// Numbas version: finer_feedback_settings {"name": "38. Linear equations - Unknown on both sides", "metadata": {"description": "
Solving linear equations with unknowns on both sides
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", ""], "variable_overrides": [[], [], [], []], "questions": [{"name": "38.a Linear equations - easier", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Solving equations of the form ax+b=cx+d where |a-c|=2
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the following equation for $\\var{Letter}$.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}}.\\]
", "advice": "To solve $\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}}$ we need to get all the $\\var{Letter}$ terms on one side and all the numbers on the other. We start by taking $\\var{Num2}$ from both sides and then taking $\\var{Num3}\\var{Letter}$ from both sides.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}-{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}-{Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}-{Num3}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)}-{Num3}{Letter}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1-Num3}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num4*(Num1-Num3)}}\\]
\nFinally we divide both sides by $\\var{Num1-Num3}$
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num4}}.\\]
\n\nUse this link to find resources to help you revise how to solve linear equations
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Letter": {"name": "Letter", "group": "Ungrouped variables", "definition": "random([\"a\",\"b\",\"c\",\"d\",\"p\",\"t\",\"s\",\"n\",\"m\",\"x\",\"y\",\"z\"])", "description": "", "templateType": "anything", "can_override": false}, "Num1": {"name": "Num1", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num2": {"name": "Num2", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num3": {"name": "Num3", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num4": {"name": "Num4", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(Num1-Num3)=2", "maxRuns": "300"}, "ungrouped_variables": ["Letter", "Num1", "Num2", "Num3", "Num4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{Letter} =$
", "minValue": "{Num4}", "maxValue": "{Num4}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "38.b Linear equations - medium", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Solving equations of the form ax+b=cx+d where 2<|a-c|<13
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the following equation for $\\var{Letter}$.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}}.\\]
", "advice": "To solve $\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}}$ we need to get all the $\\var{Letter}$ terms on one side and all the numbers on the other. We start by taking $\\var{Num2}$ from both sides and then taking $\\var{Num3}\\var{Letter}$ from both sides.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num2}-{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)+Num2}-{Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}-{Num3}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num4*(Num1-Num3)}-{Num3}{Letter}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1-Num3}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num4*(Num1-Num3)}}\\]
\nFinally we divide both sides by $\\var{Num1-Num3}$
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num4}}.\\]
\n\nUse this link to find resources to help you revise how to solve linear equations
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Letter": {"name": "Letter", "group": "Ungrouped variables", "definition": "random([\"a\",\"b\",\"c\",\"d\",\"p\",\"t\",\"s\",\"n\",\"m\",\"x\",\"y\",\"z\"])", "description": "", "templateType": "anything", "can_override": false}, "Num1": {"name": "Num1", "group": "Ungrouped variables", "definition": "random(-10..10 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num2": {"name": "Num2", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num3": {"name": "Num3", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num4": {"name": "Num4", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(Num1-Num3)>2 and abs(Num1-Num3)<13", "maxRuns": 100}, "ungrouped_variables": ["Letter", "Num1", "Num2", "Num3", "Num4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{Letter} =$
", "minValue": "{Num4}", "maxValue": "{Num4}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "38.c Linear equations - expanding brackets needed 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Solving equations of the form a(x+b)=c(x+d)
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the following equation for $\\var{Letter}$.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}({Letter}+{Num2})}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}({Letter} +{Num4})}.\\]
", "advice": "To solve $\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}({Letter}+{Num2})}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}({Letter} +{Num4})}$ we need to expand the brackets and then get all the $\\var{Letter}$ terms on one side and all the numbers on the other.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}({Letter}+{Num2})}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}({Letter} +{Num4})}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num1}*{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num3}*{Num4}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num1*Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num3*Num4}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num1*Num2}-{Num1*Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num3*Num4}-{Num1*Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}+{Num1*Num2-Num1*Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num3*Num4-Num1*Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}{Letter}-{Num3}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}{Letter} +{Num3*Num4-Num1*Num2}-{Num3}{Letter}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1-Num3}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num4-Num1*Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1-Num3}{Letter}/{Num1-Num3}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num4-Num1*Num2}/{Num1-Num3}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{(Num3*Num4-Num1*Num2)/(Num1-Num3)}}\\]
