// Numbas version: finer_feedback_settings {"showstudentname": true, "question_groups": [{"pickingStrategy": "all-ordered", "pickQuestions": 1, "name": "Expanding Brackets", "questions": [{"name": "Expanding a binomial product (difference of two squares, perfect squares)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["binomial", "Binomial", