// Numbas version: finer_feedback_settings {"name": "Basic integration", "metadata": {"description": "

Questions on basic integration, including indefinite and definite.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 0, "percentPass": "80", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Basic", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", ""], "variable_overrides": [[], [], [], [], []], "questions": [{"name": "Basic integration 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "

Indefinite integration of basic functions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Integrate each of the following basic functions indefinitely.

", "advice": "
    \n
  1. \\[\\int\\simplify[all]{{a}+{b}*cos(x)}\\,dx=\\simplify{{a}*x+{b}*sin(x)+c}\\]
  2. \n
  3. \\[\\int\\simplify[all]{{c}x+{b}*exp({a}*x)}\\,dx=\\simplify{{c/2}*x^2+{b/a}*exp({a}*x)+c}\\]
  4. \n
  5. \\[\\int\\simplify[all]{{c+1}*sin({b}*x)-{a}/x}\\,dx=\\simplify{{-(c+1)/b}*cos({b}*x)-{a}*ln(x)+c}\\]
  6. \n
  7. \\[\\int\\simplify[all]{{c}/(x^2)+{b+1}/{a+1}*x^{b}}\\,dx=\\simplify{{-c}/x+{1/(a+1)}*x^{b+1}+c}\\]
  8. \n
  9. \\[\\int\\simplify[all]{{b+2}*x^{b-1}-{d}*sinh(x)+{c}*exp({a}*x)}\\,dx=\\simplify{{1+2/b}*x^{b}-{d}*cosh(x)+{c/a}*exp({a}*x)+c}\\]
  10. \n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..15)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{a}+{b}*cos(x)}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{a}*x+{b}*sin(x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{a}*x+{b}*sin(x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{c}x+{b}*exp({a}*x)}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{c}*x^2/2+{b/a}*exp({a}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{c}*x^2/2+{b/a}*exp({a}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{c+1}*sin({b}*x)-{a}/x}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{-(c+1)/b}*cos({b}*x)-{a}*ln(x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{-(c+1)/b}*cos({b}*x)-{a}*ln(x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{c}/(x^2)+{b+1}/{a+1}*x^{b}}\\,dx\\]

", "stepsPenalty": "0", "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Can you write $\\simplify{{c}/x^2}$ by using a negative power?

", "answer": "{c}*x^-2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["/"], "showStrings": true, "partialCredit": 0, "message": "

It is possible to write it without a fraction.

"}, "valuegenerators": [{"name": "x", "value": ""}]}], "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{-c}/x+{1/(a+1)}*x^{b+1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{-c}/x+{1/(a+1)}*x^{b+1}+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{b+2}*x^{b-1}-{d}*sinh(x)+{c}*exp({a}*x)}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{1+2/b}*x^{b}-{d}*cosh(x)+{c/a}*exp({a}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{1+2/b}*x^{b}-{d}*cosh(x)+{c/a}*exp({a}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Basic integration 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Integrate each of the following functions with the given limits.

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "(-b/(c+1)*(a+2)^(-c-1)+2*d/3*(a+2)^1.5)-(-b/(c+1)*a^(-c-1)+2*d/3*a^1.5)", "description": "

Answer to question 2.

", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "(a/2*(c+2)^2+1/b*cos(b*(c+2)))-(a/2*c^2+1/b*cos(b*c))", "description": "

Answer to question 1.

", "templateType": "anything", "can_override": false}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "(d/a*ln(c+1)+a/(d*c)*sin(d*(c+1)))-(d/a*ln(c)+a/(d*c)*sin(d*c))", "description": "

Answer to question 4.

