// Numbas version: finer_feedback_settings {"question_groups": [{"pickQuestions": 1, "name": "Group", "pickingStrategy": "all-ordered", "questions": [{"name": "Differentiation: coordinates of stationary points from a graph", "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}], "functions": {"plotgraph": {"language": "javascript", "parameters": [["a", "number"], ["b", "number"], ["c", "number"], ["d", "number"]], "definition": "// This functions plots a cubic with coefficients a,b,c,d\n// It creates the board, sets it up, then returns an\n// HTML div tag containing the board.\n\n\n// Max and min x and y values for the axis.\nvar x_min = -6;\nvar x_max = 6;\nvar y_min = -10;\nvar y_max = 10;\n\n\n// First, make the JSXGraph board.\nvar div = Numbas.extensions.jsxgraph.makeBoard(\n '500px',\n '600px',\n {\n boundingBox: [x_min,y_max,x_max,y_min],\n axis: false,\n showNavigation: true,\n grid: true\n }\n);\n\n\n\n\n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar board = div.board; \n\n// create the x-axis.\nvar xaxis = board.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = board.create('ticks',[xaxis,1],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = board.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\nvar yticks = board.create('ticks',[yaxis,1],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n\n\n\n\n// Plot the function.\n board.create('functiongraph',\n [function(x){ return a*x*x*x+b*x*x+c*x + d;},x_min,x_max]);\n\n\n\n\nreturn div;", "type": "html"}}, "variablesTest": {"condition": "max(abs(ymin),abs(ymax))<10", "maxRuns": 100}, "metadata": {"description": "
A cubic with a maximum and minimum point is given. Question is to determine coordinates of the minimum and maximum point. Non-calculator. Advice is given.
", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "variables": {"b": {"group": "Ungrouped variables", "description": "", "definition": "-(r1*a + 3*r2)/2", "name": "b", "templateType": "anything"}, "xmax": {"group": "Ungrouped variables", "description": "", "definition": "if(a=1, min(r1/3, r2/a), max(r1/3, r2/a))", "name": "xmax", "templateType": "anything"}, "d": {"group": "Ungrouped variables", "description": "", "definition": "random(-2..2)", "name": "d", "templateType": "anything"}, "r1": {"group": "Ungrouped variables", "description": "", "definition": "random(-1..1)*3", "name": "r1", "templateType": "anything"}, "a": {"group": "Ungrouped variables", "description": "", "definition": "random(-1..1 except 0)", "name": "a", "templateType": "anything"}, "ymax": {"group": "Ungrouped variables", "description": "", "definition": "a*(xmax)^3+b*(xmax)^2+c*(xmax) + d", "name": "ymax", "templateType": "anything"}, "c": {"group": "Ungrouped variables", "description": "", "definition": "r1*r2", "name": "c", "templateType": "anything"}, "ymin": {"group": "Ungrouped variables", "description": "", "definition": "a*(xmin)^3+b*(xmin)^2+c*(xmin) + d", "name": "ymin", "templateType": "anything"}, "xmin": {"group": "Ungrouped variables", "description": "", "definition": "if(a=1, max(r1/3, r2/a), min(r1/3, r2/a))", "name": "xmin", "templateType": "anything"}, "r2": {"group": "Ungrouped variables", "description": "", "definition": "random(-1..1 except 1/2*(a*r1/3 + mod(a*r1,2)))*2-mod(a*r1,2)", "name": "r2", "templateType": "anything"}}, "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["a", "r1", "r2", "ymin", "ymax", "xmax", "xmin", "b", "c", "d"], "parts": [{"variableReplacements": [], "type": "gapfill", "gaps": [{"notationStyles": ["plain"], "showCorrectAnswer": true, "maxValue": "xmax", "correctAnswerFraction": false, "unitTests": [], "variableReplacements": [], "mustBeReduced": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "marks": "1", "extendBaseMarkingAlgorithm": true, "minValue": "xmax"}, {"notationStyles": ["plain"], "showCorrectAnswer": true, "maxValue": "ymax", "correctAnswerFraction": false, "unitTests": [], "variableReplacements": [], "mustBeReduced": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "marks": "1", "extendBaseMarkingAlgorithm": true, "minValue": "ymax"}, {"notationStyles": ["plain"], "showCorrectAnswer": true, "maxValue": "xmin", "correctAnswerFraction": false, "unitTests": [], "variableReplacements": [], "mustBeReduced": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "marks": "1", "extendBaseMarkingAlgorithm": true, "minValue": "xmin"}, {"notationStyles": ["plain"], "showCorrectAnswer": true, "maxValue": "ymin", "correctAnswerFraction": false, "unitTests": [], "variableReplacements": [], "mustBeReduced": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "marks": "1", "extendBaseMarkingAlgorithm": true, "minValue": "ymin"}], "marks": 0, "prompt": "{plotgraph(a,b,c,d)}
\nAbove is the graph of some function $f$.
\nWhat are the coordinates of its maximum point? ([[0]],[[1]])
\nWhat are the coordinates of its minimum point? ([[2]],[[3]])
", "showFeedbackIcon": true, "scripts": {}, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacementStrategy": "originalfirst"}], "tags": [], "advice": "(i) A maximum point is a point where regardless if you move right or left, the height will decrease. A visual analogy would be a hill: if you're at the top of a hill, no matter which direction you go your height will decrease. So you're looking for a part of the graph which is 'like a hill', and in this graph the point is at $(\\var{xmax}, \\var{ymax})$.
\n(ii) A minimum point is the opposite of a maximum point (or an upside-down version of a maximum point, if you like). The analogy in this case would be a valley: no matter which direction you go your height will increase. In this graph, the minimum point is at $(\\var{xmin}, \\var{ymin})$.
", "statement": "Finding stationary points on a graph.
", "type": "question"}, {"name": "Differentiation: stationary points of a cubic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}], "advice": "A stationary point is where the gradient is zero, i.e. when $f'$ is equal to zero. So first we determine $f'$ by differentiating.
\n$f'(x) = \\simplify{3{a}x^2 + 2{b}x + {c}}$.
\n\n\nWhen we are at a stationary point, $f'(x)$ has to equal 0, so we get the quadratic equation:
\n$0 = f'(x) = \\simplify{3{a}x^2 + 2{b}x + {c}}$.
\n\n\nTo solve this, we can factorise the quadratic to get:
\n$0 = (\\simplify{3x-{r1}}) (\\simplify{{a}x-{r2}})$.
\n\nSo the $x$-coordinates are $\\var{x1}$ and $\\var{x2}$.
\nTo find the $y$-coordinates, we plug these $x$-coordinates into the original function $f$ to get $\\var{y1}$ and $\\var{y2}$.
\n\nAfter rounding appropriately, we get the coordinates.
\n\n\n(Note, this answer may not be the most efficient. In some versions of the randomised question, you can divide the whole equation by a number before you factorise the quadratic. For example, if the quadratic equation is $0 = 2x^2 + 6x + 4$, so you would divide everything by 2 to get: $0 = x^2 + 3x + 2$, so then $0=(x+2)(x+1)$.)
", "preamble": {"js": "", "css": ""}, "rulesets": {}, "variables": {"hcf": {"group": "Ungrouped variables", "definition": "gcd(3a,gcd(2b,c))", "name": "hcf", "description": "", "templateType": "anything"}, "x1": {"group": "Ungrouped variables", "definition": "min(r1/3, r2/a)", "name": "x1", "description": "", "templateType": "anything"}, "fprimeprime1": {"group": "Ungrouped variables", "definition": "6*a*x1 + 2b", "name": "fprimeprime1", "description": "", "templateType": "anything"}, "y1": {"group": "Ungrouped variables", "definition": "a*(x1)^3+b*(x1)^2+c*(x1) + d", "name": "y1", "description": "", "templateType": "anything"}, "a": {"group": "Ungrouped variables", "definition": "random(-2..2 except 0)", "name": "a", "description": "", "templateType": "anything"}, "r2": {"group": "Ungrouped variables", "definition": "random(-1..2)*2-mod(a*r1,2)", "name": "r2", "description": "", "templateType": "anything"}, "r1": {"group": "Ungrouped variables", "definition": "random(-4..4 except 0)", "name": "r1", "description": "", "templateType": "anything"}, "type1": {"group": "Ungrouped variables", "definition": "if(fprimeprime1 <0,'Maximum','Minimum')", "name": "type1", "description": "", "templateType": "anything"}, "b": {"group": "Ungrouped variables", "definition": "-(r1*a + 3*r2)/2", "name": "b", "description": "", "templateType": "anything"}, "type2": {"group": "Ungrouped variables", "definition": "if(fprimeprime2 <0,'Maximum','Minimum')", "name": "type2", "description": "", "templateType": "anything"}, "x2": {"group": "Ungrouped variables", "definition": "max(r1/3, r2/a)", "name": "x2", "description": "", "templateType": "anything"}, "y2": {"group": "Ungrouped variables", "definition": "a*x2^3+b*x2^2+c*x2 + d", "name": "y2", "description": "", "templateType": "anything"}, "d": {"group": "Ungrouped