// Numbas version: finer_feedback_settings {"navigation": {"onleave": {"action": "none", "message": ""}, "preventleave": true, "allowregen": true, "browse": true, "reverse": true, "showfrontpage": true, "showresultspage": "oncompletion"}, "timing": {"timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}, "allowPause": true}, "question_groups": [{"pickQuestions": 1, "pickingStrategy": "all-ordered", "name": "Group", "questions": [{"name": "Midpoint", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": [], "metadata": {"description": "
Calculate the midpoint of two points.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Fill in the blanks.
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"xa1": {"name": "xa1", "group": "Ungrouped variables", "definition": "l[0]", "description": "", "templateType": "anything", "can_override": false}, "ya": {"name": "ya", "group": "Ungrouped variables", "definition": "(ya1+ya2)/2", "description": "", "templateType": "anything", "can_override": false}, "xa": {"name": "xa", "group": "Ungrouped variables", "definition": "(xa1+xa2)/2", "description": "", "templateType": "anything", "can_override": false}, "ya2": {"name": "ya2", "group": "Ungrouped variables", "definition": "l[3]", "description": "", "templateType": "anything", "can_override": false}, "xa2": {"name": "xa2", "group": "Ungrouped variables", "definition": "l[1]", "description": "xa
", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "shuffle(-12..12)[0..4]", "description": "l
", "templateType": "anything", "can_override": false}, "ya1": {"name": "ya1", "group": "Ungrouped variables", "definition": "l[2]", "description": "", "templateType": "anything", "can_override": false}, "ints": {"name": "ints", "group": "Ungrouped variables", "definition": "1|xa and 1|ya", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["l", "xa1", "xa2", "ya1", "ya2", "xa", "ya", "ints"], "variable_groups": [], "functions": {"line_and_2points": {"parameters": [], "type": "html", "language": "javascript", "definition": "\nvar div = Numbas.extensions.jsxgraph.makeBoard('600px','600px',{boundingBox:[-13,13,13,-13],grid:true,axis:false});\nvar board = div.board;\n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,2],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,2],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\n\nx0 = Numbas.jme.unwrapValue(scope.variables.xa1);\ny0 = Numbas.jme.unwrapValue(scope.variables.ya1);\nx1 = Numbas.jme.unwrapValue(scope.variables.xa2);\ny1 = Numbas.jme.unwrapValue(scope.variables.ya2);\n\nboard.create('point',[x0,y0],{fixed:true,withLabel:false});\nboard.create('point',[x1,y1],{fixed:true,withLabel:false});\nboard.create('point',[(x0+x1)/2,(y0+y1)/2],{fixed:true,withLabel:false});\n\n\nboard.create('text',[(x0+x1)/2+0.5,(y0+y1)/2,'The midpoint']);\n\n\nreturn div;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The midpoint of $(\\var{xa1},\\var{ya1})$ and $(\\var{xa2},\\var{ya2})$ is $\\large($[[0]], [[1]]$\\large)$.
", "stepsPenalty": "2", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{line_and_2points()}
\n\nThe midpoint of two points is simply the point whose $x$ coordinate is the average of the other $x$ coordinates, and whose $y$ coordinate is the average of the other $y$ coordinates. That is, the midpoint of $(\\var{xa1},\\var{ya1})$ and $(\\var{xa2},\\var{ya2})$ is the point $\\left(\\simplify[basic]{({xa1}+{xa2})/2},\\simplify[basic]{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{({xa1}+{xa2})/2},\\simplify{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{{(xa1+xa2)/2}},\\simplify{{(ya1+ya2)/2}}\\right)$.$\\left(\\simplify[basic]{({xa1}+{xa2})/2},\\simplify[basic]{({ya1}+{ya2})/2}\\right)=\\left(\\simplify{{(xa1+xa2)/2}},\\simplify{{(ya1+ya2)/2}}\\right)$.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "xa", "maxValue": "xa", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ya", "maxValue": "ya", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Addition and subtraction of numbers in standard form", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}], "variable_groups": [], "functions": {}, "rulesets": {}, "ungrouped_variables": ["B"], "metadata": {"description": "Add two numbers in standard form, then subtract two numbers in standard form.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "advice": "The easiest way to do this is to convert these numbers in standard form into decimals, do the calculation with decimal forms, then change them back into standard form.
