// Numbas version: finer_feedback_settings {"navigation": {"onleave": {"action": "none", "message": ""}, "preventleave": true, "allowregen": true, "browse": true, "reverse": true, "showfrontpage": true, "showresultspage": "oncompletion"}, "timing": {"timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}, "allowPause": true}, "question_groups": [{"pickQuestions": 1, "pickingStrategy": "all-ordered", "name": "Group", "questions": [{"name": "Midpoint", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Calculate the midpoint of two points.

"}, "variables": {"xa1": {"definition": "l[0]", "name": "xa1", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "ya": {"definition": "(ya1+ya2)/2", "name": "ya", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "xa": {"definition": "(xa1+xa2)/2", "name": "xa", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "ya2": {"definition": "l[3]", "name": "ya2", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "xa2": {"definition": "l[1]", "name": "xa2", "templateType": "anything", "description": "

xa

", "group": "Ungrouped variables"}, "l": {"definition": "shuffle(-12..12)[0..4]", "name": "l", "templateType": "anything", "description": "

l

", "group": "Ungrouped variables"}, "ya1": {"definition": "l[2]", "name": "ya1", "templateType": "anything", "description": "", "group": "Ungrouped variables"}}, "functions": {"line_and_2points": {"definition": "\nvar div = Numbas.extensions.jsxgraph.makeBoard('600px','600px',{boundingBox:[-13,13,13,-13],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,2],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\n\nx0 = Numbas.jme.unwrapValue(scope.variables.xa1);\ny0 = Numbas.jme.unwrapValue(scope.variables.ya1);\nx1 = Numbas.jme.unwrapValue(scope.variables.xa2);\ny1 = Numbas.jme.unwrapValue(scope.variables.ya2);\n\nboard.create('point',[x0,y0],{fixed:true,withLabel:false});\nboard.create('point',[x1,y1],{fixed:true,withLabel:false});\nboard.create('point',[(x0+x1)/2,(y0+y1)/2],{fixed:true,withLabel:false});\n\n\nboard.create('text',[(x0+x1)/2+0.5,(y0+y1)/2,'The midpoint']);\n\n\nreturn div;", "parameters": [], "language": "javascript", "type": "html"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"js": "", "css": ""}, "advice": "

{line_and_2points()}

\n

\n

The midpoint of two points is simply the point whose $x$ coordinate is the average of the other $x$ coordinates, and whose $y$ coordinate is the average of the other $y$ coordinates. That is, the midpoint of $(\\var{xa1},\\var{ya1})$ and $(\\var{xa2},\\var{ya2})$ is the point $\\left(\\simplify[basic]{({xa1}+{xa2})/2},\\simplify[basic]{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{({xa1}+{xa2})/2},\\simplify{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{{(xa1+xa2)/2}},\\simplify{{(ya1+ya2)/2}}\\right)$.

\n

\n

", "ungrouped_variables": ["l", "xa1", "xa2", "ya1", "ya2", "xa", "ya"], "statement": "

Fill in the blanks.

", "parts": [{"prompt": "

The midpoint of $(\\var{xa1},\\var{ya1})$ and $(\\var{xa2},\\var{ya2})$ is $\\large($[[0]], [[1]]$\\large)$.

", "showFeedbackIcon": true, "marks": 0, "variableReplacements": [], "type": "gapfill", "showCorrectAnswer": true, "gaps": [{"correctAnswerStyle": "plain", "marks": 1, "correctAnswerFraction": true, "mustBeReduced": false, "allowFractions": true, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "minValue": "xa", "maxValue": "xa", "scripts": {}, "showFeedbackIcon": true, "type": "numberentry", "variableReplacements": [], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst"}, {"correctAnswerStyle": "plain", "marks": 1, "correctAnswerFraction": true, "mustBeReduced": false, "allowFractions": true, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "minValue": "ya", "maxValue": "ya", "scripts": {}, "showFeedbackIcon": true, "type": "numberentry", "variableReplacements": [], "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst"}], "scripts": {}, "variableReplacementStrategy": "originalfirst"}], "variable_groups": [], "tags": [], "type": "question"}, {"name": "Addition and subtraction of numbers in standard form", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}], "variable_groups": [], "functions": {}, "rulesets": {}, "ungrouped_variables": ["B"], "metadata": {"description": "

Add two numbers in standard form, then subtract two numbers in standard form.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "advice": "

The easiest way to do this is to convert these numbers in standard form into decimals, do the calculation with decimal forms, then change them back into standard form.

