// Numbas version: finer_feedback_settings {"name": "Maths Support: Integration by parts", "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "preventleave": false, "browse": true, "showfrontpage": false, "showresultspage": "never"}, "duration": 0.0, "metadata": {"notes": "", "description": "
4 questions on integrating by parts.
", "licence": "Creative Commons Attribution 4.0 International"}, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "shufflequestions": false, "questions": [], "percentpass": 50.0, "allQuestions": true, "pickQuestions": 0, "type": "exam", "feedback": {"showtotalmark": true, "advicethreshold": 0.0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": false, "showexpectedanswerswhen": "never", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "s3", "s2", "s1", "a1", "a2"], "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "exponential function", "integrals", "integration", "integration by parts", "integration of exponential function", "steps"], "preamble": {"css": "", "js": ""}, "advice": "The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
We choose $u = \\simplify[std]{{a}x+{b}}$ and $\\displaystyle\\frac{dv}{dx} = \\simplify[std]{e^({c}x)}$.
\nSo $\\displaystyle \\frac{du}{dx} = \\var{a}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*e^({c}*x)}$.
\nHence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{({a}*x+{b})*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({1}/{c})*({a}x+{b})*e^({c}x) - (1/{c})*Int(({a})*e^({c}x),x)} \\\\ &=& \\simplify[std]{(1/{c})*({a}x+{b})*e^({c}x) -({a}/{c^2})*e^({c}x) + C}\\\\ &=& \\simplify[std]{(({a}x+{b})/{c}-{a}/{c^2})*e^({c}*x) + C}\\\\ &=& \\simplify[std]{(({a}/{c})x+{b*c-a}/{c^2})*e^({c}*x) + C} \\end{eqnarray} \\]
Hence $\\displaystyle \\simplify[std]{g(x)=({a}/{c})*x+{c*b-a}/{c^2}}$
\nFor this part we choose $u = \\simplify[std]{({a}x+{b})^2}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{e^({c}x)}$.
\nSo $\\displaystyle \\frac{du}{dx}$ = $\\simplify[std]{{2*a}*({a}*(x)+{b})}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*e^({c}*x)}$.
\nHence,
\\[ \\begin{eqnarray*}I= \\int \\simplify[std]{({a}*x+{b})^2*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({1}/{c})*({a}x+{b})^2*e^({c}x) - (1/{c})*Int({2*a}*({a}x+{b})*e^({c}x),x)} \\\\ &=& \\simplify[std]{(1/{c})*({a}x+{b})^2*e^({c}x) -({2*a}/{c})*Int(({a}x+{b})*e^({c}x),x)}\\dots (*) \\end{eqnarray*}\\]
But in Part a we have aready worked out $\\displaystyle \\simplify[std]{Int(({a}x+{b})*e^({c}*x),x)=(({a}/{c})*x+({c*b-a}/{c^2}))*e^({c}*x)+C}$
\nSo on substituting this in equation (*) we find:
\\[ \\begin{eqnarray*}I&=& \\simplify[std]{(1/{c})*({a}x+{b})^2*e^({c}x) -({2*a}/{c})*(({a}/{c})*x+({c*b-a}/{c^2}))*e^({c}*x)+C}\\\\ &=& \\simplify[std]{({a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3})*e^({c}x) +C} \\end{eqnarray*}\\]
Hence $\\displaystyle \\simplify[std]{h(x)={a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3}}$
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n$I=\\displaystyle \\int \\simplify[std]{({a}x+{b})*e^({c}x)} dx $
You are given that the answer is of the form \\[I=g(x)e^{\\var{c}x}+C\\] for a polynomial $g(x)$. You have to find $g(x)$.
$g(x)=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nYou can get help by clicking on Show steps. You will lose 1 mark if you do.
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({a}/{c})*x+{c*b-a}/{c^2}", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \nThe formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
Use the result from the first part to find:
\n$\\displaystyle I=\\int \\simplify[std]{({a}x+{b})^2*e^({c}x)} dx $
\nYou are given that the answer is of the form \\[I=h(x)e^{\\var{c}x}+C\\] for a polynomial $h(x)$. You have to find $h(x)$.
\n$h(x)=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3}", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nFind the following indefinite integrals.
\nInput all numbers as fractions or integers and not decimals.