\n\nUse this link to find resources to help you revise how to solve linear equations
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Letter": {"name": "Letter", "group": "Ungrouped variables", "definition": "random([\"a\",\"b\",\"c\",\"d\",\"p\",\"t\",\"s\",\"n\",\"m\",\"x\",\"y\",\"z\"])", "description": "", "templateType": "anything", "can_override": false}, "Num1": {"name": "Num1", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "Num2": {"name": "Num2", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num3": {"name": "Num3", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "Num4": {"name": "Num4", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(Num1-Num3)>1 and (Num1-Num3)|(Num4*Num3-Num2*Num1)", "maxRuns": 100}, "ungrouped_variables": ["Letter", "Num1", "Num2", "Num3", "Num4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{Letter} =$
", "minValue": "{(Num4*Num3-Num2*Num1)/(Num1-Num3)}", "maxValue": "{(Num4*Num3-Num2*Num1)/(Num1-Num3)}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "38.d. Linear equations - expanding brackets needed 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "tags": [], "metadata": {"description": "Solving equations of the form a(ex+b)=c(fx+d)
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the following equation for $\\var{Letter}$.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}({Num5}{Letter}+{Num2})}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}({Num6}{Letter} +{Num4})}.\\]
", "advice": "To solve $\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}({Num5}{Letter}+{Num2})}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}({Num6}{Letter} +{Num4})}$ we need to expand the brackets and then get all the $\\var{Letter}$ terms on one side and all the numbers on the other.
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}({Num5}{Letter}+{Num2})}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}({Num6}{Letter} +{Num4})}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1}*{Num5}{Letter}+{Num1}*{Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3}*{Num6}{Letter} +{Num3}*{Num4}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1*Num5}{Letter}+{Num1*Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num6}{Letter} +{Num3*Num4}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1*Num5}{Letter}+{Num1*Num2}-{Num1*Num2}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num6}{Letter} +{Num3*Num4}-{Num1*Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1*Num5}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num6}{Letter}+{Num3*Num4-Num1*Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1*Num5}{Letter}-{Num3*Num6}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num6}{Letter}+{Num3*Num4-Num1*Num2}-{Num3*Num6}{Letter}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1*Num5-Num3*Num6}{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num4-Num1*Num2}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Num1*Num5-Num3*Num6}{Letter}/{Num1*Num5-Num3*Num6}}=\\simplify[basic,unitFactor,noLeadingMinus]{{Num3*Num4-Num1*Num2}/{Num1*Num5-Num3*Num6}}\\]
\n\\[\\simplify[basic,unitFactor,noLeadingMinus]{{Letter}}=\\simplify[basic,unitFactor,noLeadingMinus]{{(Num3*Num4-Num1*Num2)/(Num1*Num5-Num3*Num6)}}\\]
\nUse this link to find resources to help you revise how to solve linear equations
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Letter": {"name": "Letter", "group": "Ungrouped variables", "definition": "random([\"a\",\"b\",\"c\",\"d\",\"p\",\"t\",\"s\",\"n\",\"m\",\"x\",\"y\",\"z\"])", "description": "", "templateType": "anything", "can_override": false}, "Num1": {"name": "Num1", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "Num2": {"name": "Num2", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num3": {"name": "Num3", "group": "Ungrouped variables", "definition": "random(2..12 except Num1)", "description": "", "templateType": "anything", "can_override": false}, "Num4": {"name": "Num4", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num5": {"name": "Num5", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "Num6": {"name": "Num6", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(Num1*Num5-Num3*Num6)>1 and abs(Num1*Num5-Num3*Num6)<12 and (Num1*Num5-Num3*Num6)|(Num4*Num3-Num2*Num1)", "maxRuns": "300"}, "ungrouped_variables": ["Letter", "Num1", "Num2", "Num3", "Num4", "Num5", "Num6"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{Letter} =$
", "minValue": "{(Num4*Num3-Num2*Num1)/(Num1*Num5-Num3*Num6)}", "maxValue": "{(Num4*Num3-Num2*Num1)/(Num1*Num5-Num3*Num6)}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": false, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": false, "typeendtoleave": false, "startpassword": "", "autoSubmit": false, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": false, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "extensions": [], "custom_part_types": [], "resources": []}