variables", "definition": "random(-2..2)", "name": "d", "description": "", "templateType": "anything"}, "c": {"group": "Ungrouped variables", "definition": "r1*r2", "name": "c", "description": "", "templateType": "anything"}, "fprimeprime2": {"group": "Ungrouped variables", "definition": "6*a*x2 + 2b", "name": "fprimeprime2", "description": "", "templateType": "anything"}}, "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "x1 <> x2"}, "functions": {}, "tags": [], "ungrouped_variables": ["a", "r1", "r2", "b", "c", "d", "x1", "x2", "y1", "y2", "fprimeprime1", "fprimeprime2", "type1", "type2", "hcf"], "parts": [{"gaps": [{"precisionType": "sigfig", "allowFractions": false, "showPrecisionHint": false, "correctAnswerStyle": "plain", "precision": "3", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "marks": "2", "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "maxValue": "{x1}", "unitTests": [], "variableReplacements": [], "showCorrectAnswer": true, "mustBeReducedPC": 0, "minValue": "{x1}", "customMarkingAlgorithm": "", "correctAnswerFraction": false, "precisionPartialCredit": 0, "strictPrecision": false, "type": "numberentry", "extendBaseMarkingAlgorithm": true}, {"precisionType": "sigfig", "allowFractions": false, "showPrecisionHint": false, "correctAnswerStyle": "plain", "precision": "3", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "marks": "1", "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "maxValue": "y1", "unitTests": [], "variableReplacements": [], "showCorrectAnswer": true, "mustBeReducedPC": 0, "minValue": "y1", "customMarkingAlgorithm": "", "correctAnswerFraction": false, "precisionPartialCredit": "0", "strictPrecision": false, "type": "numberentry", "extendBaseMarkingAlgorithm": true}, {"displayAnswer": "{type1}", "variableReplacements": [], "showCorrectAnswer": true, "unitTests": [], "marks": 1, "scripts": {}, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "matchMode": "regex", "type": "patternmatch", "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "answer": "{type1}"}, {"precisionType": "sigfig", "allowFractions": false, "showPrecisionHint": false, "correctAnswerStyle": "plain", "precision": "3", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "marks": "2", "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "maxValue": "x2", "unitTests": [], "variableReplacements": [], "showCorrectAnswer": true, "mustBeReducedPC": 0, "minValue": "x2", "customMarkingAlgorithm": "", "correctAnswerFraction": false, "precisionPartialCredit": 0, "strictPrecision": false, "type": "numberentry", "extendBaseMarkingAlgorithm": true}, {"precisionType": "sigfig", "allowFractions": false, "showPrecisionHint": false, "correctAnswerStyle": "plain", "precision": "3", "scripts": {}, "precisionMessage": "You have not given your answer to the correct precision.", "marks": "1", "notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "maxValue": "y2", "unitTests": [], "variableReplacements": [], "showCorrectAnswer": true, "mustBeReducedPC": 0, "minValue": "y2", "customMarkingAlgorithm": "", "correctAnswerFraction": false, "precisionPartialCredit": "0", "strictPrecision": false, "type": "numberentry", "extendBaseMarkingAlgorithm": true}, {"displayAnswer": "{type2}", "variableReplacements": [], "showCorrectAnswer": true, "unitTests": [], "marks": 1, "scripts": {}, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "matchMode": "regex", "type": "patternmatch", "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "answer": "{type2}"}], "variableReplacements": [], "showCorrectAnswer": true, "unitTests": [], "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "type": "gapfill", "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "prompt": "Let $f(x)=\\simplify[all,!collectNumbers,!noleadingminus]{{a}x^3+{b}x^2+{c}x+{d}}$. Find the coordinates of the stationary points and determine whether they are a minimum or a maximum point.
