// Numbas version: finer_feedback_settings {"showQuestionGroupNames": false, "feedback": {"showactualmark": true, "showanswerstate": true, "showtotalmark": true, "intro": "", "advicethreshold": 0, "feedbackmessages": [], "allowrevealanswer": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

3 questions on factorising quadratics. The second question also asks for the roots of the quadratic. The third question involves factorising quartic polynomials but which are quadratics in $x^2$.

"}, "percentPass": 0, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Denis's copy of Dividing polynomials 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Denis Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1216/"}], "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "name": "", "questions": []}], "type": "question", "progress": "ready", "showQuestionGroupNames": false, "parts": [{"marks": 0.0, "prompt": "\n \n \n

$A=\\;\\;$[[0]]

\n \n \n \n

Input all numbers as integers or fractions and not as decimals.

\n \n \n ", "type": "gapfill", "gaps": [{"marks": 1.0, "vsetrangepoints": 5.0, "type": "jme", "notallowed": {"showstrings": false, "message": "

Reduce to its lowest form.

", "strings": ["^4", "^(4)"], "partialcredit": 0.0}, "vsetrange": [0.0, 1.0], "answer": "((({m} * (x ^ 2)) + {(( - p) * q)}) / ((x ^ 2) + {n}))", "checkingaccuracy": 0.001, "checkingtype": "absdiff", "answersimplification": "std"}]}], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "variables": {"sn": {"definition": "random(1,-1)", "name": "sn"}, "p": {"definition": "sp*random(1..5)", "name": "p"}, "q": {"definition": "sq*random(1..5)", "name": "q"}, "sp": {"definition": "random(1,-1)", "name": "sp"}, "sm": {"definition": "random(1,-1)", "name": "sm"}, "n": {"definition": "sn*random(1..5)", "name": "n"}, "sq": {"definition": "random(1,-1)", "name": "sq"}, "m": {"definition": "sm*random(1..5)", "name": "m"}}, "functions": {}, "statement": "\n

Simplify the following expression:

\n

\\[A=\\simplify[std]{({m} * x ^ 4 + {m -(p * q)} * x ^ 2 + {( -p) * q}) / (x ^ 4 + {1 + n} * x ^ 2 + {n})}\\]

\n

Your answer should be as a single algebraic fraction in its lowest form.

\n ", "advice": "

Note that both the numerator and denominator factorize and that they then have a common factor which can then be cancelled.

", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "cancelling common terms in algebraic fractions", "factorising polynomials", "polynomials", "rational polynomials", "simplifying algebraic fractions"], "variable_groups": [], "metadata": {"description": "

Algebraic manipulation/simplification.

\n

Simplify $\\displaystyle \\frac{ax^4+bx^2+c}{a_1x^4+b_1x^2+c_1}$ by cancelling a a common degree 2 factor.

", "licence": "Creative Commons Attribution 4.0 International", "notes": "\n \t\t

27/06/2012:

\n \t\t

Minor changes in display and statements/prompts.

\n \t\t

Added tags.

\n \t\t

Could have more detailed advice.

\n \t\t

18/07/2012:

\n \t\t

Added description.

\n \t\t

23/07/2012:

\n \t\t

Added tags.

\n \t\t

The Advice section is very brief - Should there be more help provided here?

\n \t\t

Question appears to be working correctly.

\n \t\t"}}, {"name": "Denis's copy of Factorise a quadratic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Denis Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1216/"}], "variables": {"n5": {"definition": "a*b", "name": "n5"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "f": {"definition": "a*b", "name": "f"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "n3": {"definition": "2*a*b", "name": "n3"}, "disc": {"definition": "(b*c+a*d)^2-4*a*b*c*d", "name": "disc"}, "c": {"definition": "c1*s3", "name": "c"}, "a": {"definition": "random(2..5)", "name": "a"}, "rep": {"definition": "switch(disc=0,'repeated', ' ')", "name": "rep"}, "c1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "name": "c1"}, "rdis": {"definition": "switch(disc=0,'The discriminant is '+ 0+' and so we get two repeated roots in this case.',disc<0, 'There are no real roots.','The roots exist and are distinct. ')", "name": "rdis"}, "n1": {"definition": "b*c+a*d", "name": "n1"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "d": {"definition": "if(d1=-b*c/a, max(d1+1,random(1..5))*s3,d1*s3)", "name": "d"}, "n2": {"definition": "b*c-a*d", "name": "n2"}, "d1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "name": "d1"}, "b": {"definition": "random(1..4)", "name": "b"}, "n4": {"definition": "abs(n2)", "name": "n4"}}, "progress": "ready", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "\n \t\t

