// Numbas version: exam_results_page_options {"name": "Maths Support: Quotient rule", "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "preventleave": false, "browse": true, "showfrontpage": false, "showresultspage": "never"}, "duration": 0.0, "metadata": {"notes": "", "description": "

8 questions on the quotient rule in differentiation.

", "licence": "Creative Commons Attribution 4.0 International"}, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "shufflequestions": false, "questions": [], "percentpass": 0.0, "allQuestions": true, "pickQuestions": 0, "type": "exam", "feedback": {"showtotalmark": true, "advicethreshold": 0.0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "algebraic manipulation", "calculus", "derivatives", "deriving a quotient", "differentiate a quotient", "differentiation", "dividing linear polynomials"], "advice": "

a)

\n

We have $\\displaystyle \\simplify[std]{{a}x+{b}={a}/{c}*({c}x+{d})+{b}-{a}*{d}/{c}={a}/{c}*({c}x+{d})+{-det}/{c}}$
Hence \\[\\begin{eqnarray*} \\simplify[std]{({a} * x+{b})/({c}x+{d})}&=&\\simplify[std]{({a}/{c}*({c}x+{d})+{-det}/{c})/({c}x+{d})}\\\\ &=&\\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})} \\end{eqnarray*}\\]
Where we have divided out by $\\simplify[std]{{c}x+{d}}$ at the last step.

\n

b)

\n

We have \\[\\frac{dg}{dx} = \\simplify[std]{{-c}/({c}x+{d})^2}\\]
using standard rules of differentiation.
Since from a), \\[f(x) = \\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})}\\]
 we see that
\\[\\begin{eqnarray*}\\frac{df}{dx} &=&\\simplify[std,fractionNumbers,!unitPower,!zeroFactor,!zeroTerm,!zeroPower]{(-{c})*(({-det}/{c})/({c}x+{d})^2)}\\\\ &=&\\simplify[std]{{det}/({c}x+{d})^2} \\end{eqnarray*}\\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n

Find numbers $a$ and $b$ such that
\\[\\simplify[std]{f(x) = a + b/({c}x+{d})}\\]
Enter a and b as integers or fractions, but not as decimals.

\n

$a=\\;$[[0]]

\n

$b=\\;$[[1]]

\n

You can click on Show steps to get some help, but you will lose 1 mark if you do so.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{a}/{c}", "type": "jme"}, {"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{-det}/{c}", "type": "jme"}], "steps": [{"prompt": "

$\\simplify[std]{{a}x+{b}=a*({c}x+{d})+b}$ for suitable numbers $a$ and $b$.

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\n

Differentiate
\\[\\simplify[std]{g(x) = 1/({c}x+{d})}\\]

\n

$\\displaystyle \\frac{dg}{dx}=\\;$[[0]]

\n

Hence using the first part of the question differentiate \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[1]]

\n

Input numbers as fractions or integers and not as decimals.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{-c}/({c}x+{d})^2", "type": "jme"}, {"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{det}/({c}x+{d})^2", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "statement": "

Let \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*d-b*c", "name": "det"}, "c1": {"definition": "random(2..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Checked calculation. OK.

\n \t\t

Added description.

\n \t\t

All round improvement in display.

\n \t\t

Added  forbidden instructions on using decimals.

\n \t\t

Added information on losing 1 mark if use Show steps in part a).

\n \t\t", "description": "

Other method. Find $p,\\;q$ such that $\\displaystyle \\frac{ax+b}{cx+d}= p+ \\frac{q}{cx+d}$. Find the derivative of $\\displaystyle \\frac{ax+b}{cx+d}$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a quotient", "differentiation", "quotient rule", "steps"], "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d}x+{f})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x+{d}}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x^2+{d}x+{f})-({2*c}x+{d})({a}x+{b}))/({c}x^2+{d}x+{f})^2}\\\\\n \n &=&\\simplify[std]{({a*c}x^2+{a*d}x+{a*f}-{2*c*a}x^2-{a*d+2*c*b}x+{d*b})/({c}x^2+{d}x+{f})^2}\\\\\n \n &=&\\simplify[std]{({-c*a}x^2+{-2*b*c}x+{a*f-d*b})/({c}x^2+{d}x+{f})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{-c*a}x^2+{-2*b*c}x+{a*f-d*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d}x+{f})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d}x+{f})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{-c*a}x^2+{-2*b*c}x+{a*f-b*d}", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "f": {"definition": "random(-9..9)", "name": "f"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*f-b*d", "name": "det"}, "c1": {"definition": "random(1..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers have to be inout as fractions or integers - added decimal point to forbidden strings.