\nGive all answers to three significant figures.
\n\nStationary Point 1:
\nThe coordinates are ([[0]],[[1]]) and it is a [[2]] point.
\n\nStationary Point 2:
\nThe coordinates are ([[3]],[[4]]) and it is a [[5]] point.
\n\n(So the computer marks your answer correctly, make sure that Stationary Point 1 has a smaller $x$ coordinate than Stationary Point 2).
"}], "metadata": {"licence": "None specified", "description": "A cubic is given which has two stationary points. Students are asked to determine the coordinates and the type of each stationary point. Calculator question. Detailed advice is included.
"}, "statement": "Determine the coordinates and types of stationary points of a function.
", "type": "question"}, {"name": "Differentiation: chain rule, inside is at+b, advice included", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}], "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"description": "Differentiating eight functions using the chain rule, where the 'inside' is of the form at+b. Non-calculator. Advice included
", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "preamble": {"css": "", "js": ""}, "variables": {"c4": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[-1,0,1])", "name": "c4", "templateType": "anything"}, "a8": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a8", "templateType": "anything"}, "c6": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[-1,0,1])", "name": "c6", "templateType": "anything"}, "a5": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a5", "templateType": "anything"}, "c2": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[-1,0,1])", "name": "c2", "templateType": "anything"}, "a2": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a2", "templateType": "anything"}, "a3": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a3", "templateType": "anything"}, "b8": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b8", "templateType": "anything"}, "b5": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b5", "templateType": "anything"}, "a6": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a6", "templateType": "anything"}, "b6": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b6", "templateType": "anything"}, "a7": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a7", "templateType": "anything"}, "b4": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b4", "templateType": "anything"}, "c8": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[-1,0,1])", "name": "c8", "templateType": "anything"}, "b3": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b3", "templateType": "anything"}, "b7": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b7", "templateType": "anything"}, "b2": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b2", "templateType": "anything"}, "a1": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a1", "templateType": "anything"}, "a4": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9 except[0])", "name": "a4", "templateType": "anything"}, "b1": {"group": "Ungrouped variables", "description": "", "definition": "random(-9..9)", "name": "b1", "templateType": "anything"}}, "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["a1", "b1", "a2", "b2", "a3", "a4", "a5", "a6", "a7", "a8", "c2", "c4", "c6", "c8", "b3", "b4", "b5", "b6", "b7", "b8"], "parts": [{"variableReplacements": [], "type": "gapfill", "gaps": [{"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "{a1}*cos({a1}*t+{b1})", "unitTests": []}, {"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "{c2}*{a2}*cos({a2}*t+{b2})", "unitTests": []}, {"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "-{a3}*sin({a3}*t+{b3})", "unitTests": []}, {"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "-{c4}*{a4}*sin({a4}*t+{b4})", "unitTests": []}, {"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "{a5}*e^({a5}*t+{b5})", "unitTests": []}, {"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "{c6}*{a6}*e^({a6}*t+{b6})", "unitTests": []}, {"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "{a7}/({a7}*t+{b7})", "unitTests": []}, {"showPreview": true, "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "showFeedbackIcon": true, "scripts": {}, "type": "jme", "showCorrectAnswer": true, "failureRate": 1, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "expectedVariableNames": [], "answerSimplification": "all", "marks": 1, "variableReplacementStrategy": "originalfirst", "answer": "{a8}*{c8}/({a8}*t+{b8})", "unitTests": []}], "marks": 0, "prompt": "Differentiate the following with respect to $t$.
\n(i) $\\sin(\\simplify{{a1}*t+{b1}})$ [[0]]
\n(ii) $\\var{c2} \\sin(\\simplify{{a2}*t+{b2}})$ [[1]]
\n(iii) $\\cos(\\simplify{{a3}*t+{b3}})$ [[2]]
\n(iv) $\\var{c4}\\cos(\\simplify{{a4}*t+{b4}})$ [[3]]
\n(v) $ e^{\\simplify{{a5}*t+{b5}}}$ [[4]]
\n(vi) $\\var{c6} e^{\\simplify{{a6}*t+{b6}}}$ [[5]]
\n(vii) $\\ln(\\simplify{{a7}*t+{b7}})$ [[6]]
\n(viii) $\\var{c8} \\ln(\\simplify{{a8}*t+{b8}})$ [[7]]
", "showFeedbackIcon": true, "scripts": {}, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacementStrategy": "originalfirst"}], "tags": [], "advice": "(Note, these are not 'model' answers, but explanations of how I obtain an answer.)