\n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s3*random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "a1": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a2": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}}, "metadata": {"notes": "\n \t\t3/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tChecked calculation. OK.
\n \t\tGot rid of redundant instructions about inputting constant of integration.
\n \t\tPenalised use of steps in first part, 1 mark. Added message to that effect in first part.
\n \t\tAdded message about not inputting decimals in appropriate places.
\n \t\tChanged marks reflecting the use of steps and degree of difficulty in second part.
\n \t\tImproved Advice display.
\n \t\t", "description": "Given $\\displaystyle \\int (ax+b)e^{cx}\\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\\displaystyle \\int (ax+b)^2e^{cx}\\;dx =h(x)e^{cx}+C$.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1"], "tags": ["Calculus", "Steps", "calculus", "constant of integration", "indefinite integration", "integrals", "integrating", "integrating trigonometric functions", "integration by parts", "steps", "twice"], "preamble": {"css": "", "js": ""}, "advice": "The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
We choose $u = \\simplify[std]{({a}x+{b})}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{cos({c}*x+{d})}$.
\nSo $\\displaystyle \\frac{du}{dx} = \\simplify[std]{{a}}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*sin({c}*x+{d})}$.
\nHence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{({a}*x+{b})*cos({c}*x+{d})} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(({a}*x+{b})/{c})*sin({c}*x+{d}) - ({a}/{c})*Int(sin({c}*x+{d}),x)} \\\\ &=& \\simplify[std]{(({a}x+{b})/{c})*sin({c}*x+{d}) +({a}/{c^2})*cos({c}*x+{d}) + C} \\end{eqnarray} \\]
For this part we choose $u = \\simplify[std]{({a}x+{b})^2}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{sin({c}*x+{d})}$.
\nSo $\\displaystyle \\frac{du}{dx}=\\simplify[std]{{2*a}*({a}*(x)+{b})}$ and $\\displaystyle v = \\simplify[std]{-(1/{c})*cos({c}*x+{d})}$.
\nHence,
\\[ \\begin{eqnarray*}I= \\int \\simplify[std]{({a}*x+{b})^2*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({-1}/{c})*({a}x+{b})^2*cos({c}*x+{d}) + (1/{c})*Int({2*a}*({a}x+{b})*cos({c}*x+{d}),x)} \\\\ &=& \\simplify[std]{({-1}/{c})*({a}x+{b})^2*cos({c}*x+{d}) +({2*a}/{c})*Int(({a}x+{b})*cos({c}*x+{d}),x)}\\dots (*) \\end{eqnarray*}\\]
But in Part a we have aready worked out $\\displaystyle \\simplify[std]{Int(({a}x+{b})*cos({c}*x+{d}),x)=(({a}x+{b})/{c})*sin({c}*x+{d}) +({a}/{c^2})*cos({c}*x+{d})}$
\nSo on substituting this in equation (*) we find:
\\[ \\begin{eqnarray*}I&=& \\simplify[std]{({-1}/{c})*({a}x+{b})^2*cos({c}*x+{d}) +({2*a}/{c})*((({a}x+{b})/{c})*sin({c}*x+{d}) +({a}/{c^2})*cos({c}*x+{d}))+C}\\\\ &=& \\simplify[std]{-(({a}*x+{b})^2/{c})*cos({c}*x+{d})+(({2*a}({a}x+{b}))/{c^2})*sin({c}*x+{d})+({2*a^2}/{c^3})*cos({c}*x+{d})+C} \\end{eqnarray*}\\]
$I=\\displaystyle \\int \\simplify[std]{({a}x+{b})*cos({c}x+{d})} dx $
\n$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nYou can get help by clicking on Show steps. You will lose 1 mark if you do.
\n \n ", "marks": 0, "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({a}*x+{b})/{c}*sin({c}*x+{d})+{a}/{c^2}*cos({c}*x+{d})+C", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \nThe formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
Use the result from the first part to find:
\n$\\displaystyle I=\\int \\simplify[std]{({a}x+{b})^2*sin({c}*x+{d})} dx $
\n$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\n \n ", "marks": 0, "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "(-({a}*x+{b})^2/{c})*cos({c}*x+{d})+(({2*a}({a}x+{b}))/{c^2})*sin({c}*x+{d})+({2*a^2}/{c^3})*cos({c}*x+{d})+C", "marks": 4, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nFind the following indefinite integrals.
