// Numbas version: finer_feedback_settings {"name": "Maths Support: Logarithms and solving equations", "navigation": {"onleave": {"action": "none", "message": ""}, "reverse": true, "allowregen": true, "preventleave": false, "browse": true, "showfrontpage": false, "showresultspage": "never"}, "duration": 0.0, "metadata": {"notes": "", "description": "
8 questions using logarithms. 7 questions use logarithms to solve equations.
", "licence": "Creative Commons Attribution 4.0 International"}, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}}, "shufflequestions": false, "questions": [], "percentpass": 0.0, "allQuestions": true, "pickQuestions": 0, "type": "exam", "feedback": {"showtotalmark": true, "advicethreshold": 0.0, "showanswerstate": true, "showactualmark": true, "allowrevealanswer": true, "enterreviewmodeimmediately": false, "showexpectedanswerswhen": "never", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": [{"name": "Hyperbolic Functions 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["cosh", "hyperbolic equations", "hyperbolic functions", "logarithms", "quadratic equation", "sinh", "solving equations", "solving hyperbolic equations", "solving quadratic equation"], "advice": "\nUsing \\[\\cosh(x)=\\frac{e^x+e^{-x}}{2},\\;\\;\\;\\sinh(x)=\\frac{e^x-e^{-x}}{2}\\] and substituting into the equation gives:
\n\\[\\simplify[std]{{a1+b1}e^x+{a1-b1}e^(-x)={2*c1}}\\]
\nOn multiplying throughout by $e^x$, putting $y=e^x$ and tidying up the equation, we get:
\n\\[\\simplify[std]{{m1}* y ^ 2 + {m2} * y + {m3} = 0}\\]
\nThis quadratic has solutions:
\n\\[y = \\simplify[std]{{d1}/{al1}},\\;\\;\\;y=\\simplify[std]{{d2}/{be1}}\\]
\nSince $y=e^x$ we see that the solutions in terms of $x$ are:
\\[x = \\ln\\left(\\simplify[std]{{d1}/{al1}}\\right)=\\var{tans2},\\;\\;\\;x=\\ln\\left(\\simplify[std]{{d2}/{be1}}\\right)=\\var{tans3}\\]
both to 3 decimal places.
Hence the minimum solution is $x=\\var{ans2}$ and the maximum solution is $x=\\var{ans3}$.
\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n \n \nInput the solutions for $x$ here:(if the solutions are the same input the number twice)
\n \n \n \nLeast solution = [[0]]
\n \n \n \nGreatest solution= [[1]]
\n \n \n \nInput both to 3 decimal places.
\n \n \n ", "gaps": [{"minvalue": "ans2-tol", "type": "numberentry", "maxvalue": "ans2+tol", "marks": 1.0, "showPrecisionHint": false}, {"minvalue": "ans3", "type": "numberentry", "maxvalue": "ans3", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "\nSolve the following equation for $x$.
\n\\[\\simplify[std]{{a1}cosh(x)+{b1}sinh(x)={c1}}\\]
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"ans2": {"definition": "precround(ans12,3)", "name": "ans2"}, "ans3": {"definition": "precround(ans21,3)", "name": "ans3"}, "b1": {"definition": "s*(al1*be1-d1*d2)/2", "name": "b1"}, "d2": {"definition": "s6*random(1..8)", "name": "d2"}, "ans21": {"definition": "max(tans2,tans3)", "name": "ans21"}, "d1": {"definition": "if(al1*be1=d*d2,d+2,d)", "name": "d1"}, "al1": {"definition": "s5*random(2,4,6)", "name": "al1"}, "s6": {"definition": "random(1,-1)", "name": "s6"}, "s5": {"definition": 1.0, "name": "s5"}, "m1": {"definition": "round((a1+b1)/h)", "name": "m1"}, "m3": {"definition": "round((a1-b1)/h)", "name": "m3"}, "m2": {"definition": "round(-2*c1/h)", "name": "m2"}, "be1": {"definition": "s6*random(1..9)", "name": "be1"}, "tol": {"definition": 0.0, "name": "tol"}, "ans12": {"definition": "min(tans2,tans3)", "name": "ans12"}, "a2": {"definition": "(al1*be1+d1*d2)/2", "name": "a2"}, "c1": {"definition": "s*(d1*be1+d2*al1)/2", "name": "c1"}, "tans3": {"definition": "precround(ln(d2/be1),3)", "name": "tans3"}, "tans2": {"definition": "precround(ln(d1/al1),3)", "name": "tans2"}, "a1": {"definition": "abs(a2)", "name": "a1"}, "d": {"definition": "s5*random(2,4)", "name": "d"}, "h": {"definition": "gcf(gcf(abs(a1+b1),abs(a1-b1)),abs(2*c1))", "name": "h"}, "s": {"definition": "sign(a2)", "name": "s"}}, "metadata": {"notes": "\n \t\t2/07/2012:
\n \t\tAdded tags.