5/08/2012:

\n \t\t

Added more tags.

\n \t\t

Added description. 

\n \t\t

Allowed the use of decimals.

\n \t\t

Improved display of Advice.

\n \t\t", "description": "

Factorise $\\displaystyle{ax ^ 2 + bx + c}$ into linear factors. 

"}, "functions": {}, "variable_groups": [], "tags": ["Steps", "factorisation", "factorise a quadratic", "factorization", "factorize a quadratic", "linear factors", "quadratics", "steps"], "question_groups": [{"pickingStrategy": "all-ordered", "name": "", "pickQuestions": 0, "questions": []}], "parts": [{"marks": 0.0, "gaps": [{"notallowed": {"partialcredit": 0.0, "message": "

Factorise the expression into two factors.

", "showstrings": false, "strings": ["^", "x*x", "x x", "x(", "x (", ")x", ") x"]}, "marks": 2.0, "answersimplification": "std", "vsetrange": [0.0, 1.0], "answer": "((({a} * x) + {( - c)}) * (({b} * x) + {( - d)}))", "musthave": {"partialcredit": 0.0, "message": "

factorise the expression into two factors

", "showstrings": false, "strings": ["(", ")"]}, "checkingaccuracy": 0.0001, "type": "jme", "checkingtype": "absdiff", "vsetrangepoints": 5.0}], "steps": [{"marks": 0.0, "type": "information", "prompt": "\n

Factorisation by finding the roots

\n

If you cannot spot a direct factorisation of a quadratic $q(x)$ then finding the roots of the equation $q(x)=0$ can help you.

\n

For if $x=r$ and $x=s$ and are the roots then $q(x)=a(x-r)(x-s)$ for some constant $a$.

\n

Finding the roots of a quadratic using the standard formula
We can use the following formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$

\n

The two roots are

\n

\\[ x = \\frac{-b +\\sqrt{b^2-4ac}}{2a}\\mbox{ and } x = \\frac{-b -\\sqrt{b^2-4ac}}{2a}\\]
there are three main types of solutions depending upon the value of the discriminant $\\Delta=b^2-4ac$

\n

1. $\\Delta \\gt 0$. The roots are real and distinct

\n

2. $\\Delta=0$. The roots are real and equal. Their value is $\\frac{-b}{2a}$

\n

3. $\\Delta \\lt 0$. There are no real roots. The root are complex and form a complex conjugate pair.

\n "}], "stepspenalty": 1.0, "type": "gapfill", "prompt": "\n

\\[q(x)=\\simplify[std]{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}\\]
$q(x)=\\;$ [[0]]

\n


You can get more information on factorising a quadratic by clicking on Show steps. You will lose 1 mark if you do so.

\n

 

\n "}], "statement": "

Factorise the following quadratic expression $q(x)$ into linear factors i.e. input $q(x)$ in the form
\\[(ax+b)(cx+d)\\] for suitable integers $a$, $b$, $c$ and $d$ .

", "showQuestionGroupNames": false, "advice": "\n

Direct Factorisation.

\n

If you can spot a direct factorisation then this is the quickest way to do this question.

\n

For this example we have the factorisation

\n

\\[\\simplify{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d} = ({a} * x + { -c}) * ({b} * x + { -d})}\\]

\n

Factorisation by finding the roots.

\n

For if $x=r$ and $x=s$ and are the roots then $q(x)=a(x-r)(x-s)$ where $a$ is the coefficient of $x^2$.

\n

There are several methods of finding the roots – here are the main methods.