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\n \n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t3/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tGot rid of redundant ruleset, added !noLeadingMinus to std ruleset as we need to keep the standard order for integrating by parts.
\n \t\t \t\tChecked calculation. OK.
\n \t\t \t\tPenalised use of steps in first part, 1 mark. Added message to that effect in first part.
\n \t\t \t\tAdded message about not inputting decimals in appropriate places.
\n \t\t \t\tChanged marks reflecting the use of steps and degree of difficulty in second part.
\n \t\t \t\tImproved Advice display.
\n \t\t \n \t\t", "description": "Find $\\displaystyle \\int (ax+b)\\cos(cx+d)\\; dx $ and hence find $\\displaystyle \\int (ax+b)^2\\sin(cx+d)\\; dx $
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "s3", "s2", "s1", "a1", "a2"], "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "constant of integration", "integrals", "integrating trigonometric functions", "integration", "integration by parts", "steps"], "preamble": {"css": "", "js": ""}, "advice": "The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
We choose $u = \\simplify[std]{{a}x}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{sin({b}x+{c})}$.
\nSo $\\displaystyle \\frac{du}{dx}$ = $\\var{a}$ and $v = \\simplify[std]{(-1/{b})*cos({b}x+{c})}$.
\nHence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{{a}x*sin({b}x+{c})} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(-{a}/{b})*x*cos({b}x+{c})} - \\int \\left( \\simplify[std]{(-{a}/{b})*cos({b}x+{c})}\\right) dx \\\\ &=& \\simplify[std]{(-{a}/{b})*x*cos({b}x+{c}) + ({a}/{b^2})*sin({b}x+{c}) + C} \\end{eqnarray} \\]
For this part we choose $u = \\simplify[std]{{a}x}$ and $\\frac{dv}{dx} = \\simplify[std]{cos({b}x+{c})}$.
\nSo $\\displaystyle \\frac{du}{dx}$ = $\\var{a}$ and $\\displaystyle v = \\simplify[std]{(1/{b})*sin({b}x+{c})}$.
\nHence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{{a}x*cos({b}x+{c})} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({a}/{b})*x*sin({b}x+{c})} - \\int \\left( \\simplify[std]{({a}/{b})*sin({b}x+{c})}\\right) dx \\\\ &=& \\simplify[std]{({a}/{b})*x*sin({b}x+{c}) + ({a}/{b^2})*cos({b}x+{c}) + C} \\end{eqnarray} \\]
Using the results from Parts a and b, we have \\[\\begin{eqnarray*}I &=& \\int \\simplify[std]{{a1}x*sin({b}x+{c})} dx + \\int \\simplify[std]{{a2}x*cos({b}x+{c})} dx\\\\ &=& \\simplify[std]{{a1}*((-{a}/{b})*x*cos({b}x+{c}) + ({a}/{b^2})*sin({b}x+{c}))+{a2}*(({a}/{b})*x*sin({b}x+{c}) +({a}/{b^2})*cos({b}x+{c}))+C}\\\\ &=&\\simplify[std]{(-{a1}/{b})*x*cos({b}x+{c}) + ({a1}/{b^2})*sin({b}x+{c})+({a2}/{b})*x*sin({b}x+{c}) +({a2}/{b^2})*cos({b}x+{c}) + C}\\\\ &=&\\simplify[std]{({a2}/{b}*x+{a1}/{b^2})*sin({b}x+{c})+({-a1}/{b}*x+{a2}/{b^2})*cos({b}x+{c})+C} \\end{eqnarray*}\\]
Hence
$\\displaystyle \\simplify[std]{f(x) = {a2}/{b}*x+{a1}/{b^2}}$
$\\displaystyle \\simplify[std]{g(x) = {-a1}/{b}*x+{a2}/{b^2}}$
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": 1, "prompt": "\n$\\displaystyle \\int \\simplify[std]{{a}x*sin({b}x+{c})} dx = \\phantom{{}}$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\nYou can get help by clicking on Show steps. You will lose 1 mark if you do.