\n \t\tForced answers to be exactly to 3 decimal places, no tolerances via tolerance variable tol=0.
\n \t\tImproved display in Advice. Checked calculations.
\n \t\t19/07/2012:
\n \t\tAdded description. Rechecked calculations.
\n \t\t\n \t\t
25/07/2012:
\n \t\tAdded tags.
\n \t\tQuestion appears to be working correctly.
\n \t\t\n \t\t", "description": "
Solve for $x$: $a\\cosh(x)+b\\sinh(x)=c$. There are two solutions for this example.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Steps", "algebra", "algebraic manipulation", "combining logarithms", "logarithm laws", "logarithms", "simplifying logarithms", "solving equations", "steps"], "advice": "\nWe use the following two rules for logs :
\n1. $\\log_a(b)-\\log_a(c)=\\log_a(b/c)$
\n2. $\\log_a(p)=r \\Rightarrow p=a^r$
\nUsing rule 1 we get
\\[\\log_{\\var{a}}(x+\\var{b})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\log_{\\var{a}}\\left(\\simplify{(x+{b})/(x+{c})}\\right)\\]
So the equation to solve becomes:
\\[\\log_{\\var{a}}\\left(\\simplify{(x+{b})/(x+{c})}\\right)=\\var{d}\\]
and using rule 2 this gives:
\\[ \\begin{eqnarray} \\simplify{(x+{b})/(x+{c})}&=&{\\var{a}}^{\\var{d}}\\Rightarrow\\\\ x+\\var{b}&=&{\\var{a}}^{\\var{d}}(x+\\var{c})=\\simplify{{a^d}}(x+\\var{c})\\Rightarrow\\\\ \\simplify{{a^d-1}x}&=&\\simplify[std]{{b}-{c}*{a^d}={b-c*a^d}}\\Rightarrow\\\\ x&=&\\simplify{{b-c*a^d}/{a^d-1}} \\end{eqnarray} \\]
We should check that this solution gives positive values for $x+\\var{b}$ and $\\simplify{x+{c}}$ as otherwise the logs are not defined.
Substituting this value for $x$ into $\\log_{\\var{a}}(x+\\var{b})$ we get $\\log_{\\var{a}}(\\simplify{({b-c }{a^d})/{a^d-1}})$ so OK.
\nFor $\\log_{\\var{a}}(\\simplify{x+{c}})$ we get on substituting for $x$, $\\log_{\\var{a}}(\\simplify{({b-c })/{a^d-1}})$ so OK.
\nHence the value we found for $x$ is a solution to the original equation.
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n\\[\\log_{\\var{a}}(x+\\var{b})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\var{d}\\]
\n$x=\\;$ [[0]]
\nIf you want help in solving the equation, click on Show steps. If you do so then you will lose 1 mark.
\nInput all numbers as fractions or integers and not as decimals.
\n ", "gaps": [{"notallowed": {"message": "Input as a fraction or an integer, not as a decimal.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 2.0, "answer": "{b-c*a^d}/{a^d-1}", "type": "jme"}], "steps": [{"prompt": "\nTwo rules for logs should be used:
\n1. $\\log_a(b)-\\log_a(c)=\\log_a(b/c)$
\n2. $\\log_a(p)=r \\Rightarrow p=a^r$
\nUse rule 1 followed by rule 2 to get an equation for $x$.
\n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "\nSolve the following equation for $x$.
\nInput your answer as a fraction or an integer as appropriate and not as a decimal.
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..5)", "name": "a"}, "c": {"definition": "b-random(1..20)", "name": "c"}, "b": {"definition": "random(1..20)", "name": "b"}, "d": {"definition": "random(1,2)", "name": "d"}}, "metadata": {"notes": "\n \t\t5/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tChecked calculation.OK.