\n\n\n\n(i) The `inside' is $\\simplify{{a1}*t+{b1}}$ and differentiating this we get $\\simplify{{a1}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{cos({a1}*t+{b1})}$.
\nMultiplying these two together gives the answer: $\\simplify{{a1}*cos({a1}*t+{b1})}$.
\n\n\n\n(ii) The `inside' is $\\simplify{{a2}*t+{b2}}$ and differentiating this we get $\\simplify{{a2}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{{c2}*cos({a2}*t+{b2})}$.
\nMultiplying these two together gives the answer: $\\simplify{{c2}*{a2}*cos({a2}*t+{b2})}$.
\n\n\n\n(iii) The `inside' is $\\simplify{{a3}*t+{b3}}$ and differentiating this we get $\\simplify{{a3}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{-sin({a3}*t+{b3})}$.
\nMultiplying these two together gives the answer: $\\simplify{-{a3}*sin({a3}*t+{b3})}$.
\n\n\n\n(iv) The `inside' is $\\simplify{{a4}*t+{b4}}$ and differentiating this we get $\\simplify{{a4}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{-{c4}sin({a4}*t+{b4})}$.
\nMultiplying these two together gives the answer: $\\simplify{-{c4}{a4}*sin({a4}*t+{b4})}$.
\n\n\n(v) The `inside' is $\\simplify{{a5}*t+{b5}}$ and differentiating this we get $\\simplify{{a5}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{e^({a5}*t+{b5})}$.
\nMultiplying these two together gives the answer: $\\simplify{{a5}*e^({a5}*t+{b5})}$.
\n\n\n\n(vi) The `inside' is $\\simplify{{a6}*t+{b6}}$ and differentiating this we get $\\simplify{{a6}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{{c6}*e^({a6}*t+{b6})}$.
\nMultiplying these two together gives the answer: $\\simplify{{c6}*{a6}*e^({a6}*t+{b6})}$.
\n\n\n\n(vii) The `inside' is $\\simplify{{a7}*t+{b7}}$ and differentiating this we get $\\simplify{{a7}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{1/({a7}*t+{b7})}$.
\nMultiplying these two together gives the answer: $\\simplify{{a7}/({a7}*t+{b7})}$.
\n\n\n(vii) The `inside' is $\\simplify{{a8}*t+{b8}}$ and differentiating this we get $\\simplify{{a8}}$.
\nDifferentiating the `outside' while keeping the inside the same gives $\\simplify{{c8}/({a8}*t+{b8})}$.
\nMultiplying these two together gives the answer: $\\simplify{{a8}*{c8}/({a8}*t+{b8})}$.
\n\n", "statement": "Differentiation using the Chain Rule
", "type": "question"}, {"name": "Differentiation: product and chain rule, (a+bx)^m e^(nx), factorise answer", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}], "rulesets": {}, "metadata": {"description": "Differentiate the function $f(x)=(a + b x)^m e ^ {n x}$ using the product and chain rule. Find $g(x)$ such that $f^{\\prime}(x)= (a + b x)^{m-1} e ^ {n x}g(x)$. Non-calculator. Advice is given.
", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"type": "gapfill", "prompt": "$\\simplify{f(x) = ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$
\nYou are told that $\\simplify{Diff(f,x,1) = ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) * g(x)}$, for a polynomial $g(x)$.
\n\nYou have to find $g(x)$.
