// Numbas version: finer_feedback_settings {"navigation": {"browse": true, "showfrontpage": true, "showresultspage": "oncompletion", "reverse": true, "preventleave": true, "allowregen": true, "onleave": {"action": "none", "message": ""}}, "feedback": {"showactualmark": true, "showanswerstate": true, "showtotalmark": true, "allowrevealanswer": true, "advicethreshold": 0, "intro": "", "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "type": "exam", "name": "Volume", "timing": {"timedwarning": {"action": "none", "message": ""}, "allowPause": true, "timeout": {"action": "none", "message": ""}}, "showQuestionGroupNames": false, "showstudentname": true, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Questions involving the calculation of the volumes of shapes.
"}, "percentPass": 0, "question_groups": [{"pickQuestions": 1, "pickingStrategy": "all-ordered", "name": "Group", "questions": [{"name": "Use formulae for the area and volume of geometric shapes", "extensions": ["geogebra"], "custom_part_types": [], "resources": [["question-resources/icecrea_QqVaCIf.svg", "/srv/numbas/media/question-resources/icecrea_QqVaCIf.svg"], ["question-resources/frisbee_variable_TESZa4J.svg", "/srv/numbas/media/question-resources/frisbee_variable_TESZa4J.svg"], ["question-resources/tennis-ball_with_variable_MBOLQeM.svg", "/srv/numbas/media/question-resources/tennis-ball_with_variable_MBOLQeM.svg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Aiden McCall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1592/"}], "tags": ["Area", "area", "area of a circle", "area of a trapezium", "area of a triangle", "Area of a triangle", "Circle", "circle", "cone", "Cone", "geometry", "taxonomy", "trapezium", "triangle", "Triangle", "volume", "Volume", "volume of a cone", "volume of a sphere"], "metadata": {"description": "Substitute values into formulae for the area or volume of various geometric objects.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Answer the following questions by substituting the correct values into the given equations.
", "advice": "When inserting numbers into your calculator, make sure that you place brackets correctly.
\nWe can see from the diagram that the radius of the frisbee is $\\var{mccall[2]}$ $\\mathrm{cm}$.
Replacing the letter $r$ in the formula for the area of a circle with $\\var{mccall[2]}$ gives,
\\begin{align}
\\mathrm{Area} &= \\pi r^2 \\\\
&= \\pi\\times(\\var{mccall[2]})^2 \\\\
&= \\var{dpformat((mccall[2])^2, 2)}\\pi\\, \\mathrm{cm}^2 \\\\
&= \\var{dpformat(pi *(mccall[2])^2, 2)}\\, \\mathrm{cm}^2 \\quad \\text{to 2 d.p.}
\\end{align}
We can see from the diagram that the triangle has two sides with lengths $\\var{length_cdp2}$ $\\mathrm{cm}$, $\\var{length_bdp2}$ $\\mathrm{cm}$ and an angle $\\var{c_thetadp2}\\mathrm{°}$ .
Replacing the letters $a$, $b$ and $C$ in the formula for the area of a triangle with $\\var{length_cdp2}$, $\\var{length_bdp2}$ and $\\var{c_thetadp2}$ respectively gives,
\\begin{align}
\\mathrm{Area} &= \\frac{1}{2}ab\\sin{C} \\\\
&= \\frac{1}{2} \\times \\var{length_cdp2} \\times \\var{length_bdp2} \\times \\sin(\\var{c_thetadp2}) \\\\
&= \\var{dpformat(0.5*(length_cdp2)*(length_bdp2)*sin(c_thetadp2* pi/180), 5)}\\, \\mathrm{cm}^2 \\\\
&= \\var{dpformat(0.5*(length_cdp2)*(length_bdp2)*sin(c_thetadp2 * pi/180), 2)}\\, \\mathrm{cm}^2 \\quad \\text{to 2 d.p.}
\\end{align}
We can see from the diagram that the radius of the cone is $\\var{r}$ $\\mathrm{cm}$ and the height is $\\var{h}$ $\\mathrm{cm}$.
Replacing the letters $r$ and $h$ in the formula for the volume of a cone with $\\var{r}$ $\\mathrm{cm}$ and $\\var{h}$ $\\mathrm{cm}$ respectively gives,
\\begin{align}
\\mathrm{Volume} &= \\frac{h}{3} \\pi r^2 \\\\
&= \\frac{(\\var{h})}{3} \\times \\pi \\times (\\var{r})^2 \\\\
&= \\var{dpformat((pi)*(h/3)*(r)^2 , 5)}\\, \\mathrm{cm}^3 \\\\
&=\\var{dpformat(h/3 * pi * (r)^2, 1)}\\, \\mathrm{cm}^3 \\quad \\text{to 1 d.p.} \\\\
\\end{align}
\n
We can see from the diagram that the radius of the tennis ball is $\\var{mccall[1]}$ $\\mathrm{cm}$.
Replacing the letter $r$ in the formula for the volume of a sphere with $\\var{mccall[1]}$ gives,
\\begin{align}
\\mathrm{Volume} &= \\frac{4}{3} \\pi r^3 \\\\
&= \\frac{(4)}{(3)} \\times \\pi \\times (\\var{mccall[1]})^3 \\\\
&= \\var{dpformat((4/3)*pi*mccall[1]^3, 5)}\\, \\mathrm{cm}^3 \\\\
&= \\var{precround(((4/3)* pi) *(mccall[1])^3, 1)}\\, \\mathrm{cm}^3 \\quad \\text{to 1 d.p.} \\\\
\\end{align}
We can see from the diagram that the trapezium has two parallel sides with length $\\var{trap_length_a}$ $\\mathrm{cm}$, $\\var{trap_length_b}$ $\\mathrm{cm}$ and height $\\var{trap_h}$ $\\mathrm{cm}$.
Replacing the letters $a$, $b$ and $h$ in the formula for the area of a trapezium with $\\var{trap_length_a}$, $\\var{trap_length_b}$ and $\\var{trap_h}$ respectively gives,
\\begin{align}
\\mathrm{Area} &= \\frac{1}{2} (a + b) h \\\\
&= \\frac{1}{2} \\times (\\var{trap_length_a} + \\var{trap_length_b}) \\times \\var{trap_h} \\\\
&= \\var{precround((0.5) (trap_length_a + trap_length_b) trap_h, 1)}\\, \\mathrm{cm}^2 \\quad \\text{to 1 d.p.} \\\\
\\end{align}
\\begin{align}
\\mathrm{Area} &= \\frac{1}{2} (a + b) h \\\\
&= \\frac{1}{2} \\times (\\var{trap_length_a} + \\var{trap_length_b}) \\times \\var{trap_h} \\\\
&= \\var{precround((0.5)(trap_length_a +trap_length_b) trap_h, 2)}\\, \\mathrm{cm}^2 \\\\
&= \\var{precround((0.5) (trap_length_a + trap_length_b) trap_h, 1)}\\, \\mathrm{cm}^2 \\quad \\text{to 1 d.p.} \\\\
\\end{align}
Rounded value for the length of c.
", "templateType": "anything", "can_override": false}, "trap_e": {"name": "trap_e", "group": "Trapezium variables", "definition": "vector(trap_b[0],-4)", "description": "Defines the point for the height of the trapezium.
", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Cone variables", "definition": "random(3..6#0.1)", "description": "A random variable which will be inputted by the student.
", "templateType": "anything", "can_override": false}, "const": {"name": "const", "group": "Quadratic variables", "definition": "random(1..100#1)", "description": "The constant coefficient
", "templateType": "anything", "can_override": false}, "name": {"name": "name", "group": "Name variables", "definition": "[\"Andrew\",\"Susan\",\"Tom\",\"Geraldine\",\"Joshua\",\"Chantel\"]", "description": "List of names to randomise. Can change to any name inserted
", "templateType": "anything", "can_override": false}, "length_bdp2": {"name": "length_bdp2", "group": "Triangle variables", "definition": "precround(sqrt((a[0]-c[0])^2+(a[1]-c[1])^2),2)", "description": "Rounded value for the length of b.
", "templateType": "anything", "can_override": false}, "length_c": {"name": "length_c", "group": "Triangle variables", "definition": "sqrt((b[0]-c[0])^2+(b[1]-c[1])^2)", "description": "For triangle - The length of the vector BC
", "templateType": "anything", "can_override": false}, "trap_length_b": {"name": "trap_length_b", "group": "Trapezium variables", "definition": "sqrt((trap_d[0]-trap_a[0])^2+(trap_d[1]-trap_a[1])^2)", "description": "", "templateType": "anything", "can_override": false}, "c_thetadp2": {"name": "c_thetadp2", "group": "Triangle variables", "definition": "precround((180/pi)*arccos(((length_b)^2+(length_c)^2-(length_a)^2)/(2(length_b)(length_c))),2)", "description": "Rounded theta value.
