// Numbas version: finer_feedback_settings {"navigation": {"onleave": {"action": "none", "message": ""}, "preventleave": true, "allowregen": true, "browse": true, "reverse": true, "showfrontpage": true, "showresultspage": "oncompletion"}, "timing": {"timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}, "allowPause": true}, "question_groups": [{"pickQuestions": 1, "pickingStrategy": "all-ordered", "name": "Group", "questions": [{"name": "Midpoint", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": [], "metadata": {"description": "

Calculate the midpoint of two points.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Fill in the blanks.

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"xa1": {"name": "xa1", "group": "Ungrouped variables", "definition": "l[0]", "description": "", "templateType": "anything", "can_override": false}, "ya": {"name": "ya", "group": "Ungrouped variables", "definition": "(ya1+ya2)/2", "description": "", "templateType": "anything", "can_override": false}, "xa": {"name": "xa", "group": "Ungrouped variables", "definition": "(xa1+xa2)/2", "description": "", "templateType": "anything", "can_override": false}, "ya2": {"name": "ya2", "group": "Ungrouped variables", "definition": "l[3]", "description": "", "templateType": "anything", "can_override": false}, "xa2": {"name": "xa2", "group": "Ungrouped variables", "definition": "l[1]", "description": "

xa

", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "shuffle(-12..12)[0..4]", "description": "

l

", "templateType": "anything", "can_override": false}, "ya1": {"name": "ya1", "group": "Ungrouped variables", "definition": "l[2]", "description": "", "templateType": "anything", "can_override": false}, "ints": {"name": "ints", "group": "Ungrouped variables", "definition": "1|xa and 1|ya", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["l", "xa1", "xa2", "ya1", "ya2", "xa", "ya", "ints"], "variable_groups": [], "functions": {"line_and_2points": {"parameters": [], "type": "html", "language": "javascript", "definition": "\nvar div = Numbas.extensions.jsxgraph.makeBoard('600px','600px',{boundingBox:[-13,13,13,-13],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,2],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\n\nx0 = Numbas.jme.unwrapValue(scope.variables.xa1);\ny0 = Numbas.jme.unwrapValue(scope.variables.ya1);\nx1 = Numbas.jme.unwrapValue(scope.variables.xa2);\ny1 = Numbas.jme.unwrapValue(scope.variables.ya2);\n\nboard.create('point',[x0,y0],{fixed:true,withLabel:false});\nboard.create('point',[x1,y1],{fixed:true,withLabel:false});\nboard.create('point',[(x0+x1)/2,(y0+y1)/2],{fixed:true,withLabel:false});\n\n\nboard.create('text',[(x0+x1)/2+0.5,(y0+y1)/2,'The midpoint']);\n\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The midpoint of $(\\var{xa1},\\var{ya1})$ and $(\\var{xa2},\\var{ya2})$ is $\\large($[[0]], [[1]]$\\large)$.

", "stepsPenalty": "2", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

{line_and_2points()}

\n

\n

The midpoint of two points is simply the point whose $x$ coordinate is the average of the other $x$ coordinates, and whose $y$ coordinate is the average of the other $y$ coordinates. That is, the midpoint of $(\\var{xa1},\\var{ya1})$ and $(\\var{xa2},\\var{ya2})$ is the point $\\left(\\simplify[basic]{({xa1}+{xa2})/2},\\simplify[basic]{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{({xa1}+{xa2})/2},\\simplify{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{{(xa1+xa2)/2}},\\simplify{{(ya1+ya2)/2}}\\right)$.$\\left(\\simplify[basic]{({xa1}+{xa2})/2},\\simplify[basic]{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{{(xa1+xa2)/2}},\\simplify{{(ya1+ya2)/2}}\\right)$.

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "xa", "maxValue": "xa", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ya", "maxValue": "ya", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Addition and subtraction of numbers in standard form", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}], "variable_groups": [], "functions": {}, "rulesets": {}, "ungrouped_variables": ["B"], "metadata": {"description": "

Add two numbers in standard form, then subtract two numbers in standard form.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "advice": "

The easiest way to do this is to convert these numbers in standard form into decimals, do the calculation with decimal forms, then change them back into standard form.