\n \t\tImproved display in content areas.
\n \t\t", "description": "Solve for $x$: $\\log_{a}(x+b)- \\log_{a}(x+c)=d$
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["Steps", "algebra", "algebraic manipulation", "combining logarithms", "logarithm laws", "logarithms", "simplifying logarithms", "solving", "solving equations", "steps"], "advice": "\nWe use the following three rules for logs :
\n1. $n\\log_a(m)=\\log_a(m^n)$
\n2. $\\log_a(b)-\\log_a(c)=\\log_a(b/c)$
\n3. $\\log_a(p)=r \\Rightarrow p=a^r$
\nUsing rule 1 we get
\\[2\\log_{\\var{a}}(\\simplify{x+{b}})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\log_{\\var{a}}((\\simplify{x+{b}})^2)- \\log_{\\var{a}}(\\simplify{(x+{c})})\\]
Using rule 2 gives
\\[\\log_{\\var{a}}(\\simplify{(x+{b})^2})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\log_{\\var{a}}\\left(\\simplify{(x+{b})^2/(x+{c})}\\right)\\]
So the equation to solve becomes:
\\[\\log_{\\var{a}}\\left(\\simplify{(x+{b})^2/(x+{c})}\\right)=\\var{d}\\]
and using rule 3 this gives:
\\[ \\begin{eqnarray} \\simplify{(x+{b})^2/(x+{c})}&=&{\\var{a}}^{\\var{d}}\\Rightarrow\\\\ \\simplify{(x+{b})^2}&=&{\\var{a}}^{\\var{d}}(\\simplify{x+{c}})=\\simplify{{a^d}(x+{c})}\\Rightarrow\\\\ \\simplify{x^2+{2*b-a^(d)}x+{b^2-a^(d)*c}}&=&0 \\end{eqnarray} \\]
Solving this quadratic we get two solutions:
$x=\\var{sol1}$ and $x=\\var{sol2}$
\nWe should check that these solutions gives positive values for $\\simplify{x+{b}}$ and $\\simplify{x+{c}}$ as otherwise the logs are not defined.
\nThe value $x=\\var{sol1}$ gives:
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{b}})$ we get $\\log_{\\var{a}}(\\simplify{{2*a^d}})$ so OK.
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{c}})$ we get $\\log_{\\var{a}}(\\simplify{{4*a^d}})$ so OK.
\nHence $x=\\var{sol1}$ is a solution to our original equation.
\nThe value $x=\\var{sol2}$ gives:
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{b}})$ we get $\\log_{\\var{a}}(\\simplify{{-a^d}})$ so NOT OK.
\nSubstituting this value for $x$ into $\\log_{\\var{a}}(\\simplify{x+{c}})$ we get $\\log_{\\var{a}}(\\simplify{{a^d}})$ so OK.
\nHence $x=\\var{sol2}$ is NOT a solution to our original equation as $\\log_{\\var{a}}(\\simplify{x+{b}})$ is not defined for this value of $x$.
\nSo there is only one solution $x=\\var{sol1}$.
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n\\[2\\log_{\\var{a}}(\\simplify{x+{b}})- \\log_{\\var{a}}(\\simplify{(x+{c})})=\\var{d}\\]
\n$x=\\;$ [[0]].
\nIf you want help in solving the equation, click on Show steps. If you do so then you will lose 1 mark.
\nInput all numbers as fractions or integers and not as decimals.
\n ", "gaps": [{"notallowed": {"message": "Input as an integer, not as a decimal.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 2.0, "answer": "{sol1}", "type": "jme"}], "steps": [{"prompt": "\nThree rules for logs should be used:
\n1. $n\\log_a(m)=\\log_a(m^n)$
\n2. $\\log_a(b)-\\log_a(c)=\\log_a(b/c)$
\n3. $\\log_a(p)=r \\Rightarrow p=a^r$
\nSo use rule 1 followed by rules 2 and 3 to get an equation for $x$.
\n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "\nSolve the following equation for $x$.
\nInput your answer as a fraction or an integer as appropriate and not as a decimal.
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2,3)", "name": "a"}, "c": {"definition": "b+2*a^(d)", "name": "c"}, "b": {"definition": "s*random(1..20)", "name": "b"}, "d": {"definition": "random(1,2)", "name": "d"}, "s": {"definition": "random(1,-1)", "name": "s"}, "sol2": {"definition": "-c+a^d", "name": "sol2"}, "sol1": {"definition": "c-2*b", "name": "sol1"}}, "metadata": {"notes": "\n \t\t5/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tChecked calculation.OK.
\n \t\tImproved display in content areas.
\n \t\t", "description": "\n \t\tSolve for $x$: $\\displaystyle 2\\log_{a}(x+b)- \\log_{a}(x+c)=d$.
\n \t\tMake sure that your choice is a solution by substituting back into the equation.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["exponential", "exponentiation", "laws of logarithms", "laws of logs", "log laws", "logarithm laws", "logarithm rules", "logarithms", "logs", "solving equations", "solving logarithmic equations"], "advice": "\nFirst use one of the logarith laws which states (for logarithms to any base)
\n\\[\\log(a)-\\log(b)=\\log\\left(\\frac{a}{b}\\right)\\]
\nSo the equation can be written as:
\n\\[\\log_{10}\\left(\\simplify[std]{({a1}x+{b1})/({c1}x+{d1})}\\right)=\\var{e1}\\]
Now exponentiate both sides to get:
\\[\\simplify[std,!otherNumbers]{({a1}x+{b1})/({c1}x+{d1})}=10^{\\var{e1}} \\Rightarrow \\simplify[std,!otherNumbers]{{a1}x+{b1}=10^{e1}({c1}x+{d1})}\\]
Collect together terms in $x$ on the left and everything else on the right of the equation gives:
\\[\\simplify[std,!otherNumbers]{x({a1}-10^{e1}*{c1})=10^{e1}*{d1}-{b1}}\\]
Finally rearrange to get:
\\[\\simplify[std]{x=(10^{e1}*{d1}-{b1})/({a1}-10^{e1}*{c1})={10^e1*d1-b1}/{a1-10^e1*c1}}\\]
which to 3 decimal places evaluates to
\\[x=\\var{ans}.\\]
Input the solution for $x$ here:
\n$x=\\;\\;$ [[0]]
\nInput your answer to 3 decimal places.
\n ", "gaps": [{"minvalue": "ans-tol", "type": "numberentry", "maxvalue": "ans+tol", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "\nSolve the following equation for $x$.
\n\\[\\simplify[std]{log({a1}x+{b1})-log({c1}x+{d1})={e1}}\\]
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"e1": {"definition": "random(1..2)", "name": "e1"}, "a1": {"definition": "random(1..9)", "name": "a1"}, "b1": {"definition": "9+random(1..9)", "name": "b1"}, "tol": {"definition": 0.0, "name": "tol"}, "ans": {"definition": "precround(tans,3)", "name": "ans"}, "c1": {"definition": "d1*random(1..9)", "name": "c1"}, "tans": {"definition": "(d1*10^e1-b1)/(a1-c1*10^e1)", "name": "tans"}, "d1": {"definition": "random(1..9)", "name": "d1"}}, "metadata": {"notes": "\n \t\t2/07/2012:
\n \t\tAdded tags.
\n \t\tSolution to 3 decimal places - no tolerance via new tolerance variable tol=0.
\n \t\tImproved display of Advice.
\n \t\t19/07/2012:
\n \t\tAdded description.
\n \t\tChecked calculation.
\n \t\t\n \t\t
25/07/2012:
\n \t\tAdded tags.
\n \t\tRemoved a stray full stop.
\n \t\tQuestion appears to be working correctly.
\n \t\t\n \t\t", "description": "
Solve for $x$: $\\log(ax+b)-\\log(cx+d)=s$
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["equations solved by using logarithms", "laws of logarithms", "logarithm laws", "logarithm rules", "logarithmic expressions", "logarithms", "solving equations by taking logarithms", "solving logarithmic equations"], "advice": "Both parts of this question can be solved in a similar way, by taking logarithms of both sides of each equation.
