override": false}, "modetimes": {"name": "modetimes", "group": "final list", "definition": "map(\nlen(filter(x=j,x,a)),\nj, 0..8)", "description": "The vector of number of times of each value in the data.
", "templateType": "anything", "can_override": false}, "range": {"name": "range", "group": "final list", "definition": "max(a) - min(a)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "final list", "definition": "if(len(modea1) = 1, a1, if(len(modea2) = 1, a2, a3))", "description": "The final list.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["modea1", "modea2", "a1", "a2", "a3"], "variable_groups": [{"name": "final list", "variables": ["a", "a_s", "range", "modetimes"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the range.
", "minValue": "range", "maxValue": "range", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM02 Calculate Mean from a list", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "Calculating the Mean from a basic list of integers.
", "licence": "None specified"}, "statement": "Calculate the Mean from a list
", "advice": "The MEAN is the sum, divided by the number of values summed i.e.
$\\frac{\\var{list[0]} + \\var{list[1]} + \\var{list[2]} + \\var{list[3]} + \\var{list[4]}}{5}$
use your calculator to find
\nmean = $\\var{mean}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"list": {"name": "list", "group": "Ungrouped variables", "definition": "repeat(random(0..20), 5)", "description": "", "templateType": "anything", "can_override": false}, "mean": {"name": "mean", "group": "Ungrouped variables", "definition": "mean(list)", "description": "", "templateType": "anything", "can_override": false}, "median": {"name": "median", "group": "Ungrouped variables", "definition": "median(list)", "description": "", "templateType": "anything", "can_override": false}, "order": {"name": "order", "group": "Ungrouped variables", "definition": "sort(list)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["list", "mean", "median", "order"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given a list of numbers:
{list}
Calculate the mean: [[0]]
This question provides a list of data to the student. They are asked to find the \"mode\".
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "A random sample of 20 residents from Newcastle were asked about the number of times they went to see a play at the theatre last year.
\nHere is the list of their answers:
\n| $\\var{a[0]}$ | \n$\\var{a[1]}$ | \n$\\var{a[2]}$ | \n$\\var{a[3]}$ | \n$\\var{a[4]}$ | \n$\\var{a[5]}$ | \n$\\var{a[6]}$ | \n$\\var{a[7]}$ | \n$\\var{a[8]}$ | \n$\\var{a[9]}$ | \n
| $\\var{a[10]}$ | \n$\\var{a[11]}$ | \n$\\var{a[12]}$ | \n$\\var{a[13]}$ | \n$\\var{a[14]}$ | \n$\\var{a[15]}$ | \n$\\var{a[16]}$ | \n$\\var{a[17]}$ | \n$\\var{a[18]}$ | \n$\\var{a[19]}$ | \n
The mode is the value that occurs the most often in the data.
\nTo find a mode, we can look at our sorted list:
\n$\\var{a_s[0]}, \\var{a_s[1]}, \\var{a_s[2]}, \\var{a_s[3]}, \\var{a_s[4]}, \\var{a_s[5]}, \\var{a_s[6]}, \\var{a_s[7]}, \\var{a_s[8]}, \\var{a_s[9]}, \\var{a_s[10]}, \\var{a_s[11]}, \\var{a_s[12]}, \\var{a_s[13]}, \\var{a_s[14]}, \\var{a_s[15]}, \\var{a_s[16]}, \\var{a_s[17]}, \\var{a_s[18]}, \\var{a_s[19]}$.
\nWe notice that $\\var{mode1}$ occurs the most ($\\var{modetimes[mode1]}$ times) so $\\var{mode1}$ is the mode.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a2": {"name": "a2", "group": "Ungrouped variables", "definition": "repeat(random(0..8), 20)", "description": "Option 2 for the list. Only used if there is only one mode and option 1 was not used.
", "templateType": "anything", "can_override": false}, "modea1": {"name": "modea1", "group": "Ungrouped variables", "definition": "mode(a1)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "repeat(random(0..8), 20)", "description": "Option 1 for the list. Only used if there is only one mode.
", "templateType": "anything", "can_override": false}, "a_s": {"name": "a_s", "group": "final list", "definition": "sort(a)", "description": "Sorted list.
", "templateType": "anything", "can_override": false}, "modea2": {"name": "modea2", "group": "Ungrouped variables", "definition": "mode(a2)", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "shuffle([ random(0..1),\n 2, \n random(4..6),\n random(0..3 except 2), \n random(0..3 except 2),\n random(4..6),\n 2,\n 2,\n random(4..6),\n random(7..8),\n random(0..3 except 2 except 1), \n random(4..6),\n 2,\n random(1..3 except 2), \n random(7..8),\n 2,\n random(7..8),\n random(4..6), \n random(0..3 except 2), \n 2\n])", "description": "Option 3 for the list. Ensures there is only one mode (2) while still randomising the data.
", "templateType": "anything", "can_override": false}, "modetimes": {"name": "modetimes", "group": "final list", "definition": "map(\nlen(filter(x=j,x,a)),\nj, 0..8)", "description": "The vector of number of times of each value in the data.
", "templateType": "anything", "can_override": false}, "mode1": {"name": "mode1", "group": "final list", "definition": "mode[0]", "description": "Mode as a value.
", "templateType": "anything", "can_override": false}, "mode": {"name": "mode", "group": "final list", "definition": "mode(a)", "description": "Mode as a vector.
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "final list", "definition": "if(len(modea1) = 1, a1, if(len(modea2) = 1, a2, a3))", "description": "The final list.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["modea1", "modea2", "a1", "a2", "a3"], "variable_groups": [{"name": "final list", "variables": ["a", "a_s", "mode", "mode1", "modetimes"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the mode.
", "minValue": "mode1", "maxValue": "mode1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM04 Calculate Median from a list", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["mean", "measures of average and spread", "median", "mode", "range", "taxonomy"], "metadata": {"description": "This question provides a list of data to the student. They are asked to find the \"median\".
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "A random sample of 20 residents from Newcastle were asked about the number of times they went to see a play at the theatre last year.
\nHere is the list of their answers:
\n| $\\var{a[0]}$ | \n$\\var{a[1]}$ | \n$\\var{a[2]}$ | \n$\\var{a[3]}$ | \n$\\var{a[4]}$ | \n$\\var{a[5]}$ | \n$\\var{a[6]}$ | \n$\\var{a[7]}$ | \n$\\var{a[8]}$ | \n$\\var{a[9]}$ | \n
| $\\var{a[10]}$ | \n$\\var{a[11]}$ | \n$\\var{a[12]}$ | \n$\\var{a[13]}$ | \n$\\var{a[14]}$ | \n$\\var{a[15]}$ | \n$\\var{a[16]}$ | \n$\\var{a[17]}$ | \n$\\var{a[18]}$ | \n$\\var{a[19]}$ | \n
The median is the middle value. We need to sort the list in order:
\n\\[ \\var{a_s[0]}, \\quad \\var{a_s[1]}, \\quad \\var{a_s[2]}, \\quad \\var{a_s[3]}, \\quad \\var{a_s[4]}, \\quad \\var{a_s[5]}, \\quad \\var{a_s[6]}, \\quad \\var{a_s[7]}, \\quad \\var{a_s[8]}, \\quad \\var{a_s[9]}, \\quad \\var{a_s[10]}, \\quad \\var{a_s[11]}, \\quad \\var{a_s[12]}, \\quad \\var{a_s[13]}, \\quad \\var{a_s[14]}, \\quad \\var{a_s[15]}, \\quad \\var{a_s[16]}, \\quad \\var{a_s[17]}, \\quad \\var{a_s[18]}, \\quad \\var{a_s[19]} \\]
\nThere is an even number of responses, so there are two numbers in the middle (10th and 11th place). To find the median, we need to find the mean of these two numbers $\\var{a_s[9]}$ and $\\var{a_s[10]}$:
\n\\begin{align}
\\frac{\\var{a_s[9]} + \\var{a_s[10]}}{2} &= \\frac{\\var{a_s[9] + a_s[10]}}{2} \\\\
&= \\var{median} \\text{.}
\\end{align}
\n
Use this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a2": {"name": "a2", "group": "Ungrouped variables", "definition": "repeat(random(0..8), 20)", "description": "Option 2 for the list. Only used if there is only one mode and option 1 was not used.