\n$g(x)=\\;$[[0]]
", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "customMarkingAlgorithm": "", "variableReplacements": [], "unitTests": [], "gaps": [{"type": "jme", "vsetRangePoints": 5, "showFeedbackIcon": true, "vsetRange": [0, 1], "showPreview": true, "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "scripts": {}, "customMarkingAlgorithm": "", "variableReplacements": [], "unitTests": [], "checkVariableNames": false, "checkingType": "absdiff", "answer": "({((m * b) + (n * a))} + ({(n * b)} * x))", "extendBaseMarkingAlgorithm": true, "failureRate": 1, "expectedVariableNames": [], "showCorrectAnswer": true, "answerSimplification": "all", "marks": "4"}], "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "marks": 0}], "preamble": {"css": "", "js": ""}, "functions": {}, "variable_groups": [], "variables": {"a": {"description": "", "name": "a", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..4)"}, "b": {"description": "", "name": "b", "group": "Ungrouped variables", "templateType": "anything", "definition": "s1*random(1..5)"}, "n": {"description": "", "name": "n", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(2..6)"}, "m": {"description": "", "name": "m", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(2..8)"}, "s1": {"description": "", "name": "s1", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)"}}, "tags": [], "advice": "\n$f(x)$ is the product of the two functions $\\simplify{({a} + {b}*x)^{m}}$ and $\\simplify{e ^ ({n} * x)}$, so we need to use the product rule.
\n\nDifferentiating the first part, keeping the second half the same, gives the term: $\\simplify{{m} *{ b} * ({a} + {b} * x) ^ {m -1}} \\times \\simplify{e ^ ({n} * x)}$.
\nNote that that we needed the chain rule to do this differentiation.
\n\n\nDifferentiating the second part, keeping the first half the same, gives the term: $\\simplify{{n} * e ^ ({n} * x)} \\times \\simplify{({a} + {b}x)^{m}}$.
\nAgain, we needed the chain rule to do this differentiation.
\n\nHence, $\\simplify{Diff(f,x,1) = {m * b} * ({a} + {b} * x) ^ {m -1} * e ^ ({n} * x) + {n} * ({a} + {b} * x) ^ {m} * e ^ ({n} * x)}$.
\n$= \\simplify{({a} + {b} * x) ^ {m -1} * ({m * b + n * a} + {n * b} * x) * e ^ ({n} * x)}$, (by doing some factorising)
\n\nHence, $\\simplify{g(x) = {m * b + n * a} + {n * b} * x}$.
", "statement": "Differentiate the following function $f(x)$.
", "ungrouped_variables": ["a", "s1", "b", "m", "n"], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question"}, {"name": "Differentiation: product rule, stationary points of f(x)=e^x(ax^2+bx)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}], "parts": [{"customMarkingAlgorithm": "", "variableReplacements": [], "showFeedbackIcon": true, "marks": 0, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "customMarkingAlgorithm": "", "mustBeReduced": false, "correctAnswerFraction": false, "precision": "3", "extendBaseMarkingAlgorithm": true, "minValue": "{x1}", "marks": "3", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReducedPC": 0, "strictPrecision": false, "maxValue": "{x1}", "precisionType": "sigfig", "variableReplacements": [], "scripts": {}, "type": "numberentry", "showPrecisionHint": false, "unitTests": []}, {"notationStyles": ["plain", "en", "si-en"], "customMarkingAlgorithm": "", "mustBeReduced": false, "correctAnswerFraction": false, "precision": "3", "extendBaseMarkingAlgorithm": true, "minValue": "y1", "marks": "2", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "precisionPartialCredit": "0", "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReducedPC": 0, "strictPrecision": false, "maxValue": "y1", "precisionType": "sigfig", "variableReplacements": [], "scripts": {}, "type": "numberentry", "showPrecisionHint": false, "unitTests": []}, {"notationStyles": ["plain", "en", "si-en"], "customMarkingAlgorithm": "", "mustBeReduced": false, "correctAnswerFraction": false, "precision": "3", "extendBaseMarkingAlgorithm": true, "minValue": "x2", "marks": "3", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReducedPC": 0, "strictPrecision": false, "maxValue": "x2", "precisionType": "sigfig", "variableReplacements": [], "scripts": {}, "type": "numberentry", "showPrecisionHint": false, "unitTests": []}, {"notationStyles": ["plain", "en", "si-en"], "customMarkingAlgorithm": "", "mustBeReduced": false, "correctAnswerFraction": false, "precision": "3", "extendBaseMarkingAlgorithm": true, "minValue": "y2", "marks": "2", "variableReplacementStrategy": "originalfirst", "allowFractions": false, "precisionPartialCredit": "0", "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReducedPC": 0, "strictPrecision": false, "maxValue": "y2", "precisionType": "sigfig", "variableReplacements": [], "scripts": {}, "type": "numberentry", "showPrecisionHint": false, "unitTests": []}], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "scripts": {}, "type": "gapfill", "prompt": "Let $f(x)=\\simplify{(e^x)({a}x^2+{b}x)}$. Find the coordinates of the stationary points.