\na)
\nTaking logs (to the base 10 in this case – but any base will do) of both sides of
\n\\[\\var{n}^{\\simplify{{a1}*x+{b1}}}=\\var{m}^{\\var{c1}x}\\]
\ngives on using the rule $\\log(a^b)=b\\log(a)$:
\n\\[\\begin{eqnarray*} \\simplify[std]{({a1}x+{b1})log({n})}&=&\\simplify[std]{{c1}*x*log({m})}\\\\ \\Rightarrow\\simplify[std]{x({a1}*log({n})-{c1}*log({m}))} &=&\\var{-b1}\\log(\\var{n})\\\\ \\Rightarrow x&=&\\simplify[std]{({-b1}*log({n}))/({a1}log({n})-{c1}*log({m}))}\\\\ &=& \\var{ans1}\\mbox{ to 3 decimal places} \\end{eqnarray*} \\]
\nb)
\nSimilarly, taking logs of both sides of:
\\[\\var{a2}^{\\var{b2}x^2}=\\var{c2}^{\\var{d2}x}\\]
gives:
\n\\[ \\simplify[std]{({b2}x^2)log({a2})}=\\simplify[std]{{d2}*x*log({c2})} \\Rightarrow \\simplify[std]{x({b2}*log({a2})x-{d2}*log({c2}))} =0\\]
\nand so the solutions are:
\n1. $x=0$
\nor
\n2. $\\displaystyle x=\\simplify[std,!fractionNumbers]{({d2}*log({c2}))/({b2}*log({a2})) = {ans2}}$ to 3 decimal places.
", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n\\[\\var{n}^{\\simplify{{a1}*x+{b1}}}=\\var{m}^{\\var{c1}x}\\]
\n$x=\\;\\;$[[0]].
\nEnter your answer to 3 decimal places.
\n ", "gaps": [{"minvalue": "{ans1}", "type": "numberentry", "maxvalue": "{ans1}", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n\\[\\var{a2}^{\\var{b2}x^2}=\\var{c2}^{\\var{d2}x}\\]
\n$x=\\;\\;$[[0]] $\\;\\;\\;$ (Enter the smallest value of $x$ here).
\n$x=\\;\\;$[[1]] $\\;\\;\\;$ (Enter the largest value of $x$ here).
\nEnter your answers to 3 decimal places.
\n ", "gaps": [{"minvalue": 0.0, "type": "numberentry", "maxvalue": 0.0, "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ans2", "type": "numberentry", "maxvalue": "ans2", "marks": 1.5, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "Find all values of $x$ that satisfy the following equations:
", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"tc2": {"definition": "random(2..9)", "name": "tc2"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "ans1": {"definition": "precround(tans1,3)", "name": "ans1"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "if(tm=n,17,tm)", "name": "m"}, "d2": {"definition": "random(2..9)", "name": "d2"}, "n": {"definition": "random(2,3,5,7,11,13)", "name": "n"}, "a1": {"definition": "s1*random(1..9)", "name": "a1"}, "tm": {"definition": "random(2,3,5,7,11,13)", "name": "tm"}, "b1": {"definition": "random(1..9)", "name": "b1"}, "b2": {"definition": "random(2..9)", "name": "b2"}, "c2": {"definition": "if(tc2=a2,tc2+1,tc2)", "name": "c2"}, "c1": {"definition": "s3*random(2..9)", "name": "c1"}, "tans1": {"definition": "-b1*log(n)/(a1*log(n)-c1*log(m))", "name": "tans1"}, "ans2": {"definition": "precround(tans2,3)", "name": "ans2"}, "a2": {"definition": "random(2..9)", "name": "a2"}, "tans2": {"definition": "d2*log(c2)/(b2*log(a2))", "name": "tans2"}}, "metadata": {"notes": "\n \t\t2/06/2012:
\n \t\tAdded tags.
\n \t\tImproved display.
\n \t\tForced solution in second part to be accurate to 3 decimal places with no tolerance.
\n \t\t19/07/2012:
\n \t\tAdded description.
\n \t\tChecked calculation.
\n \t\t25/07/2012:
\n \t\tAdded tags.
\n \t\tCorrected a typo.
\n \t\tIn the Advice section moved \\Rightarrow so that it is at the beginning of the line instead of the end of the previous line.
\n \t\tQuestion appears to be working correctly.