", "templateType": "anything", "can_override": false}, "modea1": {"name": "modea1", "group": "Ungrouped variables", "definition": "mode(a1)", "description": "", "templateType": "anything", "can_override": false}, "median": {"name": "median", "group": "final list", "definition": "median(a)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "repeat(random(0..8), 20)", "description": "Option 1 for the list. Only used if there is only one mode.
", "templateType": "anything", "can_override": false}, "a_s": {"name": "a_s", "group": "final list", "definition": "sort(a)", "description": "Sorted list.
", "templateType": "anything", "can_override": false}, "modea2": {"name": "modea2", "group": "Ungrouped variables", "definition": "mode(a2)", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "shuffle([ random(0..1),\n 2, \n random(4..6),\n random(0..3 except 2), \n random(0..3 except 2),\n random(4..6),\n 2,\n 2,\n random(4..6),\n random(7..8),\n random(0..3 except 2 except 1), \n random(4..6),\n 2,\n random(1..3 except 2), \n random(7..8),\n 2,\n random(7..8),\n random(4..6), \n random(0..3 except 2), \n 2\n])", "description": "Option 3 for the list. Ensures there is only one mode (2) while still randomising the data.
", "templateType": "anything", "can_override": false}, "mean": {"name": "mean", "group": "final list", "definition": "mean(a)", "description": "", "templateType": "anything", "can_override": false}, "modetimes": {"name": "modetimes", "group": "final list", "definition": "map(\nlen(filter(x=j,x,a)),\nj, 0..8)", "description": "The vector of number of times of each value in the data.
", "templateType": "anything", "can_override": false}, "range": {"name": "range", "group": "final list", "definition": "max(a) - min(a)", "description": "", "templateType": "anything", "can_override": false}, "mode1": {"name": "mode1", "group": "final list", "definition": "mode[0]", "description": "Mode as a value.
", "templateType": "anything", "can_override": false}, "mode": {"name": "mode", "group": "final list", "definition": "mode(a)", "description": "Mode as a vector.
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "final list", "definition": "if(len(modea1) = 1, a1, if(len(modea2) = 1, a2, a3))", "description": "The final list.
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["modea1", "modea2", "a1", "a2", "a3"], "variable_groups": [{"name": "final list", "variables": ["a", "a_s", "mean", "median", "mode", "mode1", "range", "modetimes"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the median.
", "minValue": "median", "maxValue": "median", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM05 Calculate the mean (Frequency table) - With a calculator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/496/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Marta Emmett", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/11961/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Using a calculator, work out the mean for each of these frequency tables, give your answers to two decimal places.
", "advice": "To calculate the mean shoe size we need to add a third column to our table where we multiply the grade by the number (frequency) of students who are that shoe size.
\n| Shoe Size | \nFrequency | \nShoe Size * Frequency | \n
| 3 | \n{p1} | \n3 * {p1} = {3*p1} | \n
| 4 | \n{p2} | \n4 * {p2} = {4*p2} | \n
| 5 | \n{p3} | \n5 * {p3} = {5*p3} | \n
| 6 | \n{p4} | \n6 * {p4} = {6*p4} | \n
| 7 | \n{p5} | \n7 * {p5} = {7*p5} | \n
| 8 | \n{p6} | \n8 * {p6} = {8*p6} | \n
Now we find the total sum of that third column:
\n$\\var{3*p1} + \\var{4*p2} + \\var{5*p3} + \\var{6*p4} + \\var{7*p5} + \\var{8*p6} = \\var{3*p1 + 4*p2 + 5*p3 + 6*p4 + 7*p5 + 8*p6}.$
\nTo find the mean shoe size we must divide this total by the total number of students:
\n$\\frac{\\var{3*p1 + 4*p2 + 5*p3 + 6*p4 + 7*p5 + 8*p6}}{\\var{p1}+\\var{p2}+\\var{p3}+\\var{p4}+\\var{p5}+\\var{p6}} = \\frac{\\var{3*p1 + 4*p2 + 5*p3 + 6*p4 + 7*p5 + 8*p6}}{\\var{sum1}} = \\var{mean1a}.$
\nThe question asks us for our answer to two decimal places so the last thing we need to do is round. Hence, the mean is $\\var{mean1}$.
\nYou can use this same method to answer the other parts of this question!
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"mean1a": {"name": "mean1a", "group": "Part a", "definition": "((3*p1)+(4*p2)+(5*p3)+(6*p4)+(7*p5)+(8*p6))/sum1", "description": "The mean - part a
", "templateType": "anything", "can_override": false}, "p1": {"name": "p1", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 1 - part a
", "templateType": "randrange", "can_override": false}, "p2": {"name": "p2", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 2 - part a
", "templateType": "randrange", "can_override": false}, "p3": {"name": "p3", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 3 - part a
", "templateType": "randrange", "can_override": false}, "p4": {"name": "p4", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 4 - part a
", "templateType": "randrange", "can_override": false}, "p5": {"name": "p5", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 5 - part a
", "templateType": "randrange", "can_override": false}, "p6": {"name": "p6", "group": "Part a", "definition": "random(0 .. 50#1)", "description": "Frequency 6 - part a
", "templateType": "randrange", "can_override": false}, "mean1": {"name": "mean1", "group": "Part a", "definition": "precround(mean1a,2)", "description": "Mean rounded to two decimal places - part a
", "templateType": "anything", "can_override": false}, "sum1": {"name": "sum1", "group": "Part a", "definition": "p1+p2+p3+p4+p5+p6", "description": "Sum of frequencies - part a
", "templateType": "anything", "can_override": false}, "sum2": {"name": "sum2", "group": "Part b", "definition": "p1b+p2b+p3b+p4b", "description": "Sum of frequencies - part b
", "templateType": "anything", "can_override": false}, "p1b": {"name": "p1b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 1 - part b
", "templateType": "randrange", "can_override": false}, "p2b": {"name": "p2b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 2 - part b
", "templateType": "randrange", "can_override": false}, "p3b": {"name": "p3b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 3 - part b
", "templateType": "randrange", "can_override": false}, "p4b": {"name": "p4b", "group": "Part b", "definition": "random(1 .. 100#1)", "description": "Frequency 4 - part b
", "templateType": "randrange", "can_override": false}, "mean2a": {"name": "mean2a", "group": "Part b", "definition": "((0*p1b)+(1*p2b)+(2*p3b)+(3*p4b))/sum2", "description": "The mean - part b
", "templateType": "anything", "can_override": false}, "mean2": {"name": "mean2", "group": "Part b", "definition": "precround(mean2a,2)", "description": "Mean rounded to two decimal places - part b
", "templateType": "anything", "can_override": false}, "p1c": {"name": "p1c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 1 - part c
", "templateType": "randrange", "can_override": false}, "p2c": {"name": "p2c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 2 - part c
", "templateType": "randrange", "can_override": false}, "p3c": {"name": "p3c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 3 - part c
", "templateType": "randrange", "can_override": false}, "p4c": {"name": "p4c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 4 - part c
", "templateType": "randrange", "can_override": false}, "p5c": {"name": "p5c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 5 - part c
", "templateType": "randrange", "can_override": false}, "p6c": {"name": "p6c", "group": "Part c", "definition": "random(1 .. 70#1)", "description": "Frequency 6 - part c
", "templateType": "randrange", "can_override": false}, "mean3": {"name": "mean3", "group": "Part c", "definition": "precround(mean3a,2)", "description": "Mean rounded to two decimal places - part c
", "templateType": "anything", "can_override": false}, "sum3": {"name": "sum3", "group": "Part c", "definition": "p1c+p2c+p3c+p4c+p5c+p6c", "description": "Sum of frequencies - part c
", "templateType": "anything", "can_override": false}, "mean3a": {"name": "mean3a", "group": "Part c", "definition": "((0*p1c)+(1*p2c)+(2*p3c)+(3*p4c)+(4*p5c)+(5*p6c))/sum3", "description": "The mean - part c
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["mean1", "mean1a", "p1", "p2", "p3", "p4", "p5", "p6", "sum1"]}, {"name": "Part b", "variables": ["mean2", "mean2a", "p1b", "p2b", "p3b", "p4b", "sum2"]}, {"name": "Part c", "variables": ["mean3a", "mean3", "p1c", "p2c", "p3c", "p4c", "p5c", "p6c", "sum3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": true, "customName": "a)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The table below shows the distribution of shoe sizes amongst {sum1} students at a school in Sheffield.
