// Numbas version: finer_feedback_settings {"name": "Hyperbolic functions for A level Further Maths", "metadata": {"description": "

Quiz designed as summary test for MAST resource: Hyperbolic Functions (A Level Further Maths content)

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "duration": 0, "percentPass": 0, "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", ""], "variable_overrides": [[], [], []], "questions": [{"name": "Identify the hyperbolic function from its graph", "extensions": [], "custom_part_types": [], "resources": ["question-resources/sinh_sketch.png", "question-resources/cosh_sketch.png", "question-resources/tanh_sketch.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Will Roberts", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/32402/"}], "tags": [], "metadata": {"description": "

Multiple choice of hyperbolic functions (image of graph given).

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Which hyperbolic function is represented by this graph?

", "advice": "

This is a graph of

\n

$y=\\sinh(x)=\\frac{e^{x}-e^{-x}}{2}$

\n

Notice that at $x$ increases, $\\sinh(x)$ looks like an exponential curve.  This is because it approximates $\\frac{e^x}{2}$ as the $e^{-x}$ term becomes negligible.

\n

Similarly, as $x$ decreases, the graph looks likle the curve $-\\frac{e^{-x}}{2}$. 

\n

$y=\\cosh(x)=\\frac{e^{x}+e^{-x}}{2}$

\n
\n

Notice that at $x$ increases, $\\cosh(x)$ looks like an exponential curve.  This is because it approximates $\\frac{e^x}{2}$ as the $e^{-x}$ term becomes negligible.

\n
\n

Similarly, as $x$ decreases, the graph looks like the curve $\\frac{e^{-x}}{2}$.

\n

You may recall that this curve can be though of as an average of the functions $\\frac{e^x}{2}$ and $\\frac{e^{-x}}{2}$ 

\n

$y=\\tanh(x)=\\frac{\\sinh(x)}{\\cosh(x)}=\\frac{e^{2x}-1}{e^{2x}+1}$

\n

Notice that at $x$ increases in the positive direction, $\\tanh(x)$ tends to 1.  Similarly, as $x$ increases in the negative directions, $\\tanh(x) \\rightarrow -1$.

\n

You may wish to look back at the graphs chapter of this resource for a more thorough explanation.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"functions": {"name": "functions", "group": "Ungrouped variables", "definition": "shuffle([\"y=cosh(x)\",\"y=sinh(x)\",\"y=tanh(x)\"])", "description": "", "templateType": "anything", "can_override": false}, "Ans": {"name": "Ans", "group": "Ungrouped variables", "definition": "functions[0]", "description": "", "templateType": "anything", "can_override": false}, "wrong1": {"name": "wrong1", "group": "Ungrouped variables", "definition": "functions[1]", "description": "", "templateType": "anything", "can_override": false}, "wrong2": {"name": "wrong2", "group": "Ungrouped variables", "definition": "functions[2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["functions", "Ans", "wrong1", "wrong2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\n

\n

\n

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["{Ans}", "{wrong1}", "{wrong2}"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Differentiate some hyperbolic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Will Roberts", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/32402/"}], "tags": ["Calculus", "calculus", "chain rule", "cosh", "derivatives of hyperbolic functions", "differential", "differentiate", "differentiating hyperbolic functions", "differentiation", "Differentiation", "hyperbolic functions", "product rule", "sinh", "tanh"], "metadata": {"description": "

Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Write down the derivatives of the following functions $f(x)$ .

\n

Note that in order to input the square of a function such as $\\sinh(x)$ you have to input it as sinh(x)^2, similarly for the other hyperbolic functions.