\n\\[\\begin{align} \\var{B[0]} \\times 10^3 + \\var{B[1]} \\times 10^4 &= \\var{B[0]*10^3} + \\var{B[1]*10^4} \\\\&= \\var{B[0]*10^3 + B[1]*10^4} \\\\&= \\var{(B[0]*10^3 + B[1]*10^4)/10^4} \\times 10^4\\end{align}\\]
\n\n
\\[\\begin{align} \\var{B[2]} \\times 10^3 - \\var{B[2] - 1.70} \\times 10^2 &= \\var{B[2]*10^3} - \\var{(B[2] - 1.70)*10^2} \\\\&= \\var{(B[2]*10^3) - ((B[2] - 1.70)*10^2)} \\\\&= \\var{(B[2]*10^3 - (B[2] - 1.70)*10^2)/10^3} \\times 10^3\\end{align}\\]
", "statement": "Calculate the following and write the result in standard index form (for example, for $2.01\\times 10^5$ we would write 2.01*10^5 in the gap).
$\\var{B[0]} \\times 10^3 + \\var{B[1]} \\times 10^4 =$ [[0]]
\n\n", "gaps": [{"variableReplacementStrategy": "originalfirst", "answer": "{(B[0]*10^3 + B[1]*10^4)/10^4}*10^4", "answersimplification": "!collectnumbers", "vsetrangepoints": 5, "notallowed": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["10^-4", "10^(-4)", "+", "-"]}, "checkingtype": "absdiff", "type": "jme", "showpreview": true, "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": [], "showFeedbackIcon": true, "musthave": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["*10^4"]}, "marks": 1, "showCorrectAnswer": true, "scripts": {}}], "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "marks": 0, "showCorrectAnswer": true}, {"variableReplacementStrategy": "originalfirst", "prompt": "$\\var{B[2]} \\times 10^3 - \\var{B[2] - 1.70} \\times 10^2 =$ [[0]]
\n\n\n", "gaps": [{"variableReplacementStrategy": "originalfirst", "answer": "{(B[2]*10^3 - (B[2] - 1.70)*10^2)/10^3}*10^3", "answersimplification": "!collectnumbers", "vsetrangepoints": 5, "notallowed": {"message": "+
\n", "showStrings": false, "partialCredit": 0, "strings": ["*10^-3", "*10^(-3)", "+", "-"]}, "checkingtype": "absdiff", "type": "jme", "showpreview": true, "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": [], "showFeedbackIcon": true, "musthave": {"message": "", "showStrings": false, "partialCredit": 0, "strings": ["*10^3"]}, "marks": 1, "showCorrectAnswer": true, "scripts": {}}], "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "marks": 0, "showCorrectAnswer": true}], "tags": ["addition", "Addition", "conversion", "converting", "standard form", "standard index form", "subtraction", "taxonomy"], "variablesTest": {"maxRuns": 100, "condition": ""}}, {"name": "Exact values for sin, cos, tan (0 to 330, degrees)", "extensions": ["geogebra"], "custom_part_types": [], "resources": ["question-resources/exact_values.svg", "question-resources/ASTCwhite.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["trig", "trigonometry", "Trigonometry"], "metadata": {"description": "exact value of sin, cos, tan of random(0,90,120,135,150,180,210,225,240,270,300,315,330) degrees
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Often we prefer to work with exact values rather than approximations from a calculator. In this question we require you input your answer without decimals and without entering the words sin, cos or tan. For example to input the exact value of $\\sin(60^\\circ)$, which is $\\dfrac{\\sqrt{3}}{2}$, you would input sqrt(3)/2
", "advice": "Recall the unit circle definitions:
\nIn particular, the angle of $\\var{theta}^\\circ$ puts the point {textquadrant}.