", "templateType": "anything", "can_override": false}, "trap_length_a": {"name": "trap_length_a", "group": "Trapezium variables", "definition": "sqrt((trap_c[0]-trap_b[0])^2+(trap_c[1]-trap_b[1])^2)", "description": "", "templateType": "anything", "can_override": false}, "length_b": {"name": "length_b", "group": "Triangle variables", "definition": "sqrt((a[0]-c[0])^2+(a[1]-c[1])^2)", "description": "For triangle - The length of the vector AC
", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Triangle variables", "definition": "vector(2,0)", "description": "Position of point B in Geogebra. This point is randomised to make the triangles different.
", "templateType": "anything", "can_override": false}, "pronoun": {"name": "pronoun", "group": "Name variables", "definition": "if(mod(n,2)=0,\"he\",\"she\")", "description": "Defines the pronoun in the question.
", "templateType": "anything", "can_override": false}, "trap_defs": {"name": "trap_defs", "group": "Trapezium variables", "definition": "[\n ['A', trap_a],\n ['B', trap_b],\n ['C', trap_c],\n ['D', trap_d],\n ['E', trap_e]\n ]", "description": "Definition of the points to put into Geogebra
", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Cone variables", "definition": "random(11..17#0.1)", "description": "The height for volume of a cone.
", "templateType": "anything", "can_override": false}, "trap_h": {"name": "trap_h", "group": "Trapezium variables", "definition": "trap_b[1] + 4", "description": "Height of the trapezium
", "templateType": "anything", "can_override": false}, "Triangle_area": {"name": "Triangle_area", "group": "Triangle variables", "definition": "1/2*(length_cdp2)(length_bdp2)(sin(c_thetadp2 * pi/180))", "description": "This calculates the area of the triangle for part b)
", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Triangle variables", "definition": "vector(-3,0)", "description": "Position of the point A in Geogebra. This point is fixed so the triangle doesn't hang in one corner or the whole page.
", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Name variables", "definition": "random(0..4#1)", "description": "n is a random number between 0 and 4 that picks a name from {name} and then picks the next in the list for the other name such that there is always a male and a female in the question.
", "templateType": "anything", "can_override": false}, "name2": {"name": "name2", "group": "Name variables", "definition": "[\"Andrew\",\"Susan\",\"Tom\",\"Geraldine\",\"Joshua\",\"Chantel\"]", "description": "List of names to randomise. Can change to any name inserted
", "templateType": "anything", "can_override": false}, "trap_rand": {"name": "trap_rand", "group": "Trapezium variables", "definition": "random(1..3#1)", "description": "A random number to define the height of the trapezium.
", "templateType": "anything", "can_override": false}, "c_theta": {"name": "c_theta", "group": "Triangle variables", "definition": "(180/pi)*arccos(((length_b)^2+(length_c)^2-(length_a)^2)/(2(length_b)(length_c))) ", "description": "Theta is randomised by the lengths
", "templateType": "anything", "can_override": false}, "trap_areadp1": {"name": "trap_areadp1", "group": "Trapezium variables", "definition": "precround(0.5*(trap_length_a + trap_length_b)*trap_h,1)", "description": "Calculates the area of the trapezium
", "templateType": "anything", "can_override": false}, "defs": {"name": "defs", "group": "Triangle variables", "definition": "[\n ['A',a],\n ['B',b],\n ['C',c]\n ]", "description": "Creates the points in Geogebra is not used directly in the question but to create the image in Geogebra.
", "templateType": "anything", "can_override": false}, "length_a": {"name": "length_a", "group": "Triangle variables", "definition": "sqrt((a[0]-b[0])^2+(a[1]-b[1])^2)", "description": "For triangle - The length of the vector AB
", "templateType": "anything", "can_override": false}, "trap_d": {"name": "trap_d", "group": "Trapezium variables", "definition": "vector(random(5..7#0.1), -4)", "description": "Creates the point D on the trapezium
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Triangle variables", "definition": "vector(\n random(2..5#0.1),\n random(2..5#0.1)\n )", "description": "Triangle - A variable point which ultimately decides how the triangle looks.
", "templateType": "anything", "can_override": false}, "trap_a": {"name": "trap_a", "group": "Trapezium variables", "definition": "vector(1,-4)", "description": "Creates the point A on the trapezium
", "templateType": "anything", "can_override": false}, "trap_c": {"name": "trap_c", "group": "Trapezium variables", "definition": "vector(random(4..5.5#0.1), trap_rand)", "description": "Creates the point C on the trapezium
", "templateType": "anything", "can_override": false}, "mccall": {"name": "mccall", "group": "RNG", "definition": "[0,random(3.1..3.7#0.1),random(5..20#0.1)]\n", "description": "Matrix of random variables used to create length in the questions.
", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Quadratic variables", "definition": "random(1..10#1)", "description": "The x^2 coefficient
", "templateType": "anything", "can_override": false}, "trap_areadp2": {"name": "trap_areadp2", "group": "Trapezium variables", "definition": "precround(0.5*(trap_length_a + trap_length_b)*trap_h, 2)", "description": "", "templateType": "anything", "can_override": false}, "trap_b": {"name": "trap_b", "group": "Trapezium variables", "definition": "vector(random(1.5..2.5#0.1), trap_rand)", "description": "Creates the point B on the trapezium
", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Quadratic variables", "definition": "random(1..50)", "description": "The x coefficient
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Trapezium variables", "variables": ["trap_a", "trap_b", "trap_c", "trap_d", "trap_h", "trap_rand", "trap_defs", "trap_length_a", "trap_length_b", "trap_e", "trap_areadp1", "trap_areadp2"]}, {"name": "Triangle variables", "variables": ["Triangle_area", "c", "b", "a", "c_theta", "length_a", "length_b", "length_c", "defs", "length_bdp2", "length_cdp2", "c_thetadp2"]}, {"name": "Name variables", "variables": ["name", "name2", "pronoun", "n"]}, {"name": "Quadratic variables", "variables": ["x2", "x1", "const"]}, {"name": "Cone variables", "variables": ["r", "h"]}, {"name": "RNG", "variables": ["mccall"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the area of a frisbee, assuming that the frisbee can be modelled as a circle, given the formula for the area of a circle is
\n\\[\\mathrm{Area} = \\pi r^2.\\]
\n\n$\\mathrm{Area}$ = [[0]] $\\mathrm{cm}^2$ Round your answer to 2 decimal places.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "pi*{mccall[2]}^2 - 0.05", "maxValue": "pi*{mccall[2]}^2 + 0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the area of the triangle given that the area of any triangle can be calculated using the formula
\n\\[\\mathrm{Area} = \\frac{1}{2}ab\\sin{C}.\\]
\n{geogebra_applet('https://www.geogebra.org/m/jcUJu6F4',defs)}
\nAll lengths are in centimetres.
\n$\\mathrm{Area} =$ [[0]] $\\mathrm{cm}^2$ Round your answer to 2 decimal places.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Triangle_area-0.05", "maxValue": "Triangle_area+0.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the volume of a cone given the formula for the volume of a cone is
\n\\[\\mathrm{Volume} = \\frac{h}{3} \\pi r^2.\\]
\n\n$\\mathrm{Volume}$ = [[0]] $\\mathrm{cm}^3$ Round your answer to 1 decimal place.
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{(h/3)}*{r}^2*pi -0.5", "maxValue": "{(h/3)}*{r}^2*pi +0.5", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{name[n]} has a tennis ball and {pronoun} wants to find the volume of the ball. Using the diagram and the formula for the volume of a sphere, calculate the volume of the ball.
\n\\[\\mathrm{Volume}= \\frac{4}{3} \\pi r^3.\\]
\n\n$\\mathrm{Volume}$ = [[0]] $\\mathrm{cm}^3$ Round your answer to 1 decimal place.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "4/3 * pi * {mccall[1]}^3 - 0.5", "maxValue": "4/3 * pi * {mccall[1]}^3 + 0.5", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the area of the trapezium given the formula for the area of a trapezium is
\n\\[\\mathrm{Area} = \\frac{1}{2}(a+b) h .\\]
\n{geogebra_applet('https://www.geogebra.org/m/Gtjzajb6',trap_defs)}
\nAll lengths are given in metres.
