// Numbas version: finer_feedback_settings {"name": "Blathnaid's copy of Quotient rule", "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "showresultspage": "oncompletion", "preventleave": false, "browse": true, "showfrontpage": false}, "feedback": {"allowrevealanswer": true, "showtotalmark": true, "advicethreshold": 0, "intro": "", "feedbackmessages": [], "showanswerstate": true, "showactualmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "percentPass": 0, "duration": 0, "question_groups": [{"pickingStrategy": "all-ordered", "name": "Group", "pickQuestions": 1, "questions": [{"name": "Blathnaid's copy of Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a quotient", "differentiation", "quotient rule", "steps"], "type": "question", "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d}x+{f})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x+{d}}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x^2+{d}x+{f})-({2*c}x+{d})({a}x+{b}))/({c}x^2+{d}x+{f})^2}\\\\\n \n &=&\\simplify[std]{({a*c}x^2+{a*d}x+{a*f}-{2*c*a}x^2-{a*d+2*c*b}x+{d*b})/({c}x^2+{d}x+{f})^2}\\\\\n \n &=&\\simplify[std]{({-c*a}x^2+{-2*b*c}x+{a*f-d*b})/({c}x^2+{d}x+{f})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{-c*a}x^2+{-2*b*c}x+{a*f-d*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d}x+{f})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d}x+{f})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{-c*a}x^2+{-2*b*c}x+{a*f-b*d}", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "variable_groups": [], "progress": "ready", "question_groups": [{"pickingStrategy": "all-ordered", "name": "", "questions": [], "pickQuestions": 0}], "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "f": {"definition": "random(-9..9)", "name": "f"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*f-b*d", "name": "det"}, "c1": {"definition": "random(1..8)", "name": "c1"}}, "showQuestionGroupNames": false, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers have to be inout as fractions or integers - added decimal point to forbidden strings.

\n \t\t

 

\n \t\t", "description": "

The derivative of $\\displaystyle \\frac{ax+b}{cx^2+dx+f}$ is $\\displaystyle \\frac{g(x)}{(cx^2+dx+f)^2}$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": [], "advice": "\n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n

a)

\n

For this example:

\n

\\[\\simplify[std]{u = sin({a}x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}cos({a}x)}\\]

\n

\\[\\simplify[std]{v = {b}sin({a}x)+{c}cos({a}x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {a*b}cos({a}x)+{-a*c}sin({a}x)}\\]

\n

Hence on substituting into the quotient rule above we get:

\n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}cos({a}x)({b}sin({a}x)+{c}cos({a}x))-sin({a}x)({a*b}cos({a}x)+{-a*c}sin({a}x)))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*b} cos({a}x) sin({a}x)+{a*c} cos({a}x)^2-{a*b} sin({a}x)cos({a}x)+{a*c}sin({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*c}cos({a}x)^2+{a*c}sin({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*c}(cos({a}x)^2+sin({a}x)^2))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*c})/({b}sin({a}x)+{c}cos({a}x))^2} \\end{eqnarray*}\\]

\n

Hence $a=\\var{a*c}$

\n

b)\\[\\simplify[std]{u = cos({a}x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = -{a}sin({a}x)}\\]

\n

\\[\\simplify[std]{v = {b}sin({a}x)+{c}cos({a}x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {a*b}cos({a}x)+{-a*c}sin({a}x)}\\]

\n

Hence on substituting into the quotient rule above we get:

\n

\\[\\begin{eqnarray*} \\frac{dg}{dx}&=&\\simplify[std]{({-a}sin({a}x)({b}sin({a}x)+{c}cos({a}x))-cos({a}x)({a*b}cos({a}x)+{-a*c}sin({a}x)))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b}sin({a}x)^2-{a*c} sin({a}x)cos({a}x)-{a*b}cos({a}x)^2+{a*c}sin({a})cos({a}x))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b}sin({a}x)^2-{a*b}cos({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b}(sin({a}x)^2+cos({a}x)^2))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b})/({b}sin({a}x)+{c}cos({a}x))^2} \\end{eqnarray*}\\]