\n{diagram}
Since this point falls on an axis and the point is on the unit circle, it is clear that its coordinates are $(\\var{cos({theta}*pi/180)}, \\var{sin({theta}*pi/180)})$. From these, we can conclude that
\n$\\sin(\\var{theta}^\\circ)=\\var{sin({theta}*pi/180)}$,
\n$\\cos(\\var{theta}^\\circ)=\\var{cos({theta}*pi/180)}$, and
\n$\\tan(\\var{theta}^\\circ)=\\dfrac{\\sin(\\var{theta}^\\circ)}{\\cos(\\var{theta}^\\circ)}=\\dfrac{\\var{sin({theta}*pi/180)}}{\\var{cos({theta}*pi/180)}}\\var{if(theta=90 or theta=270, \" which is undefined\",\" = \" + precround(tan(theta*pi/180),0))}.$
\nThe triangle {textquadrant} has the same side lengths as the related triangle in the first quadrant (they are congruent). Therefore, we can recall or use right-angled triangle trigonometry to determine the lengths of the triangle in the first quadrant and then change the signs as needed. Recall:
\nBy drawing the following triangles, we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ for the angles $30^\\circ$, $45^\\circ$ and $60^\\circ$.
Alternatively, one can memorise the following table:
\n| \n | $30^\\circ$ | \n$45^\\circ$ | \n$60^\\circ$ | \n
| \n | \n | \n | \n |
| $\\sin$ | \n$\\dfrac{1}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n
| \n | \n | \n | \n |
| $\\cos$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{1}{2}$ | \n
| \n | \n | \n | \n |
| $\\tan$ | \n$\\dfrac{1}{\\sqrt{3}}$ | \n$1$ | \n$\\sqrt{3}$ | \n
From the above, the triangle in the first quadrant tells us that:
\n$\\sin(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$$\\sin(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$
\n$\\tan(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{phi}^\\circ)=\\;\\;1$$\\tan(\\var{phi}^\\circ)=\\sqrt{3}$
\nSince $\\theta=\\var{theta}^\\circ$ puts us {textquadrant}, the $x$-coordinate (the cosine value) is positive,negative, and the $y$-coordinate (the sine value) is positivenegative. That is:
\n$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$
\n$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\;\\;1$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\sqrt{3}$
\n$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$
\nAn alternative approach is to use the mnemonic \"All Stations To Central\" or \"ASTC\" to recall which trig functions are positive in each quadrant (and hence which are negative):
\n
The exact value of $\\cos(\\var{theta}^\\circ)$ is [[1]].
\nIf $\\tan(\\var{theta}^\\circ)$ is defined, what is its exact value? Otherwise, enter undefined [[2]].
What is 3+5?
", "ungrouped_variables": [], "rulesets": {}, "metadata": {"description": "", "licence": "None specified"}, "variables": {}, "functions": {}, "preamble": {"css": "", "js": ""}, "tags": [], "advice": "", "type": "question"}]}], "showQuestionGroupNames": true, "name": "My First Exam", "percentPass": "40", "feedback": {"allowrevealanswer": true, "intro": "", "feedbackmessages": [], "showactualmark": true, "advicethreshold": 0, "showtotalmark": true, "showanswerstate": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "duration": 0, "metadata": {"licence": "All rights reserved", "description": "This is just for testing purposes
"}, "showstudentname": true, "type": "exam", "contributors": [{"name": "Patrick Joyce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1674/"}], "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [], "resources": [["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values_HBd4LtO.svg"], ["question-resources/ASTCwhite.png", "/srv/numbas/media/question-resources/ASTCwhite_0FVod00.png"]]}