", "templateType": "anything", "can_override": false}, "a5": {"name": "a5", "group": "Ungrouped variables", "definition": "(c^(a+1)/(b*(a+1))-c/b*exp(-b*c)-d*c)-(-c/b)", "description": "

Answer to question 5.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9 except a)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "(a*(c+1)*exp(b/(c+1))+d*b)-(a*(c+1))", "description": "

Answer to question 3.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "a1", "d", "a2", "a3", "a4", "a5"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_\\var{c}^\\var{c+2}\\simplify{{a}x-sin({b}x)}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{a}x-sin({b}x)}dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a}*x^2/2+1/{b}*cos({b}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{a}*x^2/2+1/{b}*cos({b}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a1}", "maxValue": "{a1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_\\var{a}^\\var{a+2}\\simplify{{b}/x^{c+2}+{d}*sqrt(x)}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{b}/x^{c+2}+{d}*sqrt(x)}dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "-{b}/{c+1}*x^{-c-1}+{2*d}/3*x^(3/2)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "-{b}/{c+1}*x^{-c-1}+{2*d}/3*x^(3/2)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a2}", "maxValue": "{a2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_0^\\var{b}\\simplify{{a}*exp(x/{c+1})+{d}}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{a}*exp(x/{c+1})+{d}}\\;dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a*(c+1)}*exp(x/{c+1})+{d}*x+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{a*(c+1)}*exp(x/{c+1})+{d}*x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a3}", "maxValue": "{a3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_\\var{c}^\\var{c+1}\\simplify{{d}/({a}*x)+{a}/{c}*cos({d}*x)}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{d}/({a}*x)+{a}/{c}*cos({d}*x)}\\;dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{d}/{a}*ln(x)+{a}/{d*c}*sin({d}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{d}/{a}*ln(x)+{a}/{d*c}*sin({d}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a4}", "maxValue": "{a4}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_0^\\var{c}\\simplify{x^{a}/{b}+{c}*exp(-{b}*x)-{d}}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{x^{a}/{b}+{c}*exp(-{b}*x)-{d}}\\;dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "x^{a+1}/{b*(a+1)}-{c}/{b}*exp({-b}*x)-{d}*x+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "x^{a+1}/{b*(a+1)}-{c}/{b}*exp({-b}*x)-{d}*x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a5}", "maxValue": "{a5}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Basic integration 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "

Indefinite integration of basic functions.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Integrate each of the following basic functions indefinitely.

", "advice": "
    \n
  1. \\[\\int\\simplify[all]{{a}+{b}*cos(x)}\\,dx=\\simplify{{a}*x+{b}*sin(x)+c}\\]
  2. \n
  3. \\[\\int\\simplify[all]{{c}x+{b}*exp({a}*x)}\\,dx=\\simplify{{c/2}*x^2+{b/a}*exp({a}*x)+c}\\]
  4. \n
  5. \\[\\int\\simplify[all]{{c+1}*sin({b}*x)-{a}/x}\\,dx=\\simplify{{-(c+1)/b}*cos({b}*x)-{a}*ln(x)+c}\\]
  6. \n
  7. \\[\\int\\simplify[all]{{c}/(x^2)+{b+1}/{a+1}*x^{b}}\\,dx=\\simplify{{-c}/x+{1/(a+1)}*x^{b+1}+c}\\]
  8. \n
  9. \\[\\int\\simplify[all]{{b+2}*x^{b-1}-{d}*sinh(x)+{c}*exp({a}*x)}\\,dx=\\simplify{{1+2/b}*x^{b}-{d}*cosh(x)+{c/a}*exp({a}*x)+c}\\]
  10. \n
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..15)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{a}+{b}*cos(x)}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{a}*x+{b}*sin(x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{a}*x+{b}*sin(x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{c}x+{b}*exp({a}*x)}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{c}*x^2/2+{b/a}*exp({a}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{c}*x^2/2+{b/a}*exp({a}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{c+1}*sin({b}*x)-{a}/x}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{-(c+1)/b}*cos({b}*x)-{a}*ln(x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{-(c+1)/b}*cos({b}*x)-{a}*ln(x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{c}/(x^2)+{b+1}/{a+1}*x^{b}}\\,dx\\]

", "stepsPenalty": "0", "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Can you write $\\simplify{{c}/x^2}$ by using a negative power?

", "answer": "{c}*x^-2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["/"], "showStrings": true, "partialCredit": 0, "message": "

It is possible to write it without a fraction.

"}, "valuegenerators": [{"name": "x", "value": ""}]}], "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{-c}/x+{1/(a+1)}*x^{b+1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{-c}/x+{1/(a+1)}*x^{b+1}+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\int\\simplify[all]{{b+2}*x^{b-1}-{d}*sinh(x)+{c}*exp({a}*x)}\\,dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "No constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

You have forgotten the constant of integration, which is needed when doing indefinite integration.