\n \t\t

 

\n \t\t", "description": "

The derivative of $\\displaystyle \\frac{ax+b}{cx^2+dx+f}$ is $\\displaystyle \\frac{g(x)}{(cx^2+dx+f)^2}$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a quotient", "differentiation", "quotient rule", "steps"], "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then

\n \n \n \n

\\[\\simplify[std]{Diff(u/v,x,1)=(v * Diff(u,x,1) -(u * Diff(v,x,1))) / v ^ 2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = {a} * x + {b}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n \n \n \n

\\[\\simplify[std]{v = Sqrt({c} * x + {d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {c} / (2 * Sqrt({c} * x + {d}))}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = ({a} * Sqrt({c} * x + {d}) -(({a} * x + {b}) * Diff(v,x,1))) / ({c} * x + {d}) = ({a} * Sqrt({c} * x + {d}) -(({c} * ({a} * x + {b})) / (2 * Sqrt({c} * x + {d})))) / ({c} * x + {d}) = ({2 * a} * ({c} * x + {d}) -({c} * ({a} * x + {b}))) / (2 * ({c} * x + {d}) ^ (3 / 2)) = ({a * c} * x + {2 * a * d -(c * b)}) / (2 * ({c} * x + {d}) ^ (3 / 2))}\\]

\n \n \n \n

Hence \\[\\simplify[std]{g(x) = {a * c} * x + {2 * a * d -(c * b)}}\\].

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x + {b}) / Sqrt({c} * x + {d})}\\]

\n

You are given that \\[\\simplify[std]{Diff(f,x,1) = g(x) / (2 * ({c} * x + {d}) ^ (3 / 2))}\\]

\n

for a polynomial $g(x)$. You have to find $g(x)$.

\n

Input all numbers as fractions or integers.

\n

You can click on Show steps to get help. You will not lose any marks if you do so.

\n

$g(x)=\\;$[[0]]

\n ", "gaps": [{"notallowed": {"message": "

Input all numbers as fractions or integers.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "all", "marks": 3.0, "answer": "(({(a * c)} * x) + {((2 * a * d) + ( - (c * b)))})", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1)=(v * Diff(u,x,1) -(u * Diff(v,x,1))) / v ^ 2}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule or otherwise.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..8)", "name": "a"}, "c": {"definition": "random(1,3,5,7)", "name": "c"}, "b": {"definition": "if(2|a,random(-7..7#2),random(-8..8#2))", "name": "b"}, "d": {"definition": "if(a*d1=b*c,abs(d1)+1,d1)", "name": "d"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "d1": {"definition": "s1*random(1..8)", "name": "d1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers have to be input as fractions or integers - added decimal point to forbidden strings.

\n \t\t", "description": "

The derivative of  $\\displaystyle \\frac{ax+b}{\\sqrt{cx+d}}$ is $\\displaystyle \\frac{g(x)}{2(cx+d)^{3/2}}$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": [], "advice": "\n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n

a)

\n

For this example:

\n

\\[\\simplify[std]{u = sin({a}x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}cos({a}x)}\\]

\n

\\[\\simplify[std]{v = {b}sin({a}x)+{c}cos({a}x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {a*b}cos({a}x)+{-a*c}sin({a}x)}\\]

\n

Hence on substituting into the quotient rule above we get:

\n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}cos({a}x)({b}sin({a}x)+{c}cos({a}x))-sin({a}x)({a*b}cos({a}x)+{-a*c}sin({a}x)))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*b} cos({a}x) sin({a}x)+{a*c} cos({a}x)^2-{a*b} sin({a}x)cos({a}x)+{a*c}sin({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*c}cos({a}x)^2+{a*c}sin({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*c}(cos({a}x)^2+sin({a}x)^2))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({a*c})/({b}sin({a}x)+{c}cos({a}x))^2} \\end{eqnarray*}\\]

\n

Hence $a=\\var{a*c}$

\n

b)\\[\\simplify[std]{u = cos({a}x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = -{a}sin({a}x)}\\]

\n

\\[\\simplify[std]{v = {b}sin({a}x)+{c}cos({a}x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {a*b}cos({a}x)+{-a*c}sin({a}x)}\\]

\n

Hence on substituting into the quotient rule above we get:

\n

\\[\\begin{eqnarray*} \\frac{dg}{dx}&=&\\simplify[std]{({-a}sin({a}x)({b}sin({a}x)+{c}cos({a}x))-cos({a}x)({a*b}cos({a}x)+{-a*c}sin({a}x)))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b}sin({a}x)^2-{a*c} sin({a}x)cos({a}x)-{a*b}cos({a}x)^2+{a*c}sin({a})cos({a}x))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b}sin({a}x)^2-{a*b}cos({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b}(sin({a}x)^2+cos({a}x)^2))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{({-a*b})/({b}sin({a}x)+{c}cos({a}x))^2} \\end{eqnarray*}\\]

\n

Hence $b=\\var{-a*b}$

\n

c)

\n

We have that $h(x)=\\simplify[std]{{m}f(x)+{n}g(x)}$
Hence \\[\\begin{eqnarray*}\\frac{dh}{dx} &=& \\simplify[std]{{m}*Diff(f,x,1)+{n}*Diff(f,x,1)}\\\\ &=&\\simplify[std]{{m}*({a*c}/({b}sin({a}x)+{c}cos({a}x))^2)+{n}({-a*b}/({b}sin({a}x)+{c}cos({a}x))^2)}\\\\ &=&\\simplify[std]{(({m}*{a*c})+({n}*{-a*b}))/({b}sin({a}x)+{c}cos({a}x))^2}\\\\ &=&\\simplify[std]{{res}/({b}sin({a}x)+{c}cos({a}x))^2} \\end{eqnarray*}\\]

\n

Hence $c=\\var{res}$

\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noleadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

\\[\\simplify[std]{f(x) = (sin({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n

You are given that \\[\\simplify[std]{Diff(f,x,1) = a / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n

for a number $a$. You have to find $a$.

\n

$a=\\;$[[0]]

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "marks": 3.0, "answer": "{a*c}", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\n \n \n

\\[\\simplify[std]{g(x) = (cos({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n \n \n \n

You are given that \\[\\simplify[std]{Diff(g,x,1) = b / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n \n \n \n

for a number $b$. You have to find $b$.

\n \n \n \n

$b=\\;$[[0]]

\n \n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "marks": 3.0, "answer": "{-b*a}", "type": "jme"}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

\\[\\simplify[std]{h(x) = ({m}sin({a}x)+{n}cos({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n

You are given that \\[\\simplify[std]{Diff(h,x,1) = c / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n

for a number $c$. You have to find $c$.

\n

$c=\\;$[[0]]

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "marks": 3.0, "answer": "{res}", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "statement": "

Differentiate the following functions using the quotient rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(b^2=c1^2,c1+1,c1)", "name": "c"}, "b": {"definition": "random(1..9)", "name": "b"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "random(2..9)", "name": "m"}, "n": {"definition": "if(m*c=n1*b,n1+1,n1)", "name": "n"}, "res": {"definition": "m*a*c-n*b*a", "name": "res"}, "n1": {"definition": "s2*random(2..9)", "name": "n1"}, "c1": {"definition": "s1*random(2..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

 

\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Changed std rule set to include !noLeadingMinus, so expressions don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Changed to 0 penalty for accessing Show steps in first question.

\n \t\t

 

\n \t\t

 

\n \t\t", "description": "

Find $\\displaystyle \\frac{d}{dx}\\left(\\frac{m\\sin(ax)+n\\cos(ax)}{b\\sin(ax)+c\\cos(ax)}\\right)$. Three part question.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Quotient rule. (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Calculus", "Steps", "algebraic manipulation", "calculus", "derivative of a quotient", "differentiation", "quotient rule", "steps", "video"], "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x^2+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {2*a}x}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({2*a}x({c}x^2+{d})-{2*c}x({a}x^2+{b}))/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*a*c}x^3+{2*a*d}x-{2*c*a}x^3-{2*c*b}x)/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*det}x)/({c}x^2+{d})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{2*det}x}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 0.0, "prompt": "

\\[\\simplify[std]{f(x) = ({a} * x^2+{b})/({c}x^2+{d})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n

You will also find a video in Show steps showing how to apply the quotient rule.

", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{2*det}x", "type": "jme"}], "steps": [{"prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*d-b*c", "name": "det"}, "c1": {"definition": "random(1..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers have to be inout as fractions or integers - added decimal point to forbidden strings.

\n \t\t", "description": "

The derivative of $\\displaystyle \\frac{ax^2+b}{cx^2+d}$ is $\\displaystyle \\frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.

\n

Contains a video solving a similar quotient rule example. Although does not explicitly find $g(x)$ as asked in the question, but this is obvious.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": [], "custom_part_types": [], "resources": []}