// Numbas version: exam_results_page_options {"name": "Maths Support: Chain rule practice", "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "preventleave": false, "browse": true, "showfrontpage": false, "showresultspage": "never"}, "duration": 0.0, "metadata": {"notes": "", "description": "

11 Questions on the chain rule.

", "licence": "Creative Commons Attribution 4.0 International"}, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "shufflequestions": false, "questions": [], "percentpass": 0.0, "allQuestions": true, "pickQuestions": 0, "type": "exam", "feedback": {"showtotalmark": true, "advicethreshold": 0.0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "steps"], "advice": "\n \n \n

$\\simplify[std]{f(x) = e^({a}x^{m} +{b}x^2+{c})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a}x^{m} +{b}x^2+{c}}$ and we have $f(u)=\\simplify[std]{e^u}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a*m}x^{m-1} +{2*b}x}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{e^u} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a*m}x^{m-1} +{2*b}x) * (e^u)}\\\\\n \n &=& \\simplify[std]{({a*m}x^{m-1} +{2*b}x)*e^({a}x^{m} +{b}x^2+{c})}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x^{m} +{b}x^2+{c}}$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = e^({a}x^{m} +{b}x^2+{c})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({m*a}x^{m-1}+{2*b}x)*e^({a}x^{m} +{b}x^2+{c})", "type": "jme"}], "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "s2*random(1..9)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(3..4)", "name": "m"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

Improved display in prompt.

\n \t\t", "description": "

Differentiate $\\displaystyle e^{ax^{m} +bx^2+c}$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "steps"], "advice": "\n \n \n

$\\simplify[std]{f(x) = sqrt({a} * x^{m}+{b})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a} * x^{m}+{b}}$ and we have $f(u)=\\simplify[std]{sqrt(u)=u^{1/2}}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{m*a}x ^ {m -1}}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{{1/2}*u^{-1/2}=1/(2*sqrt(u))} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m*a}x ^ {m-1} * (1/(2*sqrt(u)))}\\\\\n \n &=&\\simplify[std]{{m*a}x^{m-1}/(2*sqrt(u))}\\\\\n \n &=& \\simplify[std]{({a*m}x ^ {m-1})/(2*sqrt({a} * x^{m}+{b}))}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x^{m}+{b}}$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = sqrt({a} * x^{m}+{b})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n

Input all numbers as fractions or integers and not decimals.

\n

 

\n ", "gaps": [{"notallowed": {"message": "

Input all numbers as fractions or integers and not decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 1e-05, "vsetrange": [4.0, 5.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({a*m}x ^ {m-1})/(2*sqrt({a} * x^{m}+{b}))", "type": "jme"}], "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(2..8)", "name": "m"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK - but had to introduce more stringent accuracy constraints - see below.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

Improved display in prompt.

\n \t\t

Added decimal point to forbidden strings and included message not to input decimals.

\n \t\t

Increased accuracy threshold to abs diff of 0.00001 and tested the outcomes. OK.

\n \t\t", "description": "\n \t\t

Differentiate

\n \t\t

\\[ \\sqrt{a x^m+b})\\]

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "logarithm laws", "logarithms", "steps"], "advice": "\n \n \n

$\\simplify[std]{f(x) = ln(({a}x+{b})^{m})}$
First note that we can simplify this by using the rule that $\\simplify[std]{ln(a^r)=r*ln(a)}$.
Hence $\\simplify[std]{f(x) = ln(({a}x+{b})^{m})={m}ln({a}x+{b})}$
So we need to differentiate $\\simplify[std]{ln({a}x+{b})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a}x +{b}}$ and we have $f(u)=\\simplify[std]{{m}*ln(u)}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a}}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{{m}/u} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a}) * ({m}/u)}\\\\\n \n &=& \\simplify[std]{{a*m}/({a}x+{b})}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x+{b}}$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = ln(({a}x+{b})^{m})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [5.0, 6.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({m*a})/({a}x+{b})", "type": "jme"}], "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "s2*random(1..9)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(3..9)", "name": "m"}}, "metadata": {"notes": "\n \t\t

 

\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

Improved display in prompt.

\n \t\t

Checking range chosen so that the denominator of the result is never 0.

\n \t\t

 

\n \t\t", "description": "

Differentiate $\\displaystyle \\ln((ax+b)^{m})$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "algebraic manipulation", "calculus", "chain rule", "derivative of the product of two functions", "differentiation", "product rule"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({a} * x^2+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*n*a}*x * ({a} * x^2+{b})^{n-1}}\\]

\n \n \n \n

For this last differentiation we used the chain rule.

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{{m}x ^ {m-1} * ({a} * x^2+{b})^{n}+x^{m} *{2*n*a}*x* ({a} * x^2+{b})^{n-1}}\\\\\n \n &=& \\simplify[std]{{m}x ^ {m-1} * ({a} * x^2+{b})^{n}+{2*n*a}*x^{m+1}* ({a} * x^2+{b})^{n-1}}\\\\\n \n &=& \\simplify[std]{x ^ {m-1} * ({a} * x^2+{b})^{n-1}*({m}*({a}*x^2+{b})+{2*n*a}x^{2})} \\\\\n \n &=&\\simplify[std]{x ^ {m-1} * ({a} * x^2+{b})^{n-1}*({m*a+2*a*n}*x^2+{m*b})}\n \n \\end{eqnarray*}\\]

\n \n \n \n

Hence $\\simplify[std]{g(x)={m*a+2*a*n}*x^2+{m*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = x ^ {m} * ({a} * x^2+{b})^{n}}$
The answer is in the form
\\[\\frac{df}{dx}=\\simplify[std]{x^{m-1}({a}x^2+{b})^{n-1}*g(x)}\\] for a polynomial $g(x)$.

