// Numbas version: exam_results_page_options {"name": "Maths Support: Diagnostic test - Differentiation", "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": false, "preventleave": false, "browse": true, "showfrontpage": false, "showresultspage": "never"}, "duration": 0.0, "metadata": {"notes": "", "description": "

26 questions: Product Rule, Quotient Rule and Chain Rule. For those that want a thorough testing of their basic differentiation using the standard rules.

", "licence": "Creative Commons Attribution 4.0 International"}, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "shufflequestions": false, "questions": [], "percentpass": 0.0, "allQuestions": true, "pickQuestions": 0, "type": "exam", "feedback": {"showtotalmark": true, "advicethreshold": 0.0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["chain rule", "cosh", "derivatives of hyperbolic functions", "differential", "differentiate", "differentiating hyperbolic functions", "differentiation", "hyperbolic functions", "product rule", "sinh", "tanh"], "advice": "\n \n \n

Here is a table of the derivatives of some of the hyperbolic functions:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n
$f(x)$$\\displaystyle{\\frac{df}{dx}}$
$\\sinh(bx)$$b\\cosh(bx)$
$\\cosh(bx)$$b\\sinh(bx)$
$\\tanh(bx)$$\\simplify{b*sech(bx)^2}$
\n \n \n \n

a)

\n \n \n \n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n \n \n \n

Use the product rule to obtain:
\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})}\\]

\n \n \n \n

b)

\n \n \n \n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n \n \n \n

Using the table above we get:
\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]

\n \n \n \n

c)

\n \n \n \n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n \n \n \n

Using the chain rule we find:

\n \n \n \n

\\[\\frac{df}{dx} = \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\]

\n \n \n \n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{a}*sech({a}x+{b})^2", "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{a2} * tanh({a2} * x + {b2})", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "statement": "\n \n \n

Write down the derivatives of the following functions $f(x)$ .

\n \n \n \n

Note that in order to input the square of a function such as $\\sinh(x)$ you have to input it as $(\\sinh(x))^2$, similarly for the other hyperbolic functions.

\n \n \n \n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "b": {"definition": "random(-9..9)", "name": "b"}, "n": {"definition": "random(3..7)", "name": "n"}, "a1": {"definition": "random(-9..-1)", "name": "a1"}, "a2": {"definition": "random(2..9)", "name": "a2"}, "b1": {"definition": "random(1..9)", "name": "b1"}, "b2": {"definition": "random(-9..9)", "name": "b2"}}, "metadata": {"notes": "\n \t\t

29/06/2012:

\n \t\t

Added and edited tags.

\n \t\t

19/07/2012:

\n \t\t

Added description.

\n \t\t

There is also the problem of inputting functions of the form $xf(x)$ if $n=1$ or $2$ in the first question. So have reset $n$ to between $3$ and $7$. Otherwise would have to have an instruction here (perhaps depending on value of $n$).

\n \t\t

Checked calculation.

\n \t\t

23/07/2012:

\n \t\t

Added tags.

\n \t\t

 

\n \t\t

Question appears to be working correctly.

\n \t\t

1/08/2012:

\n \t\t

This is a copy of MAS114220122013CBA3_4 and is included in Diagnostic: Chain Rule Practice exam.

\n \t\t

 

\n \t\t", "description": "

Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "logarithm laws", "logarithms", "steps"], "advice": "\n \n \n

$\\simplify[std]{f(x) = ln(({a}x+{b})^{m})}$
First note that we can simplify this by using the rule that $\\simplify[std]{ln(a^r)=r*ln(a)}$.
Hence $\\simplify[std]{f(x) = ln(({a}x+{b})^{m})={m}ln({a}x+{b})}$
So we need to differentiate $\\simplify[std]{ln({a}x+{b})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a}x +{b}}$ and we have $f(u)=\\simplify[std]{{m}*ln(u)}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a}}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{{m}/u} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a}) * ({m}/u)}\\\\\n \n &=& \\simplify[std]{{a*m}/({a}x+{b})}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x+{b}}$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = ln(({a}x+{b})^{m})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [5.0, 6.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({m*a})/({a}x+{b})", "type": "jme"}], "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "s2*random(1..9)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(3..9)", "name": "m"}}, "metadata": {"notes": "\n \t\t

 

\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

Improved display in prompt.

\n \t\t

Checking range chosen so that the denominator of the result is never 0.

\n \t\t

 

\n \t\t", "description": "

Differentiate $\\displaystyle \\ln((ax+b)^{m})$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "steps"], "advice": "\n \n \n

$\\simplify[std]{f(x) = sqrt({a} * x^{m}+{b})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a} * x^{m}+{b}}$ and we have $f(u)=\\simplify[std]{sqrt(u)=u^{1/2}}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{m*a}x ^ {m -1}}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{{1/2}*u^{-1/2}=1/(2*sqrt(u))} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m*a}x ^ {m-1} * (1/(2*sqrt(u)))}\\\\\n \n &=&\\simplify[std]{{m*a}x^{m-1}/(2*sqrt(u))}\\\\\n \n &=& \\simplify[std]{({a*m}x ^ {m-1})/(2*sqrt({a} * x^{m}+{b}))}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x^{m}+{b}}$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = sqrt({a} * x^{m}+{b})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n

Input all numbers as fractions or integers and not decimals.

\n

 

\n ", "gaps": [{"notallowed": {"message": "

Input all numbers as fractions or integers and not decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 1e-05, "vsetrange": [4.0, 5.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({a*m}x ^ {m-1})/(2*sqrt({a} * x^{m}+{b}))", "type": "jme"}], "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(2..8)", "name": "m"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK - but had to introduce more stringent accuracy constraints - see below.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

Improved display in prompt.

\n \t\t

Added decimal point to forbidden strings and included message not to input decimals.

\n \t\t

Increased accuracy threshold to abs diff of 0.00001 and tested the outcomes. OK.

\n \t\t", "description": "\n \t\t

Differentiate

\n \t\t

\\[ \\sqrt{a x^m+b})\\]

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "steps"], "advice": "\n \n \n

$\\simplify[std]{f(x) = e^({a}x^{m} +{b}x^2+{c})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a}x^{m} +{b}x^2+{c}}$ and we have $f(u)=\\simplify[std]{e^u}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a*m}x^{m-1} +{2*b}x}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{e^u} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a*m}x^{m-1} +{2*b}x) * (e^u)}\\\\\n \n &=& \\simplify[std]{({a*m}x^{m-1} +{2*b}x)*e^({a}x^{m} +{b}x^2+{c})}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x^{m} +{b}x^2+{c}}$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = e^({a}x^{m} +{b}x^2+{c})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({m*a}x^{m-1}+{2*b}x)*e^({a}x^{m} +{b}x^2+{c})", "type": "jme"}], "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "s2*random(1..9)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(3..4)", "name": "m"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

Improved display in prompt.

\n \t\t", "description": "

Differentiate $\\displaystyle e^{ax^{m} +bx^2+c}$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "algebraic manipulation", "calculus", "chain rule", "derivative of the product of two functions", "differentiation", "product rule"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({a} * x^2+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*n*a}*x * ({a} * x^2+{b})^{n-1}}\\]

\n \n \n \n

For this last differentiation we used the chain rule.

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m}x ^ {m-1} * ({a} * x^2+{b})^{n}+x^{m} *{2*n*a}*x* ({a} * x^2+{b})^{n-1}}\\\\\n \n &=& \\simplify[std]{{m}x ^ {m-1} * ({a} * x^2+{b})^{n}+{2*n*a}*x^{m+1}* ({a} * x^2+{b})^{n-1}}\\\\\n \n &=& \\simplify[std]{x ^ {m-1} * ({a} * x^2+{b})^{n-1}*({m}*({a}*x^2+{b})+{2*n*a}x^{2})} \\\\\n \n &=&\\simplify[std]{x ^ {m-1} * ({a} * x^2+{b})^{n-1}*({m*a+2*a*n}*x^2+{m*b})}\n \n \\end{eqnarray*}\\]

\n \n \n \n

Hence $\\simplify[std]{g(x)={m*a+2*a*n}*x^2+{m*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = x ^ {m} * ({a} * x^2+{b})^{n}}$
The answer is in the form
\\[\\frac{df}{dx}=\\simplify[std]{x^{m-1}({a}x^2+{b})^{n-1}*g(x)}\\] for a polynomial $g(x)$.