", "useAlternativeFeedback": false, "answer": "{1+2/b}*x^{b}-{d}*cosh(x)+{c/a}*exp({a}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "answer": "{1+2/b}*x^{b}-{d}*cosh(x)+{c/a}*exp({a}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Basic integration 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Integrate each of the following functions with the given limits.

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "(-b/(c+1)*(a+2)^(-c-1)+2*d/3*(a+2)^1.5)-(-b/(c+1)*a^(-c-1)+2*d/3*a^1.5)", "description": "

Answer to question 2.

", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "(a/2*(c+2)^2+1/b*cos(b*(c+2)))-(a/2*c^2+1/b*cos(b*c))", "description": "

Answer to question 1.

", "templateType": "anything", "can_override": false}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "(d/a*ln(c+1)+a/(d*c)*sin(d*(c+1)))-(d/a*ln(c)+a/(d*c)*sin(d*c))", "description": "

Answer to question 4.

", "templateType": "anything", "can_override": false}, "a5": {"name": "a5", "group": "Ungrouped variables", "definition": "(c^(a+1)/(b*(a+1))-c/b*exp(-b*c)-d*c)-(-c/b)", "description": "

Answer to question 5.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9 except a)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "(a*(c+1)*exp(b/(c+1))+d*b)-(a*(c+1))", "description": "

Answer to question 3.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "a1", "d", "a2", "a3", "a4", "a5"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_\\var{c}^\\var{c+2}\\simplify{{a}x-sin({b}x)}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{a}x-sin({b}x)}dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a}*x^2/2+1/{b}*cos({b}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{a}*x^2/2+1/{b}*cos({b}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a1}", "maxValue": "{a1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_\\var{a}^\\var{a+2}\\simplify{{b}/x^{c+2}+{d}*sqrt(x)}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{b}/x^{c+2}+{d}*sqrt(x)}dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "-{b}/{c+1}*x^{-c-1}+{2*d}/3*x^(3/2)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "-{b}/{c+1}*x^{-c-1}+{2*d}/3*x^(3/2)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a2}", "maxValue": "{a2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_0^\\var{b}\\simplify{{a}*exp(x/{c+1})+{d}}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{a}*exp(x/{c+1})+{d}}\\;dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{a*(c+1)}*exp(x/{c+1})+{d}*x+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{a*(c+1)}*exp(x/{c+1})+{d}*x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a3}", "maxValue": "{a3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_\\var{c}^\\var{c+1}\\simplify{{d}/({a}*x)+{a}/{c}*cos({d}*x)}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{{d}/({a}*x)+{a}/{c}*cos({d}*x)}\\;dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "{d}/{a}*ln(x)+{a}/{d*c}*sin({d}*x)+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "{d}/{a}*ln(x)+{a}/{d*c}*sin({d}*x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a4}", "maxValue": "{a4}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Integrate and evaluate

\n

\\[\\int_0^\\var{c}\\simplify{x^{a}/{b}+{c}*exp(-{b}*x)-{d}}\\;dx\\]

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First integrate indefinitely

\n

\\[\\int\\simplify{x^{a}/{b}+{c}*exp(-{b}*x)-{d}}\\;dx\\]

", "alternatives": [{"type": "jme", "useCustomName": true, "customName": "With constant", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "x^{a+1}/{b*(a+1)}-{c}/{b}*exp({-b}*x)-{d}*x+c", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "x^{a+1}/{b*(a+1)}-{c}/{b}*exp({-b}*x)-{d}*x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "minValue": "{a5}", "maxValue": "{a5}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Calculate area", "extensions": ["geogebra", "jsxgraph", "quantities"], "custom_part_types": [{"source": {"pk": 7, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/7/edit"}, "name": "Quantity with units", "short_name": "quantity", "description": "

The student enters a quantity with units.