\n$\\mathrm{Area}$ = [[0]] $\\mathrm{m}^2$ Round your answer to 1 decimal place.
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0.5({trap_length_a}+{trap_length_b})*{trap_h} - 0.1", "maxValue": "0.5({trap_length_a}+{trap_length_b})*{trap_h} + 0.1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Converting units of volume (cc/cm^3/litres/m^3)", "extensions": ["random_person"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}], "variable_groups": [], "variables": {"metres_cubed": {"templateType": "anything", "definition": "cc*(10^-6)", "description": "", "name": "metres_cubed", "group": "Ungrouped variables"}, "cc": {"templateType": "anything", "definition": "random(1200..3000#200)", "description": "", "name": "cc", "group": "Ungrouped variables"}, "s": {"templateType": "anything", "definition": "if(person['gender']='neutral','','s')", "description": "", "name": "s", "group": "Ungrouped variables"}, "person": {"templateType": "anything", "definition": "random_person()", "description": "", "name": "person", "group": "Ungrouped variables"}, "litres": {"templateType": "anything", "definition": "cc/1000", "description": "", "name": "litres", "group": "Ungrouped variables"}}, "type": "question", "parts": [{"variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true, "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "allowFractions": false, "scripts": {}, "minValue": "litres", "maxValue": "litres", "marks": 1, "variableReplacements": []}], "marks": 0, "variableReplacements": [], "scripts": {}, "showFeedbackIcon": true, "prompt": "{person['name']} applies to find out how much the insurance for the car would cost, but is required to state the engine size in litres.
\nWhat is the engine size in litres?
\n[[0]] litres.
\n"}, {"variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true, "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "precisionPartialCredit": 0, "mustBeReducedPC": 0, "scripts": {}, "showFeedbackIcon": true, "precisionType": "dp", "minValue": "metres_cubed", "correctAnswerStyle": "plain", "allowFractions": false, "showPrecisionHint": false, "strictPrecision": false, "maxValue": "metres_cubed", "precision": "4", "marks": "2", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "precisionMessage": "You have not given your answer to the correct precision."}], "marks": 0, "variableReplacements": [], "scripts": {}, "showFeedbackIcon": true, "prompt": "
The specification of a second car gives the engine size in m$^3$. In order for {person['name']} to make a comparison {person['pronouns']['they']} convert{s} the engine size of the first car to cubic metres.
\nWhat is the engine size of the first car in units of m$^3$?
\n[[0]]m$^3$ Give your answer to 4 decimal places
"}], "advice": "The advertised engine size is $\\var{cc}$ cubic centimetres. To convert cubic centimetres to litres, we divide by $1000$.
\n\\[\\var{cc}\\div 1000= \\var{litres}\\text{ litres.}\\]
\nIn order to convert to cubic metres, we first note that
\n\\[ 1 \\text{cm} = 0.01 \\text{m.} \\]
\nAn example of a volume of $1\\text{cm}^3$ is a cube with $1$cm sides. Converting each side into metres,
\n\\begin{align}
1\\text{cm}^3 &= 1\\text{cm}\\times1\\text{cm}\\times1\\text{cm} \\\\
&= 0.01\\text{m}\\times0.01\\text{m}\\times0.01\\text{m} \\\\
&= 0.000001\\text{m}^3 \\text{.}
\\end{align}
Therefore $\\var{cc}\\text{cm}^3$ is
\n\\[ \\var{cc} \\times 0.000001 = \\var{metres_cubed}\\text{m}^3\\text{.} \\]
", "tags": ["taxonomy"], "preamble": {"css": "", "js": ""}, "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "functions": {}, "ungrouped_variables": ["person", "litres", "cc", "s", "metres_cubed"], "statement": "{person['name']} is looking to buy a car. {capitalise(person['pronouns']['they'])} find{s} one advertised with an engine size of $\\var{cc}$cc.
\n{person['name']} recognises that 'cc' stands for units of cubic centimetres (cm$^3$) and knows the following conversions:
\n$1$ m | \n$100$ cm | \n
$1$ litre | \n$1000\\text{cm}^3$ | \n
Convert figures for car engine sizes between cc (cm^3), litres, and m^3.