\n

You have to find $g(x)$.

\n

$g(x)=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m*a+2*a*n}*x^2+{m*b}", "type": "jme"}], "steps": [{"prompt": "

You should use the the product rule and the chain rule for this example.

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(3..9)", "name": "m"}, "n": {"definition": "random(3..9)", "name": "n"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

 

\n \t\t

 

\n \t\t", "description": "

The derivative of $\\displaystyle x ^ {m}(ax^2+b)^{n}$ is of the form $\\displaystyle x^{m-1}(ax^2+b)^{n-1}g(x)$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "derivative of a polynomial", "derivative of a product", "differentiation", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({a} * x+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n*a} * ({a} * x+{b})^{n-1}}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}=x^{m-1}({a}x+{b})^{n-1}({m*a+n*a}x+{m*b})}\\]
So $\\simplify[std]{g(x)= {m*a+n*a}x+{m*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = x ^ {m} * ({a} * x+{b})^{n}}$

\n

$g(x)=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m*a+n*a}x+{m*b}", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule. The answer will be of the form
\\[\\simplify[std]{x^{m-1}({a}x+{b})^{n-1}g(x)}\\] for a polynomial $g(x)$. You have to find $g(x)$

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(3..9)", "name": "m"}, "n": {"definition": "random(3..9)", "name": "n"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Problem with steps to be addressed. Now resolved.

\n \t\t

Clicking on Show steps does not lose any marks.

\n \t\t", "description": "\n \t\t

Differentiate $ x ^ m(ax+b)^n$ using the product rule. The answer will be of the form $x^{m-1}(ax+b)^{n-1}g(x)$ for a polynomial $g(x)$. Find $g(x)$.

\n \t\t

 

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivatives", "differentiate a product", "differentiate polynomials", "differentiation", "elementary differentiation", "polynomials", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({a} * x+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n*a} * ({a} * x+{b})^{n-1}}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}}\\]

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "

$\\displaystyle \\simplify[std]{f(x) = x ^ {m} * ({a} * x+{b})^{n}}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Clicking on Show steps gives you more information. You will not lose any marks by doing so.

", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(3..9)", "name": "m"}, "n": {"definition": "random(3..9)", "name": "n"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Steps problem to be addressed via an issue. Now resolved.

\n \t\t

Checked calculation.OK.

\n \t\t

Improved prompt display.

\n \t\t

Clicking on Show steps does not lose any marks.

\n \t\t", "description": "

Differentiate $f(x) = x^m(a x+b)^n$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivatives", "differentiating a product", "differentiating square roots", "differentiation", "elementary differentiation", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = sqrt({a} * x+{b})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {a}/2* ({a} * x+{b})^{-1/2}}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=& \\simplify[std]{{m}x ^ {m-1} * sqrt({a} * x+{b})+{a/2}x^{m} * ({a} * x+{b})^{-1/2}}\\\\\n \n &=& \\simplify[std]{{m}x ^ {m-1} * sqrt({a} * x+{b})+{a}x^{m}/(2*sqrt({a} * x+{b}))}\\\\\n \n &=& \\simplify[std]{(2*{m}x^{m-1}({a}x+{b})+ {a}x^{m})/(2*sqrt({a} * x+{b}))}\\\\\n \n &=&\\simplify[std]{(x^{m-1}({2*m}({a}x+{b})+{a}x))/(2*sqrt({a} * x+{b}))}\\\\\n \n &=&\\simplify[std]{x^{m-1}/(2*sqrt({a} * x+{b}))({2*m*a+a}x+{2*m*b})}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{2*m*a+a}x+{2*m*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = x ^ {m} * sqrt({a} * x+{b})}$

\n

The answer is in the form \\[\\frac{df}{dx}=\\simplify[std]{ x^{m-1}/(2*sqrt({a}x+{b}))g(x)}\\]
for a polynomial $g(x)$. You have to find $g(x)$.