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({a}/{b^2})sin({b}x+{c}) - ({a}/{b})*x*cos({b}x+{c}) + C", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \nThe formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
$\\displaystyle \\int \\simplify[std]{{a}x*cos({b}x+{c})} dx = \\phantom{{}}$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({a}/{b})*x*sin({b}x+{c}) + ({a}/{b^2})*cos({b}x+{c}) + C", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "\nUsing the first two parts find:
$\\displaystyle I=\\int \\simplify[std]{{a1}x*sin({b}x+{c})+{a2}x*cos({b}x+{c})} dx $
You are given that \\[I=\\simplify[std]{f(x)*sin({b}x+{c})+g(x)*cos({b}x+{c})+C}\\]
where $f(x)$ and $g(x)$ are polynomials of degree 1. You have to find $f(x)$ and $g(x)$.
$f(x)=\\;$[[0]] $\\;\\;\\;\\;\\;g(x)=\\;$[[1]]
\nInput all numbers as fractions or integers and not decimals.
\n ", "marks": 0, "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{a2}/{b}*x+{a1}/{b^2}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{-a1}/{b}*x+{a2}/{b^2}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\nFind the following indefinite integrals.
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$ where needed.
\n ", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "1", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "a1": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a2": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}}, "metadata": {"notes": "\n \t\t3/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tCorrected error in second question answer, + changed to -. Also solution to second gap in third part. Advice changed accordingly.
\n \t\tChecked calculations after corrections. OK.
\n \t\tPenalised use of steps in first part, 1 mark. Added message to that effect.
\n \t\tChanged marks to allow for steps penalty.
\n \t\tImproved Advice display.
\n \t\t", "description": "Find $\\displaystyle \\int x\\sin(cx+d)\\;dx,\\;\\;\\int x\\cos(cx+d)\\;dx $ and hence $\\displaystyle \\int ax\\sin(cx+d)+bx\\cos(cx+d)\\;dx$
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by parts", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "ungrouped_variables": ["s3", "c", "b", "m"], "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "indefinite integration", "integrals", "integration", "integration by parts", "steps"], "preamble": {"css": "", "js": ""}, "advice": "The formula for integrating by parts is
\n\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
\nWe choose $u = x$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{({b}*x+{c})^{m}}$.
\nSo $\\displaystyle \\frac{du}{dx}$ = $1$ and $\\displaystyle v = \\simplify[std]{(1/{(m+1)*b})*({b}*x+{c})^{m+1}}$.
\nHence,
\\[ \\begin{eqnarray*} \\displaystyle \\int \\simplify[std]{x*({b}x+{c})^{m}} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(x/{(m+1)*b})*({b}*x+{c})^{m+1} - (1/{(m+1)*b})*Int (({b}*x+{c})^{m+1}, x)} \\\\ &=& \\simplify[std]{(x/{(m+1)*b})*({b}*x+{c})^{m+1} - (1/{(m+1)*(m+2)*b^2})*({b}*x+{c})^{m+2}+C} \\\\ &=&\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+2)}x - ({b}x+{c}))+C}\\\\ &=&\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}x - {c})+C} \\end{eqnarray*}\\]
The solution is: $\\simplify[std]{g(x)={b*(m+1)}*x-{c}}$.
$I=\\displaystyle \\int \\simplify[std]{x*({b}x+{c})^{m}} dx $
You are given that \\[I=\\simplify[std]{({b}x+{c})^{m+1}/{b^2*(m+1)*(m+2)}*g(x)+C}\\]
For a polynomial $g(x)$. You have to find $g(x)$.
$g(x)=\\;$[[0]]
\nYou can get help by clicking on Show steps. You will lose 1 mark if you do.
\n \n ", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{b*(m+1)}*x-{c}", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "steps": [{"type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n \n \nThe formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
Also you need to know that for $n \\neq -1$:
\\[ \\int (ax+b)^n dx = \\frac{1}{a(n+1)}(ax+b)^{n+1}+C\\]
Find the following indefinite integral.
", "type": "question", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "m": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t3/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tChecked calculation. OK.
\n \t\t \t\tGot rid of redundant instructions about inputting constant of integration.
\n \t\t \t\tGot rid of instruction re not inputting decimals - no restriction needed, so no forbidden strings.
\n \t\t \t\tPenalised use of steps, 1 mark. Added message to that effect.
\n \t\t \t\tImproved Advice display.
\n \t\t \n \t\t", "description": "Given that $\\displaystyle \\int x({ax+b)^{m}} dx=\\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": [], "custom_part_types": [], "resources": []}