\n \t\t\n \t\t
\n \t\t", "description": "
Solve for $x$ each of the following equations: $n^{ax+b}=m^{cx}$ and $p^{rx^2}=q^{sx}$.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Logarithms: Solving equations 5", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["exponential function", "logarithmic equation", "logarithms", "logs", "natural logarithms", "solving equations", "solving logarithmic equations"], "advice": "\n \n \nWe have on solving the equation $\\rho(t)=\\rho_0e^{kt}$ by taking natural logs of both sides that:
\\[k = \\frac{1}{t}\\ln\\left(\\frac{\\rho}{\\rho_0}\\right)\\]
a)
\\[\\begin{eqnarray*}\n \n k&=& \\frac{1}{\\var{c}}\\ln\\left(\\frac{\\var{a*r} \\times 10^{\\var{b}}}{\\var{a} \\times 10^{\\var{b}}}\\right)\\\\\n \n &=& \\frac{1}{\\var{c}}\\ln(\\var{r})\\\\\n \n &=&\\var{kvalue}\n \n \\end{eqnarray*}\n \n \\] to 3 decimal places.
b)
\\[\\begin{eqnarray*}\n \n k&=& \\frac{1}{\\var{c1}}\\ln\\left(\\frac{\\var{a1*r1} \\times 10^{\\var{b1}}}{\\var{a1} \\times 10^{\\var{b1}}}\\right)\\\\\n \n &=& \\frac{1}{\\var{c1}}\\ln(\\var{r1})\\\\\n \n &=&\\var{kvalue1}\n \n \\end{eqnarray*}\n \n \\] to 3 decimal places.
$\\rho_0=\\var{a} \\times 10^{\\var{b}},\\;\\;\\;\\;\\;\\rho(\\var{c})=\\var{a*r} \\times 10^{\\var{b}}$
\n \n \n \n$k=\\;\\;$[[0]]
\n \n \n ", "gaps": [{"minvalue": "{kvalue}", "type": "numberentry", "maxvalue": "{kvalue}", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n \n \n$\\rho_0=\\var{a1} \\times 10^{\\var{b1}},\\;\\;\\;\\;\\;\\rho(\\var{c1})=\\var{a1*r1} \\times 10^{\\var{b1}}$
\n \n \n \n$k=\\;\\;$[[0]]
\n \n \n ", "gaps": [{"minvalue": "{kvalue1}", "type": "numberentry", "maxvalue": "{kvalue1}", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "\nThe size $\\rho(t)$ of a population satisfies:
\\[\\rho(t)=\\rho_0e^{kt}\\]
where $\\rho$ and $k$ are constants.
Given the following data, find $k$ in each case. Input your answers to 3 decimal places.
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..6)", "name": "a"}, "c": {"definition": "random(3..15)", "name": "c"}, "b": {"definition": "random(5..7)", "name": "b"}, "r1": {"definition": "if(r2=r,r+1,r)", "name": "r1"}, "r2": {"definition": "max(round(e^(k1*c1)),2)", "name": "r2"}, "k": {"definition": "random(0.005..0.15#0.005)", "name": "k"}, "a1": {"definition": "a+random(1..3)", "name": "a1"}, "k1": {"definition": "random(0.005..0.15#0.005)", "name": "k1"}, "r": {"definition": "max(round(e^(k*c)),2)", "name": "r"}, "b1": {"definition": "b+random(1,2)", "name": "b1"}, "kvalue1": {"definition": "precround(ln(r1)/c1,3)", "name": "kvalue1"}, "c1": {"definition": "c+random(1..3)", "name": "c1"}, "kvalue": {"definition": "precround(ln(r)/c,3)", "name": "kvalue"}}, "metadata": {"notes": "\n \t\t2/07/2012:
\n \t\tAdded tags
\n \t\tForced answers to both parts to be exact to 3 decimal places.
\n \t\t19/07/2012:
\n \t\tAdded description.
\n \t\tChecked calculation.
\n \t\t25/07/2012:
\n \t\tAdded tags.
\n \t\tQuestion appears to be working correctly.
\n \t\t", "description": "Given $\\rho(t)=\\rho_0e^{kt}$, and values for $\\rho(t)$ for $t=t_1$ and a value for $\\rho_0$, find $k$. (Two examples).