\nGive all answers to three significant figures.
\n\nStationary Point 1:
\nThe coordinates are ([[0]],[[1]]).
\n\nStationary Point 2:
\nThe coordinates are ([[2]],[[3]]).
\n\n(So the computer marks your answer correctly, make sure that Stationary Point 1 has a smaller $x$ coordinate than Stationary Point 2).
", "unitTests": [], "showCorrectAnswer": true}], "variablesTest": {"maxRuns": 100, "condition": "x1 <> x2"}, "advice": "A stationary point is where the gradient is zero, i.e. when $f'$ is equal to zero. So first we determine $f'$, using the product rule.
\n$f'(x) = \\simplify{e^(x)({a}x^2 + {b}x)+(e^(x))*(2*{a}*x +{b})}$.
\n\n\nWhen we are at a stationary point, $f'(x)$ has to equal 0, so:
\n$0 = f'(x) = \\simplify{e^(x)({a}x^2 + {b}x)+(e^(x))*(2*{a}*x +{b})}$.
\n\n\nTo solve this equation, we can first divide both sides by $e^{x}$ to get:
\n$0 = \\simplify{{a}x^2 + {b}x + 2*{a}*x +{b} }$.
\n\nAfter expanding brackets and simplifying this becomes the quadratic equation:
\n$0 = \\simplify{{a}x^2 + {2a+b}x + {b}}$.
\n\nUsing the quadratic formula, we solve this equation to find the $x$-coordinates, which are: $\\var{x1}$ and $\\var{x2}$.
\n\n\nTo find the $y$-coordinates, we plug these $x$-coordinates into the original function $f$ to get $\\var{y1}$ and $\\var{y2}$.
\n\n\nAfter rounding appropriately, we get the answer.
", "variables": {"b": {"name": "b", "description": "", "group": "Ungrouped variables", "definition": "random(-4..-1)", "templateType": "anything"}, "y1": {"name": "y1", "description": "", "group": "Ungrouped variables", "definition": "e^(x1)(a*x1*x1+b*x1)", "templateType": "anything"}, "y2": {"name": "y2", "description": "", "group": "Ungrouped variables", "definition": "e^(x2)(a*x2*x2+b*x2)", "templateType": "anything"}, "x1": {"name": "x1", "description": "", "group": "Ungrouped variables", "definition": "(-(b+2a)-sqrt((b+2a)*(b+2a)-4*a*b))/(2a)", "templateType": "anything"}, "x2": {"name": "x2", "description": "", "group": "Ungrouped variables", "definition": "(-(b+2a)+sqrt((b+2a)*(b+2a)-4*a*b))/(2a)", "templateType": "anything"}, "a": {"name": "a", "description": "", "group": "Ungrouped variables", "definition": "random(1..3 except 0)", "templateType": "anything"}}, "statement": "Determine the coordinates of the stationary points of a function.
", "ungrouped_variables": ["a", "b", "x1", "x2", "y1", "y2"], "metadata": {"description": "A function of the form $e^{x}(ax^2+bx)$ is given which has two stationary points. Students are asked to determine the coordinates of each stationary point. Calculator. Advice is provided.
", "licence": "None specified"}, "tags": [], "rulesets": {}, "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "type": "question"}]}], "name": "Daniel's copy of CLE 6b", "percentPass": 0, "metadata": {"description": "Questions on differentiation and stationary points.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "feedback": {"intro": "", "showactualmark": true, "allowrevealanswer": true, "showtotalmark": true, "feedbackmessages": [], "showanswerstate": true, "advicethreshold": 0, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "showstudentname": true, "navigation": {"onleave": {"action": "none", "message": ""}, "allowregen": false, "browse": true, "reverse": true, "preventleave": true, "showfrontpage": true, "showresultspage": "oncompletion"}, "duration": 0, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}, "allowPause": true}, "type": "exam", "contributors": [{"name": "Daniel Meselu", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1671/"}], "extensions": ["geogebra", "jsxgraph"], "custom_part_types": [], "resources": []}