\n

a)

\n

\\[\\begin{align} \\var{B[0]} \\times 10^3 + \\var{B[1]} \\times 10^4 &= \\var{B[0]*10^3} + \\var{B[1]*10^4} \\\\&= \\var{B[0]*10^3 + B[1]*10^4} \\\\&= \\var{(B[0]*10^3 + B[1]*10^4)/10^4} \\times 10^4\\end{align}\\]

\n

 

\n

b)

\n

\\[\\begin{align} \\var{B[2]} \\times 10^3 - \\var{B[2] - 1.70} \\times 10^2 &= \\var{B[2]*10^3} - \\var{(B[2] - 1.70)*10^2} \\\\&= \\var{(B[2]*10^3) - ((B[2] - 1.70)*10^2)} \\\\&= \\var{(B[2]*10^3 - (B[2] - 1.70)*10^2)/10^3} \\times 10^3\\end{align}\\]

", "statement": "

Calculate the following and write the result in standard index form (for example, for $2.01\\times 10^5$ we would write 2.01*10^5 in the gap).

", "preamble": {"css": "", "js": ""}, "variables": {"B": {"templateType": "anything", "description": "", "name": "B", "group": "Ungrouped variables", "definition": "repeat(random(3..9 #0.01), 3)"}}, "parts": [{"variableReplacementStrategy": "originalfirst", "prompt": "

$\\var{B[0]} \\times 10^3 + \\var{B[1]} \\times 10^4 =$  [[0]]

\n

\n

", "gaps": [{"variableReplacementStrategy": "originalfirst", "answer": "{(B[0]*10^3 + B[1]*10^4)/10^4}*10^4", "answersimplification": "!collectnumbers", "vsetrangepoints": 5, "notallowed": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["10^-4", "10^(-4)", "+", "-"]}, "checkingtype": "absdiff", "type": "jme", "showpreview": true, "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": [], "showFeedbackIcon": true, "musthave": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["*10^4"]}, "marks": 1, "showCorrectAnswer": true, "scripts": {}}], "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "marks": 0, "showCorrectAnswer": true}, {"variableReplacementStrategy": "originalfirst", "prompt": "

$\\var{B[2]} \\times 10^3 - \\var{B[2] - 1.70} \\times 10^2 =$  [[0]]

\n

\n

\n

", "gaps": [{"variableReplacementStrategy": "originalfirst", "answer": "{(B[2]*10^3 - (B[2] - 1.70)*10^2)/10^3}*10^3", "answersimplification": "!collectnumbers", "vsetrangepoints": 5, "notallowed": {"message": "

+

\n

", "showStrings": false, "partialCredit": 0, "strings": ["*10^-3", "*10^(-3)", "+", "-"]}, "checkingtype": "absdiff", "type": "jme", "showpreview": true, "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": [], "showFeedbackIcon": true, "musthave": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["*10^3"]}, "marks": 1, "showCorrectAnswer": true, "scripts": {}}], "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "marks": 0, "showCorrectAnswer": true}], "tags": ["addition", "Addition", "conversion", "converting", "standard form", "standard index form", "subtraction", "taxonomy"], "variablesTest": {"maxRuns": 100, "condition": ""}}, {"name": "Exact values for sin, cos, tan (0 to 330, degrees)", "extensions": [], "custom_part_types": [], "resources": [["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values.svg"], ["question-resources/unit_circle_working.svg", "/srv/numbas/media/question-resources/unit_circle_working.svg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["trig", "trigonometry", "Trigonometry"], "metadata": {"description": "

multiple choice testing sin, cos, tan of  random(0,90,120,135,150,180,210,225,240,270,300,315,330) degrees

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Often we prefer to work with exact values rather than approximations from a calculator. In this question we require you input your answer without decimals and without entering the words sin, cos or tan. For example to input the exact value of $\\sin(60^\\circ)$, which is $\\dfrac{\\sqrt{3}}{2}$, you would input sqrt(3)/2

", "advice": "

By drawing the following triangles we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ (and their reciprocals $\\csc$, $\\sec$, $\\cot$) for the angles $30^\\circ$, $45^\\circ$ and $60^\\circ$.

\n


\n

Alternatively, one can memorise the following table: 

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$30^\\circ$$45^\\circ$$60^\\circ$
 
$\\sin$$\\dfrac{1}{2}$$\\dfrac{1}{\\sqrt{2}}$$\\dfrac{\\sqrt{3}}{2}$
 
$\\cos$$\\dfrac{\\sqrt{3}}{2}$$\\dfrac{1}{\\sqrt{2}}$$\\dfrac{1}{2}$
 
$\\tan$$\\dfrac{1}{\\sqrt{3}}$$1$$\\sqrt{3}$
\n

\n

That combined with the unit circle definitions:

\n\n

and some understanding of congruent triangles:

\n
\n

\n

allows us to work out $\\sin$, $\\cos$ and $\\tan$ for certain angles regardless of what quadrant the point is in. Because whatever angle we are asked about, we can always use the triangle in the first quadrant to determine the side lengths and then consider the signs of the coordinates separately.

\n

\n

For example, to determine $\\sin(210^\\circ)$, $\\cos(210^\\circ)$ and $\\tan(210^\\circ)$ we first draw the following:

\n

\n

From this diagram, we can see that $\\cos(210^\\circ)=-\\cos(30^\\circ)$, and $\\sin(210^\\circ)=-\\sin(30^\\circ)$ since the triangles are congruent and we are in the 3rd quadrant where both the $x$ and $y$ values (and hence the $\\cos$ and $\\sin$ values) are negative. 

\n

But given we know these exact values, we can conclude \\[\\cos(210^\\circ)=-\\cos(30^\\circ)=-\\dfrac{\\sqrt{3}}{2},\\] \\[\\sin(210^\\circ)=-\\sin(30^\\circ)=-\\dfrac{1}{2},\\] and finally \\[\\tan(210^\\circ)=\\dfrac{\\sin(210^\\circ)}{\\cos(210^\\circ)}=\\dfrac{-\\frac{1}{2}}{-\\frac{\\sqrt{3}}{2}}=\\dfrac{1}{\\sqrt{3}}.\\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(0,90,120,135,150,180,210,225,240,270,300,315,330)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["theta"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The exact value of $\\sin(\\var{theta}^\\circ)$ is [[0]].

\n

The exact value of $\\cos(\\var{theta}^\\circ)$ is [[1]].

\n

If $\\tan(\\var{theta}^\\circ)$ is defined, what is its exact value? If it isn't enter infinity (even though it doesn't equal that).  [[2]].

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sin({theta}*pi/180)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "cos({theta}*pi/180)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{if(theta=90 or theta=270,infinity,tan({theta}*pi/180))}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Numbas Tutorial : arithmetic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Patrick Joyce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1674/"}], "variable_groups": [], "parts": [{"variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "scripts": {}, "mustBeReducedPC": 0, "correctAnswerFraction": false, "allowFractions": false, "minValue": "8", "maxValue": "8", "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "notationStyles": ["plain", "en", "si-en"]}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

What is 3+5?

", "ungrouped_variables": [], "rulesets": {}, "metadata": {"description": "", "licence": "None specified"}, "variables": {}, "functions": {}, "preamble": {"css": "", "js": ""}, "tags": [], "advice": "", "type": "question"}]}], "showQuestionGroupNames": true, "name": "My First Exam", "percentPass": "40", "feedback": {"allowrevealanswer": true, "intro": "", "feedbackmessages": [], "showactualmark": true, "advicethreshold": 0, "showtotalmark": true, "showanswerstate": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "duration": 0, "metadata": {"licence": "All rights reserved", "description": "

This is just for testing purposes

"}, "showstudentname": true, "type": "exam", "contributors": [{"name": "Patrick Joyce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1674/"}], "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values.svg"], ["question-resources/unit_circle_working.svg", "/srv/numbas/media/question-resources/unit_circle_working.svg"]]}