\n

Finding the roots of a quadratic using the standard formula.

\n

We can use the following formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$

\n

The two roots are

\n

\\[ x = \\frac{-b +\\sqrt{b^2-4ac}}{2a}\\mbox{ and } x = \\frac{-b -\\sqrt{b^2-4ac}}{2a}\\]
there are three main types of solutions depending upon the value of the discriminant $\\Delta=b^2-4ac$

\n

1. $\\Delta \\gt 0$. The roots are real and distinct

\n

2. $\\Delta=0$. The roots are real and equal. Their common value is $-\\frac{b}{2a}$

\n

3. $\\Delta \\lt 0$. There are no real roots. The root are complex and form a complex conjugate pair.

\n

For this question the discriminant of $\\simplify{{a*b}x^2+{-b*c-a*d}x+{c*d}}$ is $\\Delta = \\simplify{{-(b*c+a*d)}^2-4*{a*b}*{c*d}={disc}}$

\n

{rdis}.

\n

So the {rep} roots are:

\n

\\[\\begin{eqnarray} x = \\frac{\\var{n1} + \\sqrt{\\var{disc}}}{\\var{n3}} &=& \\frac{\\var{n1} + \\var{n4} }{\\var{n3}} &=& \\simplify{{n1 + n4}/ {n3}}\\\\ x = \\frac{\\var{n1} - \\sqrt{\\var{disc}}}{\\var{n3}} &=& \\frac{(\\var{n1} - \\var{n4}) }{\\var{n3}} &=& \\simplify{{n1 - n4}/ {n3}} \\end{eqnarray}\\]
So we see that:
\\[q(x)=\\simplify{{a*b}}\\left(\\simplify{x-{n1 + n4}/ {n3}}\\right)\\left(\\simplify{x-{n1 - n4}/ {n3}}\\right)=\\simplify{({b} * x + { -d}) * ({a} * x + { -c})}\\]

\n

Completing the square.

\n

First we complete the square for the quadratic expression $\\simplify{{a*b}x^2+{-n1}x+{c*d}}$
\\[\\begin{eqnarray} \\simplify{{a*b}x^2+{-n1}x+{c*d}}&=&\\var{n5}\\left(\\simplify{x^2+({-n1}/{a*b})x+ {c*d}/{a*b}}\\right)\\\\ &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2+ \\simplify{{c*d}/{a*b}-({-n1}/({2*a*b}))^2}\\right)\\\\ &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2 -\\simplify{ {n2^2}/{4*(a*b)^2}}\\right) \\end{eqnarray} \\]
So to solve $\\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$ we have to solve:
\\[\\begin{eqnarray} \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}& -\\simplify{ {n2^2}/{4*(a*b)^2}}=0\\Rightarrow\\\\ \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}&=\\simplify{ {n2^2}/{4*(a*b)^2}=({abs(n2)}/{2*a*b})^2} \\end{eqnarray}\\]
So we get the two {rep} solutions:
\\[\\begin{eqnarray} \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{{abs(n2)}/{2*a*b}} \\Rightarrow &x& = \\simplify{({abs(n2)+n1}/{2*a*b})}\\\\ \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{-({abs(n2)}/{2*a*b})} \\Rightarrow &x& = \\simplify{({n1-abs(n2)}/{2*a*b})} \\end{eqnarray}\\]
Finding these roots then gives the factorisation as before.

\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "type": "question"}, {"name": "Denis's copy of Solving equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Denis Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1216/"}], "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "name": "", "questions": []}], "type": "question", "progress": "ready", "showQuestionGroupNames": false, "parts": [{"marks": 0.0, "prompt": "\n

Solve for $x$:  \\[\\simplify[std]{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}=0\\]
The least root is $x=\\;$ [[0]]. The greatest root is $x=\\;$ [[1]]

\n

You can get more information on solving a quadratic by clicking on Show steps. You will lose 1 mark if you do so.

\n

Enter the least root first. If the roots are equal, enter the root in both input boxes.

\n

Enter the roots as fractions or integers, not as decimals.

\n ", "steps": [{"marks": 0.0, "prompt": "\n

Finding the roots by factorisation.