\n

$g(x)=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{2*m*a+a}x+{2*m*b}", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": 1.0, "name": "a"}, "b": {"definition": "random(1..9)", "name": "b"}, "m": {"definition": "random(2..9)", "name": "m"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Steps problem to be addressed. Now resolved.

\n \t\t

Checked calculation.OK.

\n \t\t

Improved prompt display.

\n \t\t

Clicking on Show steps does not lose any marks.

\n \t\t", "description": "

Differentiate $ x ^m \\sqrt{a x+b}$.
The answer is in the form $\\displaystyle \\frac{x^{m-1}g(x)}{2\\sqrt{ax+b}}$
for a polynomial $g(x)$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a product", "differentiating a product of functions", "differentiating the exponential function", "differentiation", "exponential function", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) }\\]

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x)", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..9)", "name": "a"}, "b": {"definition": "s1*random(2..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(2..8)", "name": "m"}, "n": {"definition": "s2*random(2..5)", "name": "n"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Improved display of prompt.

\n \t\t

Checked calculation.

\n \t\t

Allowed no penalty on looking at Steps.

\n \t\t

Issue with Show steps to be resolved. Has been resolved.

\n \t\t", "description": "

Differentiate the function $(a + b x)^m  e ^ {n x}$ using the product rule.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "differentiating a product", "differentiating trigonometric functions", "differentiation", "product rule", "steps", "trigonometric functions"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = sin({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * cos({n} * x)}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)}\\]

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = ({a} + {b} * x) ^ {m} * sin({n} * x)}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m*b}({a} + {b} * x) ^ {m-1} * sin({n} * x)+{n}*({a} + {b} * x) ^ {m} * cos({n} * x)", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..4)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..5)", "name": "b"}, "m": {"definition": "random(2..8)", "name": "m"}, "n": {"definition": "random(2..6)", "name": "n"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Steps problem to be addressed. Now resolved.

\n \t\t

Checked calculation.OK.

\n \t\t

Improved prompt display.

\n \t\t

Clicking on Show steps not lose any marks.

\n \t\t", "description": "

Differentiate $ (a+bx) ^ {m} \\sin(nx)$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "derivative of a product", "differentiating a product", "differentiating trigonometric functions", "differentiation", "product rule", "steps", "trigonometric functions"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = cos({a} * x+{b})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = -{a} * sin({a} * x+{b})}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})}\\]

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "

$\\simplify[std]{f(x) = x ^ {m} * cos({a} * x+{b})}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Clicking on Show steps gives you more information. You will not lose any marks by doing so.

", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m}x ^ {m-1} * cos({a} * x+{b})-{a}x^{m} * sin({a} * x+{b})", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(2..9)", "name": "m"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Steps problem to be addressed. Now resolved.

\n \t\t

Checked calculation.OK.

\n \t\t

Improved prompt display.

\n \t\t

Clicking on Show steps does not lose any marks.

\n \t\t", "description": "

Differentiate $x^m\\cos(ax+b)$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "derivative of a product", "differentiating a product", "differentiating exponential functions", "differentiating trigonometric functions", "differentiation", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = sin({a} + {b} * x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {b} * cos({a} + {b} * x)}\\]

\n \n \n \n

\\[\\simplify[std]{v = e ^ ({n} * x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)}\\\\\n \n &=&\\simplify[std]{({b}cos({a}+{b}x)+{n}sin({a}+{b}x))e^({n}x)}\n \n \\end{eqnarray*}\\]

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "

$\\simplify[std]{f(x) = sin({b}x + {a}) * e ^ ({n} * x)}$

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{b} * cos({a} + {b} * x) * e ^ ({n} * x) + {n} * sin({a} + {b} * x) * e ^ ({n} * x)", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..9)", "name": "a"}, "b": {"definition": "s1*random(2..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(2..8)", "name": "m"}, "n": {"definition": "s2*random(2..5)", "name": "n"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Checked calculation.