", "advice": "

Here is a table of the derivatives of some of the hyperbolic functions:

\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
$f(x)$$\\displaystyle{\\frac{df}{dx}}$
$\\sinh(bx)$$b\\cosh(bx)$
$\\cosh(bx)$$b\\sinh(bx)$
$\\tanh(bx)$$\\simplify{b*sech(bx)^2}$
\n

a)

\n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n

Use the product rule to obtain:
\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})}\\]

\n

b)

\n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n

Using the table above we get:
\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]

\n

c)

\n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n

Using the chain rule we find:

\n

\\[\\frac{df}{dx} = \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\]

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(3..7)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n", "a1", "a2", "b1", "b2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n

$\\displaystyle{\\frac{dy}{dx}=\\;\\;}$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\tanh(\\simplify[std]{{a}x+{b}})$

\n

$\\displaystyle{\\frac{dy}{dx}=\\;\\;}$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a}*sech({a}x+{b})^2", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n

$\\displaystyle{\\frac{dy}{dx}=\\;\\;}$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a2} * tanh({a2} * x + {b2})", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Integrate some hyperbolic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Will Roberts", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/32402/"}], "tags": ["Calculus", "calculus", "cosh", "hyperbolic functions", "indefinite integration", "integral", "integrating hyperbolic functions", "integration", "integration by parts", "sinh"], "metadata": {"description": "

Find  $\\displaystyle \\int\\cosh(ax+b)\\;dx,\\;\\;\\int x\\sinh(cx+d)\\;dx$

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "\n \n \n

Integrate the following functions $f(x)$.

\n \n \n ", "advice": "

a)

\n

\\[\\int \\simplify[std]{cosh({a}x+{b})}\\;dx = \\frac{1}{\\var{a}}\\simplify[std]{ sinh({a}x+{b})}+C\\]

\n

b)

\n

Integrate by parts, so that

\n

\\[\\begin{eqnarray*} \\int \\simplify[std]{x*sinh({a1}x+{b1})}\\;dx&=&\\int \\simplify[std]{x*d((cosh({a1}x+{b1}))/{a1})}\\\\ &=&\\frac{1}{\\var{a1}}\\simplify[std]{x*cosh({a1}x+{b1})}-\\frac{1}{\\var{a1}} \\int \\simplify[std]{cosh({a1}x+{b1})}\\;dx\\\\ &=&\\frac{1}{\\var{a1}}\\simplify[std]{x*cosh({a1}x+{b1})}-\\frac{1}{\\var{a1^2}}\\simplify[std]{sinh({a1}x+{b1})}+C \\end{eqnarray*} \\]

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "s2", "s1", "a1", "b1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f(x)=\\simplify[std]{ cosh({a}x+{b})}$

\n

$\\displaystyle{\\int f(x)\\;dx=\\;\\;}$[[0]]

\n

You must include the constant of integration as $C$.

\n

Input all numbers as integers or fractions – not as decimals.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(1 / {a}) * sinh({a} * x + {b})+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions – not as decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f(x)=\\simplify[std]{x*sinh({a1}x+{b1})}$

\n

$\\displaystyle{\\int f(x)\\;dx=\\;\\;}$[[0]]

\n

Include the constant of integration as $C$.

\n

Input all numbers as integers or fractions – not as decimals.

\n

Please note that if you want to enter a function of the form $xf(x)$ then enter as x*f(x) so that it's clear what you mean.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(1 / {a1}) * x * Cosh({a1} * x + {b1}) - (1 / ({a1} ^ 2)) * Sinh({a1} * x + {b1})+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions – not as decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "never", "showtotalmarkwhen": "never", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "

This test is to help you assess how well you have understood hyperbolic functions and highlight any areas you may benefit from recapping.

", "end_message": "

You will need to refresh this page to attempt the questions again.

", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": false, "showactualmark": false, "showtotalmark": false, "reviewshowscore": false, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Will Roberts", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/32402/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/sinh_sketch.png", "/srv/numbas/media/question-resources/sinh_sketch.png"], ["question-resources/cosh_sketch.png", "/srv/numbas/media/question-resources/cosh_sketch.png"], ["question-resources/tanh_sketch.png", "/srv/numbas/media/question-resources/tanh_sketch.png"]]}