\n

Finding a factorisation of a quadratic $q(x)=a(x-r)(x-s)$ where $a$ is the coefficient of $x^2$ gives the roots $x=r$, $x=s$ immendiately.

\n

If you cannot find a factorisation then there are several other methods you can use.

\n

Using the formula for the roots.

\n

You can find the roots by using the formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$

\n

The two roots are:

\n

\\[ x = \\frac{-b +\\sqrt{b^2-4ac}}{2a}\\mbox{ and } x = \\frac{-b -\\sqrt{b^2-4ac}}{2a}\\]
there are three main types of solutions depending upon the value of the discriminant $\\Delta=b^2-4ac$

\n

1. $\\Delta \\gt 0$. The roots are real and distinct

\n

2. $\\Delta=0$. The roots are real and equal. Their value is $\\displaystyle \\frac{-b}{2a}$

\n

3. $\\Delta \\lt 0$. There are no real roots. The root are complex and form a complex conjugate pair.

\n

 

\n ", "type": "information"}], "type": "gapfill", "gaps": [{"marks": 1.0, "vsetrangepoints": 5.0, "type": "jme", "notallowed": {"showstrings": false, "message": "

Input numbers as fractions or integers not as a decimals.

", "strings": ["."], "partialcredit": 0.0}, "vsetrange": [0.0, 1.0], "answer": "{n1-n4}/{2*a*b}", "checkingaccuracy": 0.0001, "checkingtype": "absdiff", "answersimplification": "std"}, {"marks": 1.0, "vsetrangepoints": 5.0, "type": "jme", "notallowed": {"showstrings": false, "message": "

Input numbers as fractions or integers not as a decimals.

", "strings": ["."], "partialcredit": 0.0}, "vsetrange": [0.0, 1.0], "answer": "{n1+n4}/{2*a*b}", "checkingaccuracy": 0.0001, "checkingtype": "absdiff", "answersimplification": "std"}], "stepspenalty": 1.0}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"d": {"definition": "if((a*d1)^2=(b*c)^2, max(d1+1,random(1..5))*s3,d1*s3)", "name": "d"}, "rdis": {"definition": "switch(disc=0,'The discriminant is '+ 0+' and so we get two repeated roots in this case.',disc<0, 'There are no real roots.','The roots exist and are distinct. ')", "name": "rdis"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "c": {"definition": "c1*s3", "name": "c"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "n1": {"definition": "b*c+a*d", "name": "n1"}, "n4": {"definition": "abs(n2)", "name": "n4"}, "disc": {"definition": "(b*c+a*d)^2-4*a*b*c*d", "name": "disc"}, "n2": {"definition": "b*c-a*d", "name": "n2"}, "a": {"definition": "random(2..5)", "name": "a"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "n5": {"definition": "a*b", "name": "n5"}, "c1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "name": "c1"}, "f": {"definition": "a*b", "name": "f"}, "d1": {"definition": "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))", "name": "d1"}, "b": {"definition": "random(1..4)", "name": "b"}, "rep": {"definition": "switch(disc=0,'repeated', ' ')", "name": "rep"}, "n3": {"definition": "2*a*b", "name": "n3"}}, "functions": {}, "statement": "

Find the roots of the following quadratic equation.

", "advice": "\n

Direct Factorisation

\n

If you can spot a direct factorisation then this is the quickest way to do this question.

\n

For this example we have the factorisation

\n

\\[\\simplify{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d} = ({a} * x + { -c}) * ({b} * x + { -d})}\\]

\n

Hence we find the roots:
\\[\\begin{eqnarray} x&=& \\simplify{{n1-n4}/{2*a*b}}\\\\ x&=& \\simplify{{n1+n4}/{2*a*b}} \\end{eqnarray} \\]

\n

Other Methods.

\n

There are several methods of finding the roots – here are the main methods.

\n

Finding the roots of a quadratic using the standard formula.