\n

You have to find $g(x)$.

\n

$g(x)=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m*a+2*a*n}*x^2+{m*b}", "type": "jme"}], "steps": [{"prompt": "

You should use the the product rule and the chain rule for this example.

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(3..9)", "name": "m"}, "n": {"definition": "random(3..9)", "name": "n"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

 

\n \t\t

 

\n \t\t", "description": "

The derivative of $\\displaystyle x ^ {m}(ax^2+b)^{n}$ is of the form $\\displaystyle x^{m-1}(ax^2+b)^{n-1}g(x)$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["chain rule", "cosh", "derivatives of hyperbolic functions", "differential", "differentiate", "differentiating hyperbolic functions", "differentiation", "hyperbolic functions", "product rule", "sinh", "tanh"], "advice": "\n \n \n

Here is a table of the derivatives of some of the hyperbolic functions:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n
$f(x)$$\\displaystyle{\\frac{df}{dx}}$
$\\sinh(bx)$$b\\cosh(bx)$
$\\cosh(bx)$$b\\sinh(bx)$
$\\tanh(bx)$$\\simplify{b*sech(bx)^2}$
\n \n \n \n

a)

\n \n \n \n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n \n \n \n

Use the product rule to obtain:
\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})}\\]

\n \n \n \n

b)

\n \n \n \n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n \n \n \n

Using the table above we get:
\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]

\n \n \n \n

c)

\n \n \n \n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n \n \n \n

Using the chain rule we find:

\n \n \n \n

\\[\\frac{df}{dx} = \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\]

\n \n \n \n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{a}*sech({a}x+{b})^2", "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{a2} * tanh({a2} * x + {b2})", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "statement": "\n \n \n

Write down the derivatives of the following functions $f(x)$ .

\n \n \n \n

Note that in order to input the square of a function such as $\\sinh(x)$ you have to input it as $(\\sinh(x))^2$, similarly for the other hyperbolic functions.

\n \n \n \n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "b": {"definition": "random(-9..9)", "name": "b"}, "n": {"definition": "random(3..7)", "name": "n"}, "a1": {"definition": "random(-9..-1)", "name": "a1"}, "a2": {"definition": "random(2..9)", "name": "a2"}, "b1": {"definition": "random(1..9)", "name": "b1"}, "b2": {"definition": "random(-9..9)", "name": "b2"}}, "metadata": {"notes": "\n \t\t

29/06/2012:

\n \t\t

Added and edited tags.

\n \t\t

19/07/2012:

\n \t\t

Added description.

\n \t\t

There is also the problem of inputting functions of the form $xf(x)$ if $n=1$ or $2$ in the first question. So have reset $n$ to between $3$ and $7$. Otherwise would have to have an instruction here (perhaps depending on value of $n$).

\n \t\t

Checked calculation.

\n \t\t

23/07/2012:

\n \t\t

Added tags.

\n \t\t

 

\n \t\t

Question appears to be working correctly.

\n \t\t

1/08/2012:

\n \t\t

This is a copy of MAS114220122013CBA3_4 and is included in Diagnostic: Chain Rule Practice exam.

\n \t\t

 

\n \t\t", "description": "

Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Chain rule. (Video).", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "steps", "video"], "advice": "\n \n \n

$\\simplify[std]{f(x) = cos(e^({a}x) +{b}x^2+{c})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{e^({a}x) +{b}x^2+{c}}$ and we have $f(u)=\\simplify[std]{cos(u)}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a}e^({a}x) +{2*b}x}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{-sin(u)} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a}e^({a}x) +{2*b}x) * (-sin(u))}\\\\\n \n &=& \\simplify[std]{-({a}e^({a}x) +{2*b}x)*sin(e^({a}x) +{b}x^2+{c})}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{e^({a}x) +{b}x^2+{c}}$.

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "

\\[\\simplify[std]{f(x) = cos(e^({a}x) +{b}x^2+{c})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n

You will also find a video solving a similar example in Show steps.

", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "-({a}e^({a}x)+{2*b}x)*sin(e^({a}x) +{b}x^2+{c})", "type": "jme"}], "steps": [{"prompt": "

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n

The following video sets out the solution for a similar example.

\n

\n

 

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

\n

 

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "c": {"definition": "s2*random(1..9)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "s1": {"definition": "random(1,-1)", "name": "s1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Got rid of a redundant ruleset.

\n \t\t

Improved display in prompt.

\n \t\t", "description": "

Differentiate $\\displaystyle \\cos(e^{ax}+bx^2+c)$.

\n

Contains a video solving a similar example.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": [], "custom_part_types": [], "resources": []}