\n

Hence $b=\\var{-a*b}$

\n

c)

\n

We have that $h(x)=\\simplify[std]{{m}f(x)+{n}g(x)}$
Hence \\[\\begin{eqnarray*}\\frac{dh}{dx} &=& \\simplify[std]{{m}*Diff(f,x,1)+{n}*Diff(f,x,1)}\\\\ &=&\\simplify[std]{{m}*({a*c}/({b}sin({a}x)+{c}cos({a}x))^2)+{n}({-a*b}/({b}sin({a}x)+{c}cos({a}x))^2)}\\\\ &=&\\simplify[std]{(({m}*{a*c})+({n}*{-a*b}))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{{res}/({b}sin({a}x)+{c}cos({a}x))^2} \\end{eqnarray*}\\]

\n

Hence $c=\\var{res}$

\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noleadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = (sin({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n

You are given that \\[\\simplify[std]{Diff(f,x,1) = a / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n

for a number $a$. You have to find $a$.

\n

$a=\\;$[[0]]

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "marks": 3.0, "answer": "{a*c}", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\n \n \n

\\[\\simplify[std]{g(x) = (cos({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n \n \n \n

You are given that \\[\\simplify[std]{Diff(g,x,1) = b / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n \n \n \n

for a number $b$. You have to find $b$.

\n \n \n \n

$b=\\;$[[0]]

\n \n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "marks": 3.0, "answer": "{-b*a}", "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

\\[\\simplify[std]{h(x) = ({m}sin({a}x)+{n}cos({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n

You are given that \\[\\simplify[std]{Diff(h,x,1) = c / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n

for a number $c$. You have to find $c$.

\n

$c=\\;$[[0]]

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "marks": 3.0, "answer": "{res}", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "statement": "

Differentiate the following functions using the quotient rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(b^2=c1^2,c1+1,c1)", "name": "c"}, "b": {"definition": "random(1..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(2..9)", "name": "m"}, "n": {"definition": "if(m*c=n1*b,n1+1,n1)", "name": "n"}, "res": {"definition": "m*a*c-n*b*a", "name": "res"}, "n1": {"definition": "s2*random(2..9)", "name": "n1"}, "c1": {"definition": "s1*random(2..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

 

\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Changed std rule set to include !noLeadingMinus, so expressions don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Changed to 0 penalty for accessing Show steps in first question.

\n \t\t

 

\n \t\t

 

\n \t\t", "description": "

Find $\\displaystyle \\frac{d}{dx}\\left(\\frac{m\\sin(ax)+n\\cos(ax)}{b\\sin(ax)+c\\cos(ax)}\\right)$. Three part question.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Quotient rule. (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a quotient", "differentiation", "quotient rule", "steps", "video"], "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x^2+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {2*a}x}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({2*a}x({c}x^2+{d})-{2*c}x({a}x^2+{b}))/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*a*c}x^3+{2*a*d}x-{2*c*a}x^3-{2*c*b}x)/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*det}x)/({c}x^2+{d})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{2*det}x}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "

\\[\\simplify[std]{f(x) = ({a} * x^2+{b})/({c}x^2+{d})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n

You will also find a video in Show steps showing how to apply the quotient rule.

", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{2*det}x", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*d-b*c", "name": "det"}, "c1": {"definition": "random(1..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers have to be inout as fractions or integers - added decimal point to forbidden strings.

\n \t\t", "description": "

The derivative of $\\displaystyle \\frac{ax^2+b}{cx^2+d}$ is $\\displaystyle \\frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.

\n

Contains a video solving a similar quotient rule example. Although does not explicitly find $g(x)$ as asked in the question, but this is obvious.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "showQuestionGroupNames": false, "metadata": {"description": "

8 questions on the quotient rule in differentiation.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "exam", "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}], "extensions": [], "custom_part_types": [], "resources": []}