In the equation
\\[\\var{c}\\left(\\var{a^2}^x \\right)+ \\var{d}\\left(\\var{a}^{x+1}\\right)=\\var{b}\\]
Let $y=\\var{a}^x$ and since $\\var{a^2}^x=(\\var{a}^2)^x=\\left(\\var{a}^x\\right)^2 $ on substitution this becomes:
\\[\\begin{eqnarray*} \\var{c}y^2 + \\var{d}\\left(\\var{a}y\\right)&=&\\var{b} \\\\ \\\\ \\Rightarrow \\var{c}y^2 + \\var{a*d}y&=&\\var{b}\\Rightarrow \\var{c}y^2 + \\var{a*d}y-\\var{b}=0\\\\ \\\\ \\Rightarrow (\\var{c}y+\\var{al})(y-\\var{abs(be)})&=&0 \\mbox{ on factorisation.} \\end{eqnarray*} \\]
This quadratic has solutions $\\displaystyle y=\\simplify[std]{{-al}/{c}},\\;\\;y=\\var{-be}$.
But $y=\\var{a}^x \\gt 0$ for all $x$ and so $\\displaystyle y=\\simplify[std]{{-al}/{c}}$ cannot be a solution for the original equation.
\nWe are left with $y=\\var{-be}$ which gives:
\\[\\begin{eqnarray*} \\var{a}^x &=& \\var{-be}\\\\ \\Rightarrow x\\ln(\\var{a})&=&\\ln(\\var{-be})\\\\ \\Rightarrow x&=&\\frac{\\ln(\\var{-be})}{\\ln(\\var{a})} = \\var{ans1} \\end{eqnarray*} \\]
to 3 decimal places.
\n ", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n$x=\\;\\;$[[0]]
\nInput your answer to 3 decimal places.
\n ", "gaps": [{"minvalue": "ans1-tol", "type": "numberentry", "maxvalue": "ans1+tol", "marks": 2.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "statement": "\nSolve the following equation for $x$. Note that there is only one solution.
\n\\[\\var{c}\\left(\\var{a^2}^x \\right)+ \\var{d}\\left(\\var{a}^{x+1}\\right)=\\var{b}\\]
\nHint: remember that $\\left(A^2\\right)^x=\\left(A^x\\right)^2$ for any number $A$.
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(4..9)", "name": "a"}, "be": {"definition": "random(-9..-2)", "name": "be"}, "c": {"definition": "random(2..6)", "name": "c"}, "b": {"definition": "-al*be", "name": "b"}, "d": {"definition": "if(c=2 or c=4,random(3,5,7,9),if(c=3,random(2,4,5,7,8),if(c=5,random(2,3,4,6,7),random(5,7,11))))", "name": "d"}, "ans1": {"definition": "precround(tans1,3)", "name": "ans1"}, "al": {"definition": "d*a-be*c", "name": "al"}, "tol": {"definition": 0.0, "name": "tol"}, "tans1": {"definition": "ln(-be)/ln(a)", "name": "tans1"}}, "metadata": {"notes": "2/07/2012:
\nAdded tags.
\nAdded that the solution is to 3 decimal places.
\nForced exact solution to 3 decimal places - no tolerance.
\nImproved display.
\n19/07/2012:
\nAdded description.
\nChecked calculation.
\nNew tolerance variable tol=0 for the answer.
\n\n
25/07/2012:
\nAdded tags.
\nIs it necessary to include the hint? It is a rather basic mathematical identity.
\n\n
In the Advice section moved \\Rightarrow so that it is at the beginning of the line instead of the end of the previous line.
\n\n
\n
Question appears to be working correctly.
\n", "description": "
Solve for $x$: $c(a^2)^x + d(a)^{x+1}=b$ (there is only one solution for this example).