\n \t\t

Added tags.

\n \t\t

Allowed no penalty on looking at Show steps.

\n \t\t", "description": "

Differentiate $ \\sin(ax+b) e ^ {nx}$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a product", "differentiation", "polynomials", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x+{b}) ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m*a}({a}x+{b}) ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x+{d})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n*c} * ({c} * x+{d})^{n-1}}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m*a}({a}x+{b}) ^ {m-1} * ({c} * x+{d})^{n}+{n*c}({a}x+{b})^{m} * ({c} * x+{d})^{n-1}=({a}x+{b})^{m-1}({c}x+{d})^{n-1}({m*a*c+n*c*a}x+{m*a*d+n*c*b})}\\]
on taking out the common terms $\\simplify[std]{({a}x+{b})^{m-1}({c}x+{d})^{n-1}}$.
So $\\simplify[std]{g(x)= {m*a*c+n*c*a}x+{m*a*d+n*c*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n

$\\simplify[std]{f(x) = ({a} * x+{b})^{m}*({c}x+{d})^{n}}$

\n

$g(x)=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m*a*c+n*c*a}x+{m*a*d+n*c*b}", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule. The answer will be of the form
\\[\\simplify[std]{({a}x+{b})^{m-1}({c}x+{d})^{n-1}g(x)}\\] for a polynomial $g(x)$. You have to find $g(x)$

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(3..9)", "name": "m"}, "n": {"definition": "random(3..9)", "name": "n"}, "c1": {"definition": "random(1..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Corrected mistake in statement.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Problem with steps to be addressed. Now resolved.

\n \t\t

Clicking on Show steps does not lose any marks.

\n \t\t", "description": "

Differentiate $ (ax+b)^m(cx+d)^n$ using the product rule. The answer will be of the form $(ax+b)^{m-1}(cx+d)^{n-1}g(x)$ for a polynomial $g(x)$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Product Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Steps", "algebraic manipulation", "derivative", "deriving a function", "differentiate", "differentiating a function", "differentiating a product of functions", "differentiation", "exponential function", "functions", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[dPoly]{u = ({a} + {b} * x) ^ {m}}\\Rightarrow \\simplify[dPoly]{Diff(u,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify{v = e ^ ({n} * x)} \\Rightarrow \\simplify{Diff(v,x,1) = {n} * e ^ ({n} * x)}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[dPoly]{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x) = ({a} + {b} * x) ^ {m -1} * ({m * b + n * a} + {n * b} * x) * e ^ ({n} * x)}\\]

\n \n \n \n

The last step was to take out the common term $\\simplify[dPoly]{({a} + {b} * x) ^ {m -1} * e ^ ({n} * x)}$.

\n \n \n \n

Hence \\[\\simplify[dPoly]{g(x) = {m * b + n * a} + {n * b} * x}\\].

\n \n \n \n ", "rulesets": {"std": ["all", "!collectNumbers"], "dpoly": ["std", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[dPoly]{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$

\n

You are given that \\[\\simplify[dPoly]{Diff(f,x,1) = ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) * g(x)}\\]

\n

for a polynomial $g(x)$. You have to find $g(x)$.

\n

$g(x)=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "dPoly", "marks": 3.0, "answer": "({((m * b) + (n * a))} + ({(n * b)} * x))", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the product rule.

", "variable_groups": [], "progress": "testing", "type": "question", "variables": {"a": {"definition": "random(1..4)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..5)", "name": "b"}, "m": {"definition": "random(2..8)", "name": "m"}, "n": {"definition": "random(2..6)", "name": "n"}}, "metadata": {"notes": "\n \t\t

20/06/2012:

\n \t\t

Added tags.

\n \t\t

4/7/2012:

\n \t\t

Added tags.

\n \t\t

31/07/2012:

\n \t\t

Checked calculation.

\n \t\t

Allowed no penalty on looking at Steps.