\n| Shoe size | \nFrequency | \n
| 3 | \n{p1} | \n
| 4 | \n{p2} | \n
| 5 | \n{p3} | \n
| 6 | \n{p4} | \n
| 7 | \n{p5} | \n
| 8 | \n{p6} | \n
The table below shows the distribution of number of pets that {sum2} randomly asked people have.
\n| Number of Pets | \nFrequency | \n
| 0 | \n{p1b} | \n
| 1 | \n{p2b} | \n
| 2 | \n{p3b} | \n
| 3 | \n{p4b} | \n
The table below shows the distribution of the number of drinks per order at a coffee shop in Manchester.
\n| Number of Drinks | \nFrequency | \n
| 0 | \n{p1c} | \n
| 1 | \n{p2c} | \n
| 2 | \n{p3c} | \n
| 3 | \n{p4c} | \n
| 4 | \n{p5c} | \n
| 5 | \n{p6c} | \n
This question asks the student to choose the appropriate measure of average and spread for a data with outliers.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Which of the following measures would you choose if you were dealing with data which includes outliers? Select one measure of average and one measure of spread.
", "advice": "The median is a more appropriate measure of average when your data contains outliers because outliers do not affect the median.
\nThe interquartile range is the best measure of variability for skewed distributions or data sets with outliers. Because it’s based on values that come from the middle half of the distribution, it’s unlikely to be influenced by outliers.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Mean", "Median", "Standard deviation", "P-value", "Range", "Inter-quartile range"], "matrix": [0, "1", 0, 0, 0, "1"], "distractors": ["", "", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM07 Identify measures of spread/location", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Gareth Woods", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/978/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": [], "metadata": {"description": "Identifying measures of spread or location (average)
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Match each of the following with what they measure.
", "advice": "The mean is a measure of location or central tendancy. It is calcuated by summing all of the data values and dividing by the number of values.
\nThe median is a measure of location or central tendancy. It is the middle value of an ordered data set.
\nThe inter-quartile range is a measure of spread. The interquartile range is the difference between upper and lower quartiles.The lower quartile, or first quartile (Q1), is the value under which 25% of data points are found when they are arranged in increasing order. The upper quartile, or third quartile (Q3), is the value under which 75% of data points are found when arranged in increasing order. The inter-quartile range therefore gives us an idea of the middle 50% of the ordered data set.
\nThe standard deviation is a measure of spread. It measures the dispersion of a data set relative to its mean.
\nThe variance is a measure spread because it is the square of the standard deviation.
\nA p-value the probability that a particular statistical measure, such as the mean or standard deviation, of an assumed probability distribution will be greater than or equal to (or less than or equal to in some instances) observed results. A p-value is used to determine statistical significance, not measures of spread or location.
\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {"std": ["all", "fractionNumbers"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "function dragpoint_board() {\n var scope = question.scope;\n\n JXG.Options.text.display = 'internal';\n \n var yo0 = scope.variables.yo0.value;\n var yo1 = scope.variables.yo1.value;\n var yo2 = scope.variables.yo2.value;\n var yo3 = scope.variables.yo3.value;\n var yo4 = scope.variables.yo4.value;\n var yo5 = scope.variables.yo5.value;\n var yo6 = scope.variables.yo6.value;\n var yo7 = scope.variables.yo7.value; \n var yo8 = scope.variables.yo8.value;\n var yo9 = scope.variables.yo9.value; \n \n var div = Numbas.extensions.jsxgraph.makeBoard('550px','550px',{boundingBox:[-0.8,82,16,-8], axis:false, grid:true});\n \n $(question.display.html).find('#dragpoint').append(div);\n \n var board = div.board;\n \nboard.suspendUpdate(); \n\n \n var dataArr = [yo0,yo5,0,yo1,yo6,0,yo2,yo7,0,yo3,yo8,0,yo4,yo9]; \n \n var xaxis = board.create('axis', [[0, 0], [12, 0]], {withLabel: true, name: \"Bank\", label: {offset: [250,-30]}});\n \n xaxis.removeAllTicks(); \n \n board.create('axis', [[0, 0], [0, 10]], {hideTicks:true, withLabel: false, name: \"\", label: {offset: [-110,300]}});\n \n var pop0 = board.create('point', [1.5,0],{name:'Morgan',fixed:true,size:0,color:'black',face:'diamond', label:{offset:[-20,-8]}});\n var pop1 = board.create('point',[4.5,0],{name:'Strome',fixed:true,size:0,color:'black',face:'diamond', label:{offset:[-20,-8]}});\n var pop2 = board.create('point',[7.5,0],{name:'Bentley',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n var pop3 = board.create('point',[10.5,0],{name:'Sand',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n var pop4 = board.create('point',[13.5,0],{name:'Karchen',fixed:true,size:0,color:'black', face:'diamond', label:{offset:[-15,-8]}});\n\n var leg1 = board.create('point',[12,75],{name:'last year',fixed:true,size:6,color:'#DA2228', face:'square', label:{offset:[9,0]}});\n var leg2 = board.create('point',[12,72],{name:'this year',fixed:true,size:6,color:'#6F1B75', face:'square', label:{offset:[9,0]}});\n \n \n// var chart = board.createElement('chart', dataArr, \n // {chartStyle:'bar', fillOpacity:1, width:1,\n // colorArray:['#8E1B77','#8E1B77','Red','Red','blue','red','blue','red','red','blue', 'red','blue','red','red'], shadow:false});\n \n//var chart = board.createElement('chart', dataArr, \n // {chartStyle:'bar', width:1,fillOpacity:1, fillColor:'red', shadow:false}); \n \n \n var a = board.create('chart', [[1,2,3],[yo0,yo5,0]], {chartStyle:'bar',colors:['#DA2228','#6F1B75','#6F1B75'],width:1,fillOpacity:1});\n var b = board.create('chart', [[4,5,6],[yo1,yo6,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var c = board.create('chart', [[7,8,9],[yo2,yo7,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var d = board.create('chart', [[10,11,12],[yo3,yo8,0]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75','#6F1B75'],fillOpacity:1});\n var e = board.create('chart', [[13,14],[yo4,yo9]], {chartStyle:'bar',width:1,colors:['#DA2228','#6F1B75'],fillOpacity:1});\n \n board.unsuspendUpdate();\n \n var txt1 = board.create('text',[-0.3,30, 'Investment \u00a3(m)'], {fontColor:'black', fontSize:14, rotate:90});\n \n // var txt = board.create('text',[0.5,75, 'Investment (m)'], {fontSize:14, rotate:90});\n \n // var txt1 = board.create('text',[8,76, 'red bars represent 2010'], {fontColor:'red', fontSize:14, rotate:90});\n \n // var txt2 = board.create('text',[8,73, 'blue bars represents 2011'], {fontSize:14, rotate:90});\n\n // var myColors = new Array('red', 'blue', 'white','red', 'blue', 'white','red', 'blue', 'white','red', 'blue', 'white','red', 'blue');\n \n \n \n //board.unsuspendUpdate();\n\n // Rotate text around the lower left corner (-2,-1) by 30 degrees.\n // var tRot = board.create('transform', [90.0*Math.PI/180.0, -1,40], {type:'rotate'}); \n // tRot.bindTo(txt);\n // board.update();\n\n \n//var chart2 = board.createElement('chart', dataArr, {chartStyle:'line,point'});\n//chart2[0].setProperty('strokeColor:black','strokeWidth:2','shadow:true');\n//for(var i=0; i<11;i++) {\n // chart2[1][i].setProperty({strokeColor:'black',fillColor:'white',face:'[]', size:4, strokeWidth:2});\n//}\n//board.unsuspendUpdate(); \n \n //board.unsuspendUpdate();\n\n}\n\nquestion.signals.on('HTMLAttached',function() {\n dragpoint_board();\n});", "css": "table#values th {\n background: none;\n text-align: center;\n}"}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Variance", "Mean", "Median", "Inter-quartile range", "P-value", "Standard deviation"], "matrix": [["1", 0, 0], [0, "1", 0], [0, "1", 0], ["1", 0, 0], [0, 0, "1"], ["1", 0, 0]], "layout": {"type": "all", "expression": ""}, "answers": ["Measure of Spread", "Measure of location (average)", "Neither measure of location nor measure of spread"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM08 Calculate Range (Decimal)", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}, {"name": "Michael Pan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23528/"}], "tags": ["mean", "measures of average and spread", "median", "mode", "range", "taxonomy"], "metadata": {"description": "This question provides a list of data to the student. They are asked to find the \"range\".
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Here is a list of 20 random numbers:
\n| $\\var{a[0]}$ | \n$\\var{a[1]}$ | \n$\\var{a[2]}$ | \n$\\var{a[3]}$ | \n$\\var{a[4]}$ | \n$\\var{a[5]}$ | \n$\\var{a[6]}$ | \n$\\var{a[7]}$ | \n$\\var{a[8]}$ | \n$\\var{a[9]}$ | \n
| $\\var{a[10]}$ | \n$\\var{a[11]}$ | \n$\\var{a[12]}$ | \n$\\var{a[13]}$ | \n$\\var{a[14]}$ | \n$\\var{a[15]}$ | \n$\\var{a[16]}$ | \n$\\var{a[17]}$ | \n$\\var{a[18]}$ | \n$\\var{a[19]}$ | \n
Range is the difference between the highest and the lowest value in the data.
\nTo find this, we subtract the lowest value from the highest value:
\n\\[ \\var{max(a)} - \\var{min(a)} = \\var{range} \\text{.}\\]
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "repeat(random(z), 20)", "description": "Option 1 for the list. Only used if there is only one mode.
", "templateType": "anything", "can_override": false}, "a_s": {"name": "a_s", "group": "final list", "definition": "sort(a)", "description": "Sorted list.
", "templateType": "anything", "can_override": false}, "range": {"name": "range", "group": "final list", "definition": "max(a) - min(a)", "description": "", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "0.7 .. 9.7#0.1", "description": "", "templateType": "range", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "z"], "variable_groups": [{"name": "final list", "variables": ["a_s", "range"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the range.
", "minValue": "range", "maxValue": "range", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM09 Range and Interquartile Range", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Here are the ages of 7 people:
\n{a1}, {a2}, {a3}, {a4}, {a5}, {a6}, {a7}.
", "advice": "First we should order our list of ages from smallest to largest:
\n$\\var{list[0]}, \\var{list[1]}, \\var{list[2]}, \\var{list[3]}, \\var{list[4]}, \\var{list[5]}, \\var{list[6]}$.
\na)
\nTo find the range of ages we must subtract the smallest age from the largest age,
\n$\\var{max(list)} - \\var{min(list)} = \\var{range}$.
\nHence, the range is $\\var{range}$.
\nb)
\nTo calculate the interquartile range we subtract the lower quartile from the upper quartile.
\nTo calculate the lower quartile:
\nSince we have an odd number of ages we had one to the total and divide by 4,
\n$\\frac{7+1}{4} = \\frac{8}{4} = 2.$
\nSo we are looking for the $2^{nd}$ value in our list which is $\\var{lq}$.
\nHence the lower quartile is $\\var{lq}$.
\nTo find the upper quartile:
\nWe still add one to the number of ages because this number is odd and then we find $75$% of it,
\n$\\frac{3\\times(7+1)}{4} = \\frac{3\\times8}{4} = \\frac{24}{4} = 6.$
\nSo we are looking for the $6^{th}$ value in our list which is $\\var{uq}$.
\nHence the lower quartile is $\\var{uq}$.