", "help_url": "https://github.com/numbas/numbas-extension-quantities", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings[\"correctAnswer\"])", "hint": {"static": false, "value": "switch(\n settings[\"hint\"]=\"remind units\",\n \"Include units in your answer.\",\n settings[\"hint\"]=\"show units\",\n \"Give your answer in \"+units_string(settings[\"correctAnswer\"])\n ,\n \"\"\n)"}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\napply(valid_number);\napply(student_quantity);\napply(has_units);\napply(compatible);\ntry(\n correctif(close_enough),\n x,\n apply(student_quantity)\n);\napply(same_units)\n\ninterpreted_answer:\nstudent_quantity\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_number:\nmatch_student_number[1]\n\nraw_student_units:\ntry(\n quantity(studentAnswer[len(match_student_number[0])..len(studentAnswer)]),\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)\n\nstudent_units:\nif(compatible(raw_student_units,correct_units) or settings[\"incompatible_units_action\"]<>\"convert\",\n raw_student_units,\n correct_units\n)\n\nstudent_quantity:\napply(student_units);\ntry(\n student_number * student_units,\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\ncompatible:\nif(compatible(raw_student_units,correct_quantity),\n true\n,\n let(message,\"Your answer does not have the correct dimensions.\",\n if(settings[\"incompatible_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n if(settings[\"incompatible_units_action\"]=\"convert\",\n incorrect(\"Your answer does not have the correct dimensions. It will be marked as if the correct dimensions were used, and then a penalty will be applied.\")\n ,\n incorrect(\"Your answer does not have the correct dimensions.\");\n end()\n )\n );\n false\n )\n)\n\ncorrect_units:\nunits(correct_quantity)\n\nsame_units:\nassert(raw_student_units=correct_units,\n let(\n message,if(settings[\"hint\"]=\"show units\",\"You did not give your answer in \"+units_string(correct_units)+\".\", \"Your answer is not in the expected units.\"),\n switch(\n settings[\"different_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n settings[\"different_units_action\"]=\"incorrect\",\n incorrect(message); \n warn(message);\n end()\n ,\n settings[\"different_units_action\"]=\"warn\",\n warn(message);\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n settings[\"different_units_penalty\"]<1,\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n false\n )\n );\n false\n)\n\nhas_units:\nassert(not unitless(student_quantity),\n assert(settings[\"allow_unitless\"],\n warn(\"You must include the units in your answer.\");\n fail(\"You did not include units in your answer.\")\n )\n)\n\ncan_compare:\ncompatible or settings[\"incompatible_units_action\"]=\"convert\"\n\nclose_enough:\nif(can_compare,\n student_quantity>=correct_quantity - wiggle \n and \n student_quantity<=correct_quantity + wiggle \n,\n false\n)\n\nwiggle:\nunits(correct_quantity)*abs(eval(settings[\"wiggle\"]))\n\nvalid_number:\nif(isNaN(student_number),\n warn(translate(\"part.numberentry.answer invalid\"));\n fail(translate(\"part.numberentry.answer invalid\"))\n,\n true\n )", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "apply(valid_number);\napply(student_quantity);\napply(has_units);\napply(compatible);\ntry(\n correctif(close_enough),\n x,\n apply(student_quantity)\n);\napply(same_units)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "student_quantity"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_number", "description": "

The scalar part of the student's quantity

", "definition": "match_student_number[1]"}, {"name": "raw_student_units", "description": "

The units of the student's quantity, before converting.

", "definition": "try(\n quantity(studentAnswer[len(match_student_number[0])..len(studentAnswer)]),\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)"}, {"name": "student_units", "description": "

The units of the student's quantity.

\n

If the student used units incompatible with the units in the expected answer, and the \"what to do if incompatible units used\" option is set to \"mark as if correct units used\", the student's units are ignored and the expected units are used instead.

", "definition": "if(compatible(raw_student_units,correct_units) or settings[\"incompatible_units_action\"]<>\"convert\",\n raw_student_units,\n correct_units\n)"}, {"name": "student_quantity", "description": "

The student's answer, interpreted as a quantity.

\n

Marking fails if the student does not enter a valid quantity.

", "definition": "apply(student_units);\ntry(\n student_number * student_units,\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]"}, {"name": "compatible", "description": "

Are the units of the student's quantity compatible with the units of the expected quantity?