"}}, {"name": "Calculate density given mass and volume", "extensions": ["random_person"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}], "advice": "We are told that the ball has a volume of $\\var{volume}\\text{cm}^3$ and a mass of $\\var{mass}$g, and we are asked to calculate the density of the box in g/cm$^3$.
\nThe formula for density is
\n\\[\\begin{align} \\text{Density} &= \\frac{\\text{Mass}}{\\text{Volume}} \\\\[4pt]
&= \\frac{\\var{mass}}{\\var{volume}} \\\\[4pt]
&= \\var{density} \\\\
&= \\var{precround(density,2)}\\text{g/cm}^3\\text{.} \\\\
\\end{align}\\]
Since the density of the ball is {if(density>1,'greater','smaller')} than the density of water, {person['name']}'s ball will {if(density>1,'sink','float')}.
\n", "statement": "A solid object placed in water will sink if its density is greater than that of water ($1\\text{g/cm}^3$).
\n{person['name']}'s toy ball has a volume of $\\var{volume}\\text{cm}^3$ and a mass of $\\var{mass}$g. Whilst playing, {person['pronouns']['they']} drops {person['pronouns']['their']} ball into a pond.
", "variables": {"mass": {"name": "mass", "group": "Ungrouped variables", "definition": "random(55..65)", "templateType": "anything", "description": "mass of the box
"}, "person": {"name": "person", "group": "Ungrouped variables", "definition": "random_person()", "templateType": "anything", "description": ""}, "density": {"name": "density", "group": "Ungrouped variables", "definition": "mass/volume", "templateType": "anything", "description": ""}, "volume": {"name": "volume", "group": "Ungrouped variables", "definition": "random(40..70 except mass)", "templateType": "anything", "description": "Volume of box
"}, "mark_matrix": {"name": "mark_matrix", "group": "Ungrouped variables", "definition": "[if(density<1,1,0),if(density>1,1,0)]", "templateType": "anything", "description": ""}}, "tags": ["calculating density", "compound units", "Compound units", "density", "mass", "taxonomy", "Volume", "volume"], "ungrouped_variables": ["volume", "mass", "density", "person", "mark_matrix"], "functions": {}, "metadata": {"description": "Calculate the density of an object given its mass and volume.
", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"scripts": {}, "steps": [{"scripts": {}, "variableReplacements": [], "type": "information", "showCorrectAnswer": true, "marks": 0, "prompt": "The relationship between density, mass and volume is
\n\\[\\text{Density} = \\frac{\\text{Mass}}{\\text{Volume}}.\\]
", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "variableReplacements": [], "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "precisionPartialCredit": 0, "strictPrecision": false, "correctAnswerFraction": false, "minValue": "density", "allowFractions": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "density", "showCorrectAnswer": true, "precision": "2", "type": "numberentry", "showPrecisionHint": false, "marks": 1, "precisionType": "dp", "variableReplacementStrategy": "originalfirst", "precisionMessage": "Round your answer to $3$ significant figures.
"}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "prompt": "What is the density of the ball?
\n[[0]] g/cm$^3$. Round your answer to $2$ decimal places.
", "stepsPenalty": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"variableReplacements": [], "maxMarks": 0, "displayType": "radiogroup", "choices": ["It floats
", "It sinks
"], "scripts": {}, "displayColumns": 0, "showCorrectAnswer": true, "type": "1_n_2", "shuffleChoices": false, "prompt": "Does {person['name']}'s ball float or sink?
", "marks": 0, "showFeedbackIcon": true, "matrix": "mark_matrix", "variableReplacementStrategy": "originalfirst", "minMarks": 0}], "type": "question", "variable_groups": [], "preamble": {"js": "", "css": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}}]}], "duration": 0, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "extensions": ["geogebra", "random_person"], "custom_part_types": [], "resources": [["question-resources/icecrea_QqVaCIf.svg", "/srv/numbas/media/question-resources/icecrea_QqVaCIf.svg"], ["question-resources/frisbee_variable_TESZa4J.svg", "/srv/numbas/media/question-resources/frisbee_variable_TESZa4J.svg"], ["question-resources/tennis-ball_with_variable_MBOLQeM.svg", "/srv/numbas/media/question-resources/tennis-ball_with_variable_MBOLQeM.svg"]]}