\nNow we can calculate the interquartile range by subtracting the lower quartile from the upper quartile,
\n$\\var{uq}-\\var{lq} = \\var{iqr}.$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(16 .. 60#1)", "description": "Age 1
", "templateType": "randrange", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(16 .. 60#1)", "description": "Age 2
", "templateType": "randrange", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "random(16 .. 60#1)", "description": "Age 3
", "templateType": "randrange", "can_override": false}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "random(16 .. 60#1)", "description": "Age 4
", "templateType": "randrange", "can_override": false}, "a5": {"name": "a5", "group": "Ungrouped variables", "definition": "random(16 .. 60#1)", "description": "Age 5
", "templateType": "randrange", "can_override": false}, "a6": {"name": "a6", "group": "Ungrouped variables", "definition": "random(16 .. 60#1)", "description": "Age 6
", "templateType": "randrange", "can_override": false}, "a7": {"name": "a7", "group": "Ungrouped variables", "definition": "random(16 .. 60#1)", "description": "Age 7
", "templateType": "randrange", "can_override": false}, "list": {"name": "list", "group": "Ungrouped variables", "definition": "sort([a1,a2,a3,a4,a5,a6,a7])", "description": "Ages in ascending order
", "templateType": "anything", "can_override": false}, "range": {"name": "range", "group": "Ungrouped variables", "definition": "max(list)-min(list)", "description": "Range
", "templateType": "anything", "can_override": false}, "lq": {"name": "lq", "group": "Ungrouped variables", "definition": "list[((8/4)-1)]", "description": "Lower quartile
", "templateType": "anything", "can_override": false}, "uq": {"name": "uq", "group": "Ungrouped variables", "definition": "list[(((3*8)/4)-1)]", "description": "Upper quartile
", "templateType": "anything", "can_override": false}, "iqr": {"name": "iqr", "group": "Ungrouped variables", "definition": "uq-lq", "description": "Interquartile range
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a1", "a2", "a3", "a4", "a5", "a6", "a7", "list", "range", "lq", "uq", "iqr"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": true, "customName": "a)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Work out the range of ages.
", "minValue": "range", "maxValue": "range", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "b)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Work out the interquartile range of the ages.
", "minValue": "iqr", "maxValue": "iqr", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM10 Estimated Mean", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Tina needs to take a train to work.
\nThe table below shows information about how long the train is delayed for on each day.
\nThe policy of the train company is that if your train is delayed for longer than 30 minutes, you will recieve a 50% discount on your train ticket.
\n| Delay Time | \nFrequency | \n
| 0 < t $\\leq$ 10 | \n{f1} | \n
| 10 < t $\\leq$ 20 | \n{f2} | \n
| 20 < t $\\leq$ 30 | \n{f3} | \n
| 30 < t $\\leq$ 40 | \n{f4} | \n
| 40 < t $\\leq$ 50 | \n{f5} | \n
a)
\nTo find the estimated mean we must work out the midpoint of the delay time intervals and multiply this by the frequency to create the $fx$ column on the table.
\n| Delay Time | \nFrequency | \nMidpoint | \nFrequency $\\times$ Midpoint, $fx$ | \n
| 0 < t $\\leq$ 10 | \n{f1} | \n5 | \n= 5$\\times\\var{f1} = \\var{f1m}$ | \n
| 10 < t $\\leq$ 20 | \n{f2} | \n15 | \n= 15$\\times\\var{f2} = \\var{f2m}$ | \n
| 20 < t $\\leq$ 30 | \n{f3} | \n25 | \n= 25$\\times\\var{f3} = \\var{f3m}$ | \n
| 30 < t $\\leq$ 40 | \n{f4} | \n35 | \n= 35$\\times\\var{f4} = \\var{f4m}$ | \n
| 40 < t $\\leq$ 50 | \n{f5} | \n45 | \n= 45$\\times\\var{f5} = \\var{f5m}$ | \n
Now to find the mean we calculate the sum of the $fx$ column and divide it by the sum of the frequencies:
\nEstimated Mean = $\\frac{\\var{f1m}+\\var{f2m}+\\var{f3m}+\\var{f4m}+\\var{f5m}}{5+15+25+35+45} = \\frac{\\var{freqmid}}{\\var{sum}} = \\var{meana}.$
\nHence the estimated mean delay time is $\\var{mean}$ to two decimal places.
\n\nb)
\nTo work out what percentage of delays that were over 30 minutes we first need to calculate the number of days where the train was delayed for over 30 minutes.
\nThe number of delays that over 30 minutes is $\\var{f4}+\\var{f5} = \\var{f4+f5}$.
\nWe divide this by the total number of deliveries to find the fraction of delays that were over 30 minutes and then multiply this number by 100 to find the percentage:
\n$\\frac{\\var{f4+f5}}{\\var{f1}+\\var{f2}+\\var{f3}+\\var{f4}+\\var{f5}} \\times 100\\% = \\frac{\\var{f4+f5}}{\\var{sum}} \\times 100\\% = \\var{percentagea} \\times 100\\%$.
\nHence, the percentage of delays that were over 30 minutes is $\\var{percentage}\\%$ to two decimal places.
\n\nc)
\nThe percentage of delays that take over 40 minutes is:
\n$\\frac{\\var{f5}}{\\var{f1}+\\var{f2}+\\var{f3}+\\var{f4}+\\var{f5}} \\times 100\\% = \\frac{\\var{f5}}{\\var{sum}} \\times 100\\% = \\var{percent40} \\times 100\\%$, to one decimal place.
\nSo, only $\\var{percent40}\\%$ of the time, delays were longer than 40 minutes so the manager would probably wanto the policy changed to 40 minutes.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"f1": {"name": "f1", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "Frequency 1
", "templateType": "randrange", "can_override": false}, "f2": {"name": "f2", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "Frequency 2
", "templateType": "randrange", "can_override": false}, "f3": {"name": "f3", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "Frequency 3
", "templateType": "randrange", "can_override": false}, "f4": {"name": "f4", "group": "Ungrouped variables", "definition": "random(1 .. 20#1)", "description": "Frequency 4
", "templateType": "randrange", "can_override": false}, "f5": {"name": "f5", "group": "Ungrouped variables", "definition": "random(1 .. 5#1)", "description": "Frequency 5
", "templateType": "randrange", "can_override": false}, "meana": {"name": "meana", "group": "Ungrouped variables", "definition": "freqmid/sum", "description": "Mean
", "templateType": "anything", "can_override": false}, "sum": {"name": "sum", "group": "Ungrouped variables", "definition": "f1+f2+f3+f4+f5", "description": "Sum of frequencies
", "templateType": "anything", "can_override": false}, "f1m": {"name": "f1m", "group": "Ungrouped variables", "definition": "5*f1", "description": "Frequency * midpoint 1
", "templateType": "anything", "can_override": false}, "f2m": {"name": "f2m", "group": "Ungrouped variables", "definition": "15*f2", "description": "Frequency * midpoint 2
", "templateType": "anything", "can_override": false}, "f3m": {"name": "f3m", "group": "Ungrouped variables", "definition": "25*f3", "description": "Frequency * midpoint 3
", "templateType": "anything", "can_override": false}, "f4m": {"name": "f4m", "group": "Ungrouped variables", "definition": "35*f4", "description": "Frequency * midpoint 4
", "templateType": "anything", "can_override": false}, "f5m": {"name": "f5m", "group": "Ungrouped variables", "definition": "45*f5", "description": "Frequency * midpoint 5
", "templateType": "anything", "can_override": false}, "freqmid": {"name": "freqmid", "group": "Ungrouped variables", "definition": "f1m+f2m+f3m+f4m+f5m", "description": "Sum of Frequency * midpoint
", "templateType": "anything", "can_override": false}, "mean": {"name": "mean", "group": "Ungrouped variables", "definition": "precround(meana,2)", "description": "Mean rounded to two decimal places
", "templateType": "anything", "can_override": false}, "f30": {"name": "f30", "group": "Ungrouped variables", "definition": "f4+f5", "description": "Sum of 4th & 5th frequencies
", "templateType": "anything", "can_override": false}, "percentagea": {"name": "percentagea", "group": "Ungrouped variables", "definition": "(f30/sum)*100", "description": "Percentage over 30 mins
", "templateType": "anything", "can_override": false}, "percentage": {"name": "percentage", "group": "Ungrouped variables", "definition": "precround(percentagea,1)", "description": "Percentage rounded to one decimal place
", "templateType": "anything", "can_override": false}, "percent40": {"name": "percent40", "group": "Ungrouped variables", "definition": "precround(((f5/sum)*100),1)", "description": "Percentage over 40 mins
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["f1", "f2", "f3", "f4", "f5", "meana", "sum", "f1m", "f2m", "f3m", "f4m", "f5m", "freqmid", "mean", "f30", "percentagea", "percentage", "percent40"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": true, "customName": "a)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Using a calculator, calculate an estimate for the mean delay time. Give your answer to two decimal places.