\n \t\t", "description": "

Differentiate the function $f(x)=(a + b x)^m  e ^ {n x}$ using the product rule. Find $g(x)$ such that $f\\;'(x)= (a + b x)^{m-1}  e ^ {n x}g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a quotient", "differentiation", "quotient rule", "steps"], "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d}x+{f})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x+{d}}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x^2+{d}x+{f})-({2*c}x+{d})({a}x+{b}))/({c}x^2+{d}x+{f})^2}\\\\\n \n &=&\\simplify[std]{({a*c}x^2+{a*d}x+{a*f}-{2*c*a}x^2-{a*d+2*c*b}x+{d*b})/({c}x^2+{d}x+{f})^2}\\\\\n \n &=&\\simplify[std]{({-c*a}x^2+{-2*b*c}x+{a*f-d*b})/({c}x^2+{d}x+{f})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{-c*a}x^2+{-2*b*c}x+{a*f-d*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d}x+{f})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d}x+{f})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{-c*a}x^2+{-2*b*c}x+{a*f-b*d}", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "f": {"definition": "random(-9..9)", "name": "f"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*f-b*d", "name": "det"}, "c1": {"definition": "random(1..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers have to be inout as fractions or integers - added decimal point to forbidden strings.

\n \t\t

 

\n \t\t", "description": "

The derivative of $\\displaystyle \\frac{ax+b}{cx^2+dx+f}$ is $\\displaystyle \\frac{g(x)}{(cx^2+dx+f)^2}$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a quotient", "differentiation", "quotient rule", "steps"], "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then

\n \n \n \n

\\[\\simplify[std]{Diff(u/v,x,1)=(v * Diff(u,x,1) -(u * Diff(v,x,1))) / v ^ 2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = {a} * x + {b}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n \n \n \n

\\[\\simplify[std]{v = Sqrt({c} * x + {d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {c} / (2 * Sqrt({c} * x + {d}))}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = ({a} * Sqrt({c} * x + {d}) -(({a} * x + {b}) * Diff(v,x,1))) / ({c} * x + {d}) = ({a} * Sqrt({c} * x + {d}) -(({c} * ({a} * x + {b})) / (2 * Sqrt({c} * x + {d})))) / ({c} * x + {d}) = ({2 * a} * ({c} * x + {d}) -({c} * ({a} * x + {b}))) / (2 * ({c} * x + {d}) ^ (3 / 2)) = ({a * c} * x + {2 * a * d -(c * b)}) / (2 * ({c} * x + {d}) ^ (3 / 2))}\\]

\n \n \n \n

Hence \\[\\simplify[std]{g(x) = {a * c} * x + {2 * a * d -(c * b)}}\\].

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x + {b}) / Sqrt({c} * x + {d})}\\]

\n

You are given that \\[\\simplify[std]{Diff(f,x,1) = g(x) / (2 * ({c} * x + {d}) ^ (3 / 2))}\\]

\n

for a polynomial $g(x)$. You have to find $g(x)$.

\n

Input all numbers as fractions or integers.

\n

You can click on Show steps to get help. You will not lose any marks if you do so.

\n

$g(x)=\\;$[[0]]

\n ", "gaps": [{"notallowed": {"message": "

Input all numbers as fractions or integers.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 3.0, "answer": "(({(a * c)} * x) + {((2 * a * d) + ( - (c * b)))})", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1)=(v * Diff(u,x,1) -(u * Diff(v,x,1))) / v ^ 2}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule or otherwise.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..8)", "name": "a"}, "c": {"definition": "random(1,3,5,7)", "name": "c"}, "b": {"definition": "if(2|a,random(-7..7#2),random(-8..8#2))", "name": "b"}, "d": {"definition": "if(a*d1=b*c,abs(d1)+1,d1)", "name": "d"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "d1": {"definition": "s1*random(1..8)", "name": "d1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers have to be input as fractions or integers - added decimal point to forbidden strings.

\n \t\t", "description": "

The derivative of  $\\displaystyle \\frac{ax+b}{\\sqrt{cx+d}}$ is $\\displaystyle \\frac{g(x)}{2(cx+d)^{3/2}}$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": [], "custom_part_types": [], "resources": []}