", "definition": "if(compatible(raw_student_units,correct_quantity),\n true\n,\n let(message,\"Your answer does not have the correct dimensions.\",\n if(settings[\"incompatible_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n if(settings[\"incompatible_units_action\"]=\"convert\",\n incorrect(\"Your answer does not have the correct dimensions. It will be marked as if the correct dimensions were used, and then a penalty will be applied.\")\n ,\n incorrect(\"Your answer does not have the correct dimensions.\");\n end()\n )\n );\n false\n )\n)"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)"}, {"name": "same_units", "description": "

/Are the student's quantity and the expected quantity in exactly the same units?

", "definition": "assert(raw_student_units=correct_units,\n let(\n message,if(settings[\"hint\"]=\"show units\",\"You did not give your answer in \"+units_string(correct_units)+\".\", \"Your answer is not in the expected units.\"),\n switch(\n settings[\"different_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n settings[\"different_units_action\"]=\"incorrect\",\n incorrect(message); \n warn(message);\n end()\n ,\n settings[\"different_units_action\"]=\"warn\",\n warn(message);\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n settings[\"different_units_penalty\"]<1,\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n false\n )\n );\n false\n)"}, {"name": "has_units", "description": "", "definition": "assert(not unitless(student_quantity),\n assert(settings[\"allow_unitless\"],\n warn(\"You must include the units in your answer.\");\n fail(\"You did not include units in your answer.\")\n )\n)"}, {"name": "can_compare", "description": "

Can the student's answer be compared with the correct answer? True if compatible units used, or \"mark as if correct units used\" selected.

", "definition": "compatible or settings[\"incompatible_units_action\"]=\"convert\""}, {"name": "close_enough", "description": "

Is the student's quantity within the allowed tolerance of the expected answer?

", "definition": "if(can_compare,\n student_quantity>=correct_quantity - wiggle \n and \n student_quantity<=correct_quantity + wiggle \n,\n false\n)"}, {"name": "wiggle", "description": "", "definition": "units(correct_quantity)*abs(eval(settings[\"wiggle\"]))"}, {"name": "valid_number", "description": "

Is the scalar part of the student's answer a valid number?

", "definition": "if(isNaN(student_number),\n warn(translate(\"part.numberentry.answer invalid\"));\n fail(translate(\"part.numberentry.answer invalid\"))\n,\n true\n )\n"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The expected quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "hint", "label": "Input hint", "help_url": "", "hint": "", "input_type": "dropdown", "default_value": "remind units", "choices": [{"value": "none", "label": "None"}, {"value": "remind units", "label": "Remind to include units"}, {"value": "show units", "label": "Show required units"}]}, {"name": "allow_unitless", "label": "Allow unitless answer?", "help_url": "", "hint": "If not ticked, the student is prevented from submitting an answer without specifying units.", "input_type": "checkbox", "default_value": true}, {"name": "incompatible_units_action", "label": "What to do if incompatible units used", "help_url": "", "hint": "If the student's answer is given in units incompatible with the correct answer's units:
\n", "input_type": "dropdown", "default_value": "incorrect", "choices": [{"value": "incorrect", "label": "Mark as incorrect"}, {"value": "prevent", "label": "Prevent submission"}, {"value": "convert", "label": "Mark as if correct units used"}]}, {"name": "different_units_action", "label": "What to do if different units used", "help_url": "", "hint": "If the student's answer is given in different units to the expected answer:
\n", "input_type": "dropdown", "default_value": "convert", "choices": [{"value": "convert", "label": "Convert"}, {"value": "warn", "label": "Warn and convert"}, {"value": "prevent", "label": "Prevent submission"}, {"value": "incorrect", "label": "Mark incorrect"}]}, {"name": "different_units_penalty", "label": "Penalty if different units used", "help_url": "", "hint": "This penalty is applied if the student gives their answer in different units to the expected answer. The selected percentage of the student's score is taken away.", "input_type": "percent", "default_value": "100"}, {"name": "wiggle", "label": "Margin of error", "help_url": "", "hint": "The student's answer is marked correct if the difference between it and the correct answer is at most this value, measured in the same units as the correct answer.", "input_type": "mathematical_expression", "default_value": "10^-12", "subvars": true}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [["question-resources/Graph_nuwlwzy.png", "/srv/numbas/media/question-resources/Graph_nuwlwzy.png"], ["question-resources/Graph_vuOe1U8.png", "/srv/numbas/media/question-resources/Graph_vuOe1U8.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "

Use basic integration to calculate the area under a graph.