", "minValue": "mean", "maxValue": "mean", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "b)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What percentage of delays were over 30 minutes? Give your answer to one decimal place.
", "minValue": "percentage", "maxValue": "percentage", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": true, "customName": "c)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The train company propose that they should only offer the 50% discount if the train is delayed for over 40 minutes.
\nIf you were the manager of the train company would you agree? Type yes or no into the box and think about the reasons for your answer.
", "answer": "yes", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "yes", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SM11 Linear Interpolation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Megan Oliver", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23526/"}], "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "This frequence table stores data about the lengths of some plants:
\n| Length ($x$ cm) | \nFrequency | \n
| 10 < $x$ $\\leq$ 20 | \n{f1} | \n
| 20 < $x$ $\\leq$ 30 | \n{f2} | \n
| 30 < $x$ $\\leq$ 40 | \n{f3} | \n
| 40 < $x$ $\\leq$ 50 | \n{f4} | \n
a)
\nTo find the median we must find the middle value. To do this we sum the frequencies and divide the result by 2:
\n$\\frac{\\var{f1}+\\var{f2}+\\var{f3}+\\var{f4}}{2} = \\frac{\\var{total}}{2} = \\var{middle1}$.
\nHence we must find value number $\\var{middle1}$, we can do this by totalling the cumulative frequency in the table below.
\n| \n Length $x$ cm \n | \nFrequency | \nCumulative Frequency | \n
| 1. 10 < $x$ $\\leq$ 20 | \n{f1} | \n$\\var{f1}$ | \n
| 2. 20 < $x$ $\\leq$ 30 | \n{f2} | \n$\\var{f1}+\\var{f2}=\\var{cf2}$ | \n
| 3. 30 < $x$ $\\leq$ 40 | \n{f3} | \n$\\var{f1}+\\var{f2} +\\var{f3} =\\var{cf3}$ | \n
| 4. 40 < $x$ $\\leq$ 50 | \n{f4} | \n$\\var{f1}+\\var{f2} +\\var{f3} + \\var{f4} =\\var{total}$ | \n
You can see value number $\\var{middle1}$ lies in interval number $\\var{interval1}$ hence this is the median class interval for the time taken.
\nWe can estimate the median by using interpolation:
\n$$
\\text{Estimate of median} = \\text{class start value} + \\frac{\\text{position in class}}{\\text{frequency in class}}\\times \\text{class width}
$$
In this case this is $\\var{lower1}+\\frac{\\var{middle1}-\\var{cf11}}{\\var{fint1}}\\times 10 =\\var{lower1}+\\var{interpolation1}=\\var{median1}.$
\n(Note: that sometimes it is convenient to use $(\\var{total} + 1)/2 = \\var{middle2}$ as the way to work out the median position. The distinction does not really matter as this is an estimated value and often the decision is made based on which is the most convenient to calculate). This question has been written so that both answers will be marked correctly.
\nb)
\nTo calculate the $i^{th}$ quartile ($Q_i$) we must use the following formula:
\n$Q_i = l + \\frac{\\frac{iN}{4}-F}{f}\\times h,$
\nwhere:
\n$l$ = lower limit of the interval in which $Q_i$ lies;
\n$N$ = Total number of observations;
\n$F$ = Cumulative frequency of class previous to the $i^{th}$ quartile class;
$f$ = Frequency of $i^{th}$ quartile class.
Since we want to calculate the lower quartile, $i=1$.
\nIf we calculate $\\frac{iN}{4} = \\frac{\\var{total}}{4} = \\var{quarter}$, we can see in the table from part a) that the lower quartile will be in interval number $\\var{intervallq}$. This means that $F = \\var{fprev}$ and $f = \\var{frequency}$.
\nHence,
\n$Q_1 = \\var{lowerlq} + \\frac{\\var{quarter} - \\var{Fprev}}{\\var{frequency}} \\times 10 = \\var{lowerlq} + \\frac{\\var{quarter-Fprev}}{\\var{frequency}} \\times 10 = \\var{lowerlq} + \\var{((quarter-Fprev)/frequency)*10} = \\var{lq}.$
So, The lower quartile is $\\var{lqround}$ to two decimal places.
c)
\nTo calculate the upper quartile we use the same formula as in part b) but this time $i=3$. So, $\\frac{iN}{4} = \\frac{\\var{3*total}}{4} = \\var{3*quarter}$, we can see in the table from part a) that the lower quartile will be in interval number $\\var{intervaluq}$. This means that $F = \\var{ufprev}$ and $f = \\var{ufrequency}$.
\nHence,
\n$Q_3 = \\var{upperlq} + \\frac{\\var{3*quarter} - \\var{uFprev}}{\\var{ufrequency}} \\times 10 = \\var{upperlq} + \\frac{\\var{3*quarter-uFprev}}{\\var{ufrequency}} \\times 10 = \\var{upperlq} + \\var{((3*quarter-uFprev)/ufrequency)*10} = \\var{uq}.$
So, The lower quartile is $\\var{uqround}$ to two decimal places.
d)
\nTo calculate the interquartile range we subtract the lower quartile from the upper quartile.
\nHence,
\n$IQR = Q_3 - Q_1 = \\var{uq}-\\var{lq}=\\var{iqr}$.