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Simplify logarithms 1: (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["log laws", "logarithm laws", "logarithmic expressions", "logarithms", "logs", "rules for logarithms", "simplifying logarithms", "video"], "advice": "\n \n \nThe rules for combining logs are
\n \n \n \n\\[\\begin{eqnarray*}\n \n \\log_a(bc)&=&\\log_a(b)+\\log_a(c)\\\\\n \n \\\\\n \n \\log_a\\left(\\frac{b}{c}\\right)&=&\\log_a(b)-\\log_a(c)\\\\\n \n \\\\\n \n \\log_a(b^r)&=&r\\log_a(b)\n \n \\end{eqnarray*}\n \n \\]
\n \n \n \na)
Using these rules gives:
\\[ \\begin{eqnarray*}\n \n \\log_a(x^{\\var{a1}}y^{\\var{b1}})&=&\\log_a(x^{\\var{a1}})+\\log_a(y^{\\var{b1}})\\\\\n \n &=&\\var{a1}\\log_a(x)+\\var{b1}\\log_a(y)\n \n \\end{eqnarray*}\n \n \\]
b)
\\[\\begin{eqnarray*}\n \n \\simplify[std]{{a2}/{b2}}\\log_a(x)+\\log_a(\\simplify{{c}*x+{d}})-\\log_a(\\simplify{x^(1/{b2})})&=&\\log_a(x^\\frac{\\var{a2}}{\\var{b2}})+\\log_a(\\simplify{{c}*x+{d}})-\\log_a(\\simplify{x^(1/{b2})})\\\\\n \n \\\\\n \n &=&\\log_a\\left(\\simplify[std]{(x^({a2}/{b2})*({c}x+{d}))/(x^(1/{b2}))}\\right)\\\\\n \n &=&\\log_a\\left(\\simplify{x^{f}*({c}x+{d})}\\right)\n \n \\end{eqnarray*}\n \n \\]
Express the following in terms of $\\log_a(x)$ and $\\log_a(y)$
\n\\[\\log_a(x^{\\var{a1}}y^{\\var{b1}})=\\alpha\\log_a(x)+\\beta\\log_a(y)\\]
\n$\\alpha=\\;\\;$[[0]], $\\beta=\\;\\;$[[1]]
\nIn Show steps you will find a video explaining the rules of logarithms by going through simplification of logs of numbers rather than algebraic expressions.
", "gaps": [{"minvalue": "{a1}", "type": "numberentry", "maxvalue": "{a1}", "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "{b1}", "type": "numberentry", "maxvalue": "{b1}", "marks": 0.5, "showPrecisionHint": false}], "steps": [{"prompt": "This video covers the standard rules for logarithms.
\nThese are, for any base $b \\gt 0$:
\n\\[\\begin{eqnarray*} &1.& \\log_b(p)+\\log_b(q)&=&\\log_b(p\\times q)\\\\&2.& \\log_b(p)-\\log_b(q)&=&\\log_b\\left(\\frac{p}{ q}\\right)\\\\ &3.& \\log_b(p^r)=r\\log_b(p)\\\\&4.& \\log_b(1)=0\\end{eqnarray*} \\]
\n\n
", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\n
\\[\\simplify[std]{{a2}/{b2}}\\log_a(x)+\\log_a(\\simplify{{c}*x+{d}})-\\log_a(\\simplify{x^(1/{b2})})=\\log_a(q(x))\\]
\n$q(x)=\\;\\;$[[0]]
\n \n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "((x ^ {f}) * (({c} * x) + {d}))", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "statement": "Answer the following questions on logarithms.
\n", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"c": {"definition": "random(1..9)", "name": "c"}, "d": {"definition": "s4*random(2..9)", "name": "d"}, "f": {"definition": "precround((a2-1)/b2,0)", "name": "f"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "s4": {"definition": "random(1,-1)", "name": "s4"}, "a1": {"definition": "s1*random(2..9)", "name": "a1"}, "a2": {"definition": "1+b2*random(2..5)", "name": "a2"}, "b1": {"definition": "random(2..15)", "name": "b1"}, "b2": {"definition": "random(2..9)", "name": "b2"}}, "metadata": {"notes": "\n \t\t
2/06/2012:
\n \t\tAdded tags.
\n \t\tChanged statement to make question clearer.
\n \t\t19/07/2012:
\n \t\tAdded description.
\n \t\t25/07/2012:
\n \t\tAdded tags.
\n \t\tQuestion appears to be working correctly.
\n \t\t17/08/2012:
\n \t\tMade copy to include in Simplify Algebraic Expressions exam.
\n \t\t", "description": "Express $\\log_a(x^{c}y^{d})$ in terms of $\\log_a(x)$ and $\\log_a(y)$. Find $q(x)$ such that $\\frac{f}{g}\\log_a(x)+\\log_a(rx+s)-\\log_a(x^{1/t})=\\log_a(q(x))$.
\nThere is a video included explaining the rules of logarithms by going through simplification of logs of numbers rather than algebraic expressions.
\n\n
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": [], "custom_part_types": [], "resources": []}