\n

a)

\n

\\[\\begin{align} \\var{B[0]} \\times 10^3 + \\var{B[1]} \\times 10^4 &= \\var{B[0]*10^3} + \\var{B[1]*10^4} \\\\&= \\var{B[0]*10^3 + B[1]*10^4} \\\\&= \\var{(B[0]*10^3 + B[1]*10^4)/10^4} \\times 10^4\\end{align}\\]

\n

 

\n

b)

\n

\\[\\begin{align} \\var{B[2]} \\times 10^3 - \\var{B[2] - 1.70} \\times 10^2 &= \\var{B[2]*10^3} - \\var{(B[2] - 1.70)*10^2} \\\\&= \\var{(B[2]*10^3) - ((B[2] - 1.70)*10^2)} \\\\&= \\var{(B[2]*10^3 - (B[2] - 1.70)*10^2)/10^3} \\times 10^3\\end{align}\\]

", "statement": "

Calculate the following and write the result in standard index form (for example, for $2.01\\times 10^5$ we would write 2.01*10^5 in the gap).

", "preamble": {"css": "", "js": ""}, "variables": {"B": {"templateType": "anything", "description": "", "name": "B", "group": "Ungrouped variables", "definition": "repeat(random(3..9 #0.01), 3)"}}, "parts": [{"variableReplacementStrategy": "originalfirst", "prompt": "

$\\var{B[0]} \\times 10^3 + \\var{B[1]} \\times 10^4 =$  [[0]]

\n

\n

", "gaps": [{"variableReplacementStrategy": "originalfirst", "answer": "{(B[0]*10^3 + B[1]*10^4)/10^4}*10^4", "answersimplification": "!collectnumbers", "vsetrangepoints": 5, "notallowed": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["10^-4", "10^(-4)", "+", "-"]}, "checkingtype": "absdiff", "type": "jme", "showpreview": true, "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": [], "showFeedbackIcon": true, "musthave": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["*10^4"]}, "marks": 1, "showCorrectAnswer": true, "scripts": {}}], "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "marks": 0, "showCorrectAnswer": true}, {"variableReplacementStrategy": "originalfirst", "prompt": "

$\\var{B[2]} \\times 10^3 - \\var{B[2] - 1.70} \\times 10^2 =$  [[0]]

\n

\n

\n

", "gaps": [{"variableReplacementStrategy": "originalfirst", "answer": "{(B[2]*10^3 - (B[2] - 1.70)*10^2)/10^3}*10^3", "answersimplification": "!collectnumbers", "vsetrangepoints": 5, "notallowed": {"message": "

+

\n

", "showStrings": false, "partialCredit": 0, "strings": ["*10^-3", "*10^(-3)", "+", "-"]}, "checkingtype": "absdiff", "type": "jme", "showpreview": true, "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": [], "showFeedbackIcon": true, "musthave": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["*10^3"]}, "marks": 1, "showCorrectAnswer": true, "scripts": {}}], "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "marks": 0, "showCorrectAnswer": true}], "tags": ["addition", "Addition", "conversion", "converting", "standard form", "standard index form", "subtraction", "taxonomy"], "variablesTest": {"maxRuns": 100, "condition": ""}}, {"name": "Exact values for sin, cos, tan (0 to 330, degrees)", "extensions": ["geogebra"], "custom_part_types": [], "resources": ["question-resources/exact_values.svg", "question-resources/ASTCwhite.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["trig", "trigonometry", "Trigonometry"], "metadata": {"description": "

exact value of sin, cos, tan of  random(0,90,120,135,150,180,210,225,240,270,300,315,330) degrees

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Often we prefer to work with exact values rather than approximations from a calculator. In this question we require you input your answer without decimals and without entering the words sin, cos or tan. For example to input the exact value of $\\sin(60^\\circ)$, which is $\\dfrac{\\sqrt{3}}{2}$, you would input sqrt(3)/2

", "advice": "

Recall the unit circle definitions:

\n\n

In particular, the angle of $\\var{theta}^\\circ$ puts the point {textquadrant}.

\n

{diagram}

\n

Since this point falls on an axis and the point is on the unit circle, it is clear that its coordinates are $(\\var{cos({theta}*pi/180)}, \\var{sin({theta}*pi/180)})$. From these, we can conclude that 

\n

$\\sin(\\var{theta}^\\circ)=\\var{sin({theta}*pi/180)}$,

\n

$\\cos(\\var{theta}^\\circ)=\\var{cos({theta}*pi/180)}$, and

\n

$\\tan(\\var{theta}^\\circ)=\\dfrac{\\sin(\\var{theta}^\\circ)}{\\cos(\\var{theta}^\\circ)}=\\dfrac{\\var{sin({theta}*pi/180)}}{\\var{cos({theta}*pi/180)}}\\var{if(theta=90 or theta=270, \" which is undefined\",\" = \" + precround(tan(theta*pi/180),0))}.$

\n
\n

The triangle {textquadrant} has the same side lengths as the related triangle in the first quadrant (they are congruent). Therefore, we can recall or use right-angled triangle trigonometry to determine the lengths of the triangle in the first quadrant and then change the signs as needed. Recall: 

\n

By drawing the following triangles, we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ for the angles $30^\\circ$, $45^\\circ$ and $60^\\circ$.

\n

Alternatively, one can memorise the following table: 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$30^\\circ$$45^\\circ$$60^\\circ$
 
$\\sin$$\\dfrac{1}{2}$$\\dfrac{1}{\\sqrt{2}}$$\\dfrac{\\sqrt{3}}{2}$
 
$\\cos$$\\dfrac{\\sqrt{3}}{2}$$\\dfrac{1}{\\sqrt{2}}$$\\dfrac{1}{2}$
 
$\\tan$$\\dfrac{1}{\\sqrt{3}}$$1$$\\sqrt{3}$
\n

From the above, the triangle in the first quadrant tells us that:

\n

$\\sin(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$$\\sin(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$

\n

$\\tan(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{phi}^\\circ)=\\;\\;1$$\\tan(\\var{phi}^\\circ)=\\sqrt{3}$

\n

Since $\\theta=\\var{theta}^\\circ$ puts us {textquadrant}, the $x$-coordinate (the cosine value) is positive,negative, and the $y$-coordinate (the sine value) is positivenegative. That is:

\n

$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$

\n

$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$

\n

$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$

\n

$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\;\\;1$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\sqrt{3}$

\n

$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$

\n

$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$

\n

$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$

\n

An alternative approach is to use the mnemonic \"All Stations TCentral\" or \"ASTC\" to recall which trig functions are positive in each quadrant (and hence which are negative):

\n

\n
\n

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(0,90,120,135,150,180,210,225,240,270,300,315,330)", "description": "", "templateType": "anything", "can_override": false}, "quadrant": {"name": "quadrant", "group": "Ungrouped variables", "definition": "switch(90The exact value of $\\sin(\\var{theta}^\\circ)$ is [[0]].

\n

The exact value of $\\cos(\\var{theta}^\\circ)$ is [[1]].

\n

If $\\tan(\\var{theta}^\\circ)$ is defined, what is its exact value? Otherwise, enter undefined  [[2]].

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sin({theta}*pi/180)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "cos({theta}*pi/180)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{if(theta=90 or theta=270,expression('undefined'),tan({theta}*pi/180))}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": [".", "sin", "cos", "tan", "cosec", "sec", "cot"], "showStrings": true, "partialCredit": 0, "message": ""}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Numbas Tutorial : arithmetic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Patrick Joyce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1674/"}], "variable_groups": [], "parts": [{"variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "scripts": {}, "mustBeReducedPC": 0, "correctAnswerFraction": false, "allowFractions": false, "minValue": "8", "maxValue": "8", "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "notationStyles": ["plain", "en", "si-en"]}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

What is 3+5?

", "ungrouped_variables": [], "rulesets": {}, "metadata": {"description": "", "licence": "None specified"}, "variables": {}, "functions": {}, "preamble": {"css": "", "js": ""}, "tags": [], "advice": "", "type": "question"}]}], "showQuestionGroupNames": true, "name": "My First Exam", "percentPass": "40", "feedback": {"allowrevealanswer": true, "intro": "", "feedbackmessages": [], "showactualmark": true, "advicethreshold": 0, "showtotalmark": true, "showanswerstate": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "duration": 0, "metadata": {"licence": "All rights reserved", "description": "

This is just for testing purposes

"}, "showstudentname": true, "type": "exam", "contributors": [{"name": "Patrick Joyce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1674/"}], "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [], "resources": [["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values_HBd4LtO.svg"], ["question-resources/ASTCwhite.png", "/srv/numbas/media/question-resources/ASTCwhite_0FVod00.png"]]}