\nSo the interquartile range rounded to two decimal places is $\\var{iqrround}$.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"f1": {"name": "f1", "group": "Ungrouped variables", "definition": "random(4 .. 24#4)", "description": "Frequency 1
", "templateType": "randrange", "can_override": false}, "f2": {"name": "f2", "group": "Ungrouped variables", "definition": "random(4 .. 24#4)", "description": "Frequency 2
", "templateType": "randrange", "can_override": false}, "f3": {"name": "f3", "group": "Ungrouped variables", "definition": "random(4 .. 24#4)", "description": "Frequency 3
", "templateType": "randrange", "can_override": false}, "f4": {"name": "f4", "group": "Ungrouped variables", "definition": "random(4 .. 24#4)", "description": "Frequency 4
", "templateType": "randrange", "can_override": false}, "median1": {"name": "median1", "group": "Part a", "definition": "lower1 + interpolation1", "description": "", "templateType": "anything", "can_override": false}, "total": {"name": "total", "group": "Ungrouped variables", "definition": "f1+f2+f3+f4", "description": "Sum of frequencies
", "templateType": "anything", "can_override": false}, "middle1": {"name": "middle1", "group": "Part a", "definition": "total/2", "description": "Middle Value
", "templateType": "anything", "can_override": true}, "cf2": {"name": "cf2", "group": "Ungrouped variables", "definition": "f1+f2", "description": "Cumulative Frequency - first and second frequencies
", "templateType": "anything", "can_override": false}, "cf3": {"name": "cf3", "group": "Ungrouped variables", "definition": "f1+f2+f3", "description": "Cumulative freqeuncy - sum of first, second, third frequencies
", "templateType": "anything", "can_override": false}, "lower1": {"name": "lower1", "group": "Part a", "definition": "if(interval1=1,10,if(interval1=2,20,if(interval1=3,30,if(interval1=4,40,0))))", "description": "Lower bound of interval which median sits
", "templateType": "anything", "can_override": false}, "interval1": {"name": "interval1", "group": "Part a", "definition": "if(middle1Formula to find lower quartile
", "templateType": "anything", "can_override": false}, "intervallq": {"name": "intervallq", "group": "Part b", "definition": "if(quarter<=f1,1,if(quarter<=cf2,2,if(quarter<=cf3,3,if(quarter<=total,4,0))))", "description": "Interval which lower quartile sits in
", "templateType": "anything", "can_override": false}, "quarter": {"name": "quarter", "group": "Part b", "definition": "total/4", "description": "Quarter value
", "templateType": "anything", "can_override": false}, "fprev": {"name": "fprev", "group": "Part b", "definition": "if(intervallq=1,0,if(intervallq=2,f1,if(intervallq=3,cf2,if(intervallq=4,cf3,0))))", "description": "Cumulative frequency of class previous to one which lower quartile sits in
", "templateType": "anything", "can_override": false}, "frequency": {"name": "frequency", "group": "Part b", "definition": "if(intervallq=1,f1,if(intervallq=2,f2,if(intervallq=3,f3,if(intervallq=4,f4,0))))", "description": "Frequency of class which lower quartile sits in
", "templateType": "anything", "can_override": false}, "lqround": {"name": "lqround", "group": "Part b", "definition": "precround(lq,2)", "description": "Lower quartile rounded to 2 decimal places
", "templateType": "anything", "can_override": false}, "uqround": {"name": "uqround", "group": "Part c", "definition": "precround(uq,2)", "description": "Upper quartile rounded to 2 decimal places
", "templateType": "anything", "can_override": false}, "uq": {"name": "uq", "group": "Part c", "definition": "rational(upperlq + (((total*0.75) - UFprev)/Ufrequency) * 10)", "description": "Upper quartile
", "templateType": "anything", "can_override": false}, "ufprev": {"name": "ufprev", "group": "Part c", "definition": "if(intervaluq=1,0,if(intervaluq=2,f1,if(intervaluq=3,cf2,if(intervaluq=4,cf3,0))))", "description": "cumulative frequency of class previous to the one which the upper quartile sits in
", "templateType": "anything", "can_override": false}, "ufrequency": {"name": "ufrequency", "group": "Part c", "definition": "if(intervaluq=1,f1,if(intervaluq=2,f2,if(intervaluq=3,f3,if(intervaluq=4,f4,0))))", "description": "Frequency of class upper quartile sits in
", "templateType": "anything", "can_override": false}, "intervaluq": {"name": "intervaluq", "group": "Part c", "definition": "if(3*quarter<=f1,1,if(3*quarter<=cf2,2,if(3*quarter<=cf3,3,if(3*quarter<=total,4,0))))", "description": "class which upper quartile sits in
", "templateType": "anything", "can_override": false}, "iqr": {"name": "iqr", "group": "Part d", "definition": "rational(uq-lq)", "description": "Interquartile range
", "templateType": "anything", "can_override": false}, "lowerlq": {"name": "lowerlq", "group": "Part b", "definition": "if(intervallq=1,10,if(intervallq=2,20,if(intervallq=3,30,if(intervallq=4,40,0))))", "description": "width of class which lower quartile sits in
", "templateType": "anything", "can_override": false}, "upperlq": {"name": "upperlq", "group": "Part c", "definition": "if(intervaluq=1,10,if(intervaluq=2,20,if(intervaluq=3,30,if(intervaluq=4,40,0))))", "description": "width of class upper quartile sits in
", "templateType": "anything", "can_override": false}, "iqrround": {"name": "iqrround", "group": "Part d", "definition": "precround(iqr,2)", "description": "Round interquartle range to two decimal places
", "templateType": "anything", "can_override": false}, "interpolation1": {"name": "interpolation1", "group": "Part a", "definition": "if(middle1Calculate the lower quartile, give your answer to 2 decimal places.
", "minValue": "lqround", "maxValue": "lqround", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "c)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate an estimate for the upper quartile using linear interpolation, give your answer to two decimal places.
", "minValue": "uqround", "maxValue": "uqround", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "d)", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Estimate the interquartile range, give your answer to two decimal places.
", "minValue": "iqrround", "maxValue": "iqrround", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "SN01 Correlation", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Richard Miles", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/882/"}, {"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}, {"name": "Upuli Wickramaarachchi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23527/"}], "tags": [], "metadata": {"description": "Tests understanding of scatter plots and related concepts.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "The scatter plot below shows the relationship between an employee’s height in centimetres and how long it takes them to walk to work in minutes.
\n| time (mins) | \n{drawgraph()} | \n
| \n | height (cm) | \n
The graph shows that there is a positive correlation between a person's height and how long it takes them to walk to work.
\nA postive correlation is a relationship between two variables where both variables move in the same diection.
\nThis tells us that as a person's height increases, the time it takes to walk to work increases.
\nUse this link to find some resources which will help you revise this topic
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"slope": {"name": "slope", "group": "Regression variables", "definition": "(6*sumxy-sumx*sumy)/(6*sumxx-(sumx)^2)", "description": "s
", "templateType": "anything", "can_override": false}, "timemax": {"name": "timemax", "group": "Calculation variables", "definition": "max([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "minx": {"name": "minx", "group": "Graph Limits", "definition": "140", "description": "", "templateType": "anything", "can_override": false}, "miny": {"name": "miny", "group": "Graph Limits", "definition": "-10", "description": "", "templateType": "anything", "can_override": false}, "p3x": {"name": "p3x", "group": "Points", "definition": "random(166..175)", "description": "", "templateType": "anything", "can_override": false}, "p3y": {"name": "p3y", "group": "Points", "definition": "random(26..35)", "description": "", "templateType": "anything", "can_override": false}, "p5x": {"name": "p5x", "group": "Points", "definition": "random(146..155 except p1x)", "description": "", "templateType": "anything", "can_override": false}, "p5y": {"name": "p5y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "p1x": {"name": "p1x", "group": "Points", "definition": "random(146..155)", "description": "", "templateType": "anything", "can_override": false}, "p1y": {"name": "p1y", "group": "Points", "definition": "random(6..15)", "description": "", "templateType": "anything", "can_override": false}, "timediff": {"name": "timediff", "group": "Calculation variables", "definition": "timemax-timemin", "description": "", "templateType": "anything", "can_override": false}, "maxx": {"name": "maxx", "group": "Graph Limits", "definition": "188", "description": "", "templateType": "anything", "can_override": false}, "maxy": {"name": "maxy", "group": "Graph Limits", "definition": "63", "description": "", "templateType": "anything", "can_override": false}, "roundedslope": {"name": "roundedslope", "group": "Regression variables", "definition": "precround(slope,2)", "description": "", "templateType": "anything", "can_override": false}, "yintercept": {"name": "yintercept", "group": "Regression variables", "definition": "(sumy-slope*sumx)/6", "description": "", "templateType": "anything", "can_override": false}, "timemin": {"name": "timemin", "group": "Calculation variables", "definition": "min([p1y,p2y,p3y,p4y,p5y,p6y])", "description": "", "templateType": "anything", "can_override": false}, "tallest": {"name": "tallest", "group": "Calculation variables", "definition": "max([p1x,p2x,p3x,p4x,p5x,p6x])", "description": "", "templateType": "anything", "can_override": false}, "regy1": {"name": "regy1", "group": "Regression variables", "definition": "slope*minx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "regy2": {"name": "regy2", "group": "Regression variables", "definition": "slope*maxx+yintercept", "description": "", "templateType": "anything", "can_override": false}, "sumy": {"name": "sumy", "group": "Regression variables", "definition": "p1y+p2y+p3y+p4y+p5y+p6y", "description": "", "templateType": "anything", "can_override": false}, "sumx": {"name": "sumx", "group": "Regression variables", "definition": "p1x+p2x+p3x+p4x+p5x+p6x", "description": "", "templateType": "anything", "can_override": false}, "p6y": {"name": "p6y", "group": "Points", "definition": "random(46..55)", "description": "p6y
", "templateType": "anything", "can_override": false}, "p6x": {"name": "p6x", "group": "Points", "definition": "random(176..185 except p4x)", "description": "", "templateType": "anything", "can_override": false}, "p4y": {"name": "p4y", "group": "Points", "definition": "random(36..45)", "description": "", "templateType": "anything", "can_override": false}, "p4x": {"name": "p4x", "group": "Points", "definition": "random(176..185)", "description": "", "templateType": "anything", "can_override": false}, "p2y": {"name": "p2y", "group": "Points", "definition": "random(16..25)", "description": "", "templateType": "anything", "can_override": false}, "p2x": {"name": "p2x", "group": "Points", "definition": "random(156..165)", "description": "", "templateType": "anything", "can_override": false}, "sumxx": {"name": "sumxx", "group": "Regression variables", "definition": "p1x^2+p2x^2+p3x^2+p4x^2+p5x^2+p6x^2", "description": "", "templateType": "anything", "can_override": false}, "sumxy": {"name": "sumxy", "group": "Regression variables", "definition": "p1x*p1y+p2x*p2y+p3x*p3y+p4x*p4y+p5x*p5y+p6x*p6y", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Graph Limits", "variables": ["minx", "maxx", "miny", "maxy"]}, {"name": "Points", "variables": ["p1x", "p1y", "p2x", "p2y", "p3x", "p3y", "p4x", "p4y", "p5x", "p5y", "p6x", "p6y"]}, {"name": "Calculation variables", "variables": ["tallest", "timemax", "timemin", "timediff"]}, {"name": "Regression variables", "variables": ["sumx", "sumy", "sumxy", "sumxx", "slope", "yintercept", "regy1", "regy2", "roundedslope"]}], "functions": {"drawgraph": {"parameters": [], "type": "html", "language": "javascript", "definition": " var miny = Numbas.jme.unwrapValue(scope.variables.miny);\n var maxy = Numbas.jme.unwrapValue(scope.variables.maxy);\n var minx = Numbas.jme.unwrapValue(scope.variables.minx);\n var maxx = Numbas.jme.unwrapValue(scope.variables.maxx);\n var regy1 = Numbas.jme.unwrapValue(scope.variables.regy1);\n var regy2 = Numbas.jme.unwrapValue(scope.variables.regy2);\n\n var p1x = Numbas.jme.unwrapValue(scope.variables.p1x);\n var p1y = Numbas.jme.unwrapValue(scope.variables.p1y);\n var p2x = Numbas.jme.unwrapValue(scope.variables.p2x);\n var p2y= Numbas.jme.unwrapValue(scope.variables.p2y);\n var p3x = Numbas.jme.unwrapValue(scope.variables.p3x);\n var p3y= Numbas.jme.unwrapValue(scope.variables.p3y);\n var p4x = Numbas.jme.unwrapValue(scope.variables.p4x);\n var p4y= Numbas.jme.unwrapValue(scope.variables.p4y);\n var p5x = Numbas.jme.unwrapValue(scope.variables.p5x);\n var p5y= Numbas.jme.unwrapValue(scope.variables.p5y);\n var p6x = Numbas.jme.unwrapValue(scope.variables.p6x);\n var p6y= Numbas.jme.unwrapValue(scope.variables.p6y);\n \n var div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n {boundingBox:[minx,maxy,maxx,miny],\n axis:false,\n showNavigation:false,\n grid:true});\n var brd = div.board; \n var xaxis=brd.createElement('axis', [[minx,0],[maxx,0]]);\n var yaxis=brd.createElement('axis', [[minx+5,miny],[minx+5,maxy]]);\n var li1=brd.create('line',[[minx,regy1],[maxx,regy2]],{fixed:true,withLabel:false});\n var pt1=brd.create('point',[p1x,p1y],{visible:true,withLabel:false}); \n var pt2=brd.create('point',[p2x,p2y],{visible:true,withLabel:false}); \n var pt3=brd.create('point',[p3x,p3y],{visible:true,withLabel:false}); \n var pt4=brd.create('point',[p4x,p4y],{visible:true,withLabel:false}); \n var pt5=brd.create('point',[p5x,p5y],{visible:true,withLabel:false}); \n var pt6=brd.create('point',[p6x,p6y],{visible:true,withLabel:false}); \nreturn div;\n "}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Mark the statement that best describes what this scatter plot shows.
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["In general, there is a positive correlation between a person's height and how long it takes them to walk to work.
", "In general, there is a negative correlation between a person's height and how long it takes them to walk to work.
", "In general, there is a no correlation between a person's height and how long it takes them to walk to work.
"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "Thank you for completing the Skills Audit for Maths and Stats. Hopefully it has been useful in directing you to resources and services that can support your studies. The Skills Audit for Maths and Stats will remain open to you throughout the academic year and you can always revisit it again later.
\nFor any further information or questions please contact mash@sheffield.ac.uk
", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Lauren Desoysa", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21504/"}], "extensions": ["chemistry", "geogebra", "jsxgraph", "permutations", "polynomials", "quantities", "random_person", "stats", "visjs"], "custom_part_types": [{"source": {"pk": 28, "author": {"name": "Marie Nicholson", "pk": 1799}, "edit_page": "/part_type/28/edit"}, "name": "True/False", "short_name": "true-false", "description": "The answer is either 'True' or 'False'
", "help_url": "", "input_widget": "radios", "input_options": {"correctAnswer": "if(eval(settings[\"correct_answer_expr\"]), 0, 1)", "hint": {"static": true, "value": ""}, "choices": {"static": true, "value": ["True", "False"]}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nif(studentanswer=correct_answer,\n correct(),\n incorrect()\n)\n\ninterpreted_answer:\nstudentAnswer=0\n\ncorrect_answer:\nif(eval(settings[\"correct_answer_expr\"]),0,1)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=correct_answer,\n correct(),\n incorrect()\n)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "studentAnswer=0"}, {"name": "correct_answer", "description": "", "definition": "if(eval(settings[\"correct_answer_expr\"]),0,1)"}], "settings": [{"name": "correct_answer_expr", "label": "Is the answer \"True\"", "help_url": "", "hint": "", "input_type": "mathematical_expression", "default_value": "true", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": []}