", "licence": "None specified"}, "statement": "

The graph below shows the function

\n

\\[y=\\simplify{{a}*x^{b}+{c}}\\]

\n

The values are in centimetres.

\n

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(0.2..1.5 #0.1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1.5..2.9 #0.1)", "description": "", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "a/(b+1)*5^(b+1)+5*c-(a/(b+1)+c)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "ll": {"name": "ll", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "ul": {"name": "ul", "group": "Ungrouped variables", "definition": "5", "description": "", "templateType": "anything", "can_override": false}, "graph": {"name": "graph", "group": "Ungrouped variables", "definition": "jsxgraph(\n 320,200,\n [-1, max+5, 6, -5],\n [\n \"f\": ['functiongraph',[expression(\"a*x^b+c\")]]\n //\"g\": ['integral',[[1,5],f]]\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "max": {"name": "max", "group": "Ungrouped variables", "definition": "a*ul^b+c", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "ll", "ul", "ans", "graph", "max"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "quantity", "useCustomName": false, "customName": "", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the shaded area, correct to at least 2 decimal places.

", "stepsPenalty": 0, "steps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Determine the indefinite integral

\n

\\[\\int\\simplify{{a}*x^{b}+{c}}\\;dx\\]

", "answer": "{a}/{b+1}*x^{b+1}+{c}*x", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the lower limit of the integral?

", "minValue": "1", "maxValue": "1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the upper limit of the integral?

", "minValue": "5", "maxValue": "5", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Now evaluate the integral between the appropriate limits.

"}], "alternatives": [{"type": "quantity", "useCustomName": true, "customName": "Inaccurate", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "

Inaccurate answer or poor rounding.

", "useAlternativeFeedback": false, "settings": {"correctAnswer": "quantity({ans},\"cm^2\")", "hint": "remind units", "allow_unitless": true, "incompatible_units_action": "convert", "different_units_action": "convert", "different_units_penalty": "20", "wiggle": "1"}}], "settings": {"correctAnswer": "quantity({ans},\"cm^2\")", "hint": "remind units", "allow_unitless": true, "incompatible_units_action": "convert", "different_units_action": "convert", "different_units_penalty": "20", "wiggle": "10^-2"}}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "showresultspage": "oncompletion", "navigatemode": "sequence", "onleave": {"action": "none", "message": ""}, "preventleave": true, "startpassword": ""}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showtotalmark": true, "showanswerstate": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "reviewshowscore": true, "reviewshowfeedback": true, "reviewshowexpectedanswer": true, "reviewshowadvice": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "inreview"}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "type": "exam", "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "extensions": ["geogebra", "jsxgraph", "quantities"], "custom_part_types": [{"source": {"pk": 7, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/7/edit"}, "name": "Quantity with units", "short_name": "quantity", "description": "

The student enters a quantity with units.