\n

We can use the following formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$

\n

The two roots are

\n

\\[ x = \\frac{-b +\\sqrt{b^2-4ac}}{2a}\\mbox{ and } x = \\frac{-b -\\sqrt{b^2-4ac}}{2a}\\]
there are three main types of solutions depending upon the value of the discriminant $\\Delta=b^2-4ac$

\n

1. $\\Delta \\gt 0$. The roots are real and distinct

\n

2. $\\Delta=0$. The roots are real and equal. Their common value is $\\displaystyle -\\frac{b}{2a}$

\n

3. $\\Delta \\lt 0$. There are no real roots. The root are complex and form a complex conjugate pair.

\n

For this question the discriminant of $\\simplify{{a*b}x^2+{-b*c-a*d}x+{c*d}}$ is $\\Delta = \\simplify[std]{{-n1}^2-4*{a*b*c*d}}=\\var{disc}$

\n

{rdis}.

\n

So the {rep} roots are:

\n

\\[\\begin{eqnarray} x = \\frac{\\var{n1} - \\sqrt{\\var{disc}}}{\\var{n3}} &=& \\frac{\\var{n1} - \\var{n4} }{\\var{n3}} &=& \\simplify{{n1 - n4}/ {n3}}\\\\ x = \\frac{\\var{n1} + \\sqrt{\\var{disc}}}{\\var{n3}} &=& \\frac{\\var{n1} + \\var{n4} }{\\var{n3}} &=& \\simplify{{n1 + n4}/ {n3}} \\end{eqnarray}\\]

\n

Completing the square.

\n

First we complete the square for the quadratic expression $\\simplify{{a*b}x^2+{-n1}x+{c*d}}$
\\[\\begin{eqnarray} \\simplify{{a*b}x^2+{-n1}x+{c*d}}&=&\\var{n5}\\left(\\simplify{x^2+({-n1}/{a*b})x+ {c*d}/{a*b}}\\right)\\\\ &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2+ \\simplify{{c*d}/{a*b}-({-n1}/({2*a*b}))^2}\\right)\\\\ &=&\\var{n5}\\left(\\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2 -\\simplify{ {n2^2}/{4*(a*b)^2}}\\right) \\end{eqnarray} \\]
So to solve $\\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$ we have to solve:
\\[\\begin{eqnarray} \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}& -\\simplify{ {n2^2}/{4*(a*b)^2}}=0\\Rightarrow\\\\ \\left(\\simplify{x+({-n1}/{2*a*b})}\\right)^2&\\phantom{{}}&=\\simplify{ {n2^2}/{4*(a*b)^2}=({abs(n2)}/{2*a*b})^2} \\end{eqnarray}\\]
So we get the two {rep} solutions:
\\[\\begin{eqnarray} \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{-{abs(n2)}/{2*a*b}} \\Rightarrow &x& = \\simplify{({-abs(n2)+n1}/{2*a*b})}\\\\ \\simplify{x+({-n1}/{2*a*b})}&=&\\simplify{({abs(n2)}/{2*a*b})} \\Rightarrow &x& = \\simplify{({n1+abs(n2)}/{2*a*b})} \\end{eqnarray}\\]

\n ", "tags": ["Steps", "algebra", "factorisation", "find roots of a quadratic equation", "quadratic formula", "quadratics", "roots of a quadratic equation", "solving a quadratic equation", "solving equations", "steps"], "variable_groups": [], "metadata": {"description": "

Solve for $x$: $\\displaystyle ax ^ 2 + bx + c=0$.

", "licence": "Creative Commons Attribution 4.0 International", "notes": "\n \t\t

5/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Improved display in various content areas.

\n \t\t"}}]}], "name": "Denis's copy of Maths Support: Factorising quadratics", "duration": 0, "timing": {"timedwarning": {"message": "", "action": "none"}, "allowPause": true, "timeout": {"message": "", "action": "none"}}, "navigation": {"onleave": {"message": "", "action": "none"}, "showfrontpage": false, "preventleave": false, "browse": true, "reverse": true, "showresultspage": "oncompletion", "allowregen": true}, "type": "exam", "contributors": [{"name": "Denis Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1216/"}], "extensions": [], "custom_part_types": [], "resources": []}