", "help_url": "https://github.com/numbas/numbas-extension-quantities", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings[\"correctAnswer\"])", "hint": {"static": false, "value": "switch(\n settings[\"hint\"]=\"remind units\",\n \"Include units in your answer.\",\n settings[\"hint\"]=\"show units\",\n \"Give your answer in \"+units_string(settings[\"correctAnswer\"])\n ,\n \"\"\n)"}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\napply(valid_number);\napply(student_quantity);\napply(has_units);\napply(compatible);\ntry(\n correctif(close_enough),\n x,\n apply(student_quantity)\n);\napply(same_units)\n\ninterpreted_answer:\nstudent_quantity\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_number:\nmatch_student_number[1]\n\nraw_student_units:\ntry(\n quantity(studentAnswer[len(match_student_number[0])..len(studentAnswer)]),\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)\n\nstudent_units:\nif(compatible(raw_student_units,correct_units) or settings[\"incompatible_units_action\"]<>\"convert\",\n raw_student_units,\n correct_units\n)\n\nstudent_quantity:\napply(student_units);\ntry(\n student_number * student_units,\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\ncompatible:\nif(compatible(raw_student_units,correct_quantity),\n true\n,\n let(message,\"Your answer does not have the correct dimensions.\",\n if(settings[\"incompatible_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n if(settings[\"incompatible_units_action\"]=\"convert\",\n incorrect(\"Your answer does not have the correct dimensions. It will be marked as if the correct dimensions were used, and then a penalty will be applied.\")\n ,\n incorrect(\"Your answer does not have the correct dimensions.\");\n end()\n )\n );\n false\n )\n)\n\ncorrect_units:\nunits(correct_quantity)\n\nsame_units:\nassert(raw_student_units=correct_units,\n let(\n message,if(settings[\"hint\"]=\"show units\",\"You did not give your answer in \"+units_string(correct_units)+\".\", \"Your answer is not in the expected units.\"),\n switch(\n settings[\"different_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n settings[\"different_units_action\"]=\"incorrect\",\n incorrect(message); \n warn(message);\n end()\n ,\n settings[\"different_units_action\"]=\"warn\",\n warn(message);\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n settings[\"different_units_penalty\"]<1,\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n false\n )\n );\n false\n)\n\nhas_units:\nassert(not unitless(student_quantity),\n assert(settings[\"allow_unitless\"],\n warn(\"You must include the units in your answer.\");\n fail(\"You did not include units in your answer.\")\n )\n)\n\ncan_compare:\ncompatible or settings[\"incompatible_units_action\"]=\"convert\"\n\nclose_enough:\nif(can_compare,\n student_quantity>=correct_quantity - wiggle \n and \n student_quantity<=correct_quantity + wiggle \n,\n false\n)\n\nwiggle:\nunits(correct_quantity)*abs(eval(settings[\"wiggle\"]))\n\nvalid_number:\nif(isNaN(student_number),\n warn(translate(\"part.numberentry.answer invalid\"));\n fail(translate(\"part.numberentry.answer invalid\"))\n,\n true\n )", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "apply(valid_number);\napply(student_quantity);\napply(has_units);\napply(compatible);\ntry(\n correctif(close_enough),\n x,\n apply(student_quantity)\n);\napply(same_units)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "student_quantity"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_number", "description": "

The scalar part of the student's quantity

", "definition": "match_student_number[1]"}, {"name": "raw_student_units", "description": "

The units of the student's quantity, before converting.

", "definition": "try(\n quantity(studentAnswer[len(match_student_number[0])..len(studentAnswer)]),\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)"}, {"name": "student_units", "description": "

The units of the student's quantity.

\n

If the student used units incompatible with the units in the expected answer, and the \"what to do if incompatible units used\" option is set to \"mark as if correct units used\", the student's units are ignored and the expected units are used instead.

", "definition": "if(compatible(raw_student_units,correct_units) or settings[\"incompatible_units_action\"]<>\"convert\",\n raw_student_units,\n correct_units\n)"}, {"name": "student_quantity", "description": "

The student's answer, interpreted as a quantity.

\n

Marking fails if the student does not enter a valid quantity.

", "definition": "apply(student_units);\ntry(\n student_number * student_units,\n message,\n warn(\"Your answer is not a valid quantity.\");\n fail(\"Your answer is not a valid quantity.\")\n)"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]"}, {"name": "compatible", "description": "

Are the units of the student's quantity compatible with the units of the expected quantity?

", "definition": "if(compatible(raw_student_units,correct_quantity),\n true\n,\n let(message,\"Your answer does not have the correct dimensions.\",\n if(settings[\"incompatible_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n if(settings[\"incompatible_units_action\"]=\"convert\",\n incorrect(\"Your answer does not have the correct dimensions. It will be marked as if the correct dimensions were used, and then a penalty will be applied.\")\n ,\n incorrect(\"Your answer does not have the correct dimensions.\");\n end()\n )\n );\n false\n )\n)"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)"}, {"name": "same_units", "description": "

/Are the student's quantity and the expected quantity in exactly the same units?

", "definition": "assert(raw_student_units=correct_units,\n let(\n message,if(settings[\"hint\"]=\"show units\",\"You did not give your answer in \"+units_string(correct_units)+\".\", \"Your answer is not in the expected units.\"),\n switch(\n settings[\"different_units_action\"]=\"prevent\",\n warn(message);\n fail(message)\n ,\n settings[\"different_units_action\"]=\"incorrect\",\n incorrect(message); \n warn(message);\n end()\n ,\n settings[\"different_units_action\"]=\"warn\",\n warn(message);\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n settings[\"different_units_penalty\"]<1,\n multiply_credit(1-settings[\"different_units_penalty\"],message)\n ,\n false\n )\n );\n false\n)"}, {"name": "has_units", "description": "", "definition": "assert(not unitless(student_quantity),\n assert(settings[\"allow_unitless\"],\n warn(\"You must include the units in your answer.\");\n fail(\"You did not include units in your answer.\")\n )\n)"}, {"name": "can_compare", "description": "

Can the student's answer be compared with the correct answer? True if compatible units used, or \"mark as if correct units used\" selected.

", "definition": "compatible or settings[\"incompatible_units_action\"]=\"convert\""}, {"name": "close_enough", "description": "

Is the student's quantity within the allowed tolerance of the expected answer?

", "definition": "if(can_compare,\n student_quantity>=correct_quantity - wiggle \n and \n student_quantity<=correct_quantity + wiggle \n,\n false\n)"}, {"name": "wiggle", "description": "", "definition": "units(correct_quantity)*abs(eval(settings[\"wiggle\"]))"}, {"name": "valid_number", "description": "

Is the scalar part of the student's answer a valid number?

", "definition": "if(isNaN(student_number),\n warn(translate(\"part.numberentry.answer invalid\"));\n fail(translate(\"part.numberentry.answer invalid\"))\n,\n true\n )\n"}], "settings": [{"name": "correctAnswer", "label": "Correct answer", "help_url": "", "hint": "The expected quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "hint", "label": "Input hint", "help_url": "", "hint": "", "input_type": "dropdown", "default_value": "remind units", "choices": [{"value": "none", "label": "None"}, {"value": "remind units", "label": "Remind to include units"}, {"value": "show units", "label": "Show required units"}]}, {"name": "allow_unitless", "label": "Allow unitless answer?", "help_url": "", "hint": "If not ticked, the student is prevented from submitting an answer without specifying units.", "input_type": "checkbox", "default_value": true}, {"name": "incompatible_units_action", "label": "What to do if incompatible units used", "help_url": "", "hint": "If the student's answer is given in units incompatible with the correct answer's units:
\n", "input_type": "dropdown", "default_value": "incorrect", "choices": [{"value": "incorrect", "label": "Mark as incorrect"}, {"value": "prevent", "label": "Prevent submission"}, {"value": "convert", "label": "Mark as if correct units used"}]}, {"name": "different_units_action", "label": "What to do if different units used", "help_url": "", "hint": "If the student's answer is given in different units to the expected answer:
\n", "input_type": "dropdown", "default_value": "convert", "choices": [{"value": "convert", "label": "Convert"}, {"value": "warn", "label": "Warn and convert"}, {"value": "prevent", "label": "Prevent submission"}, {"value": "incorrect", "label": "Mark incorrect"}]}, {"name": "different_units_penalty", "label": "Penalty if different units used", "help_url": "", "hint": "This penalty is applied if the student gives their answer in different units to the expected answer. The selected percentage of the student's score is taken away.", "input_type": "percent", "default_value": "100"}, {"name": "wiggle", "label": "Margin of error", "help_url": "", "hint": "The student's answer is marked correct if the difference between it and the correct answer is at most this value, measured in the same units as the correct answer.", "input_type": "mathematical_expression", "default_value": "10^-12", "subvars": true}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [["question-resources/Graph_nuwlwzy.png", "/srv/numbas/media/question-resources/Graph_nuwlwzy.png"], ["question-resources/Graph_vuOe1U8.png", "/srv/numbas/media/question-resources/Graph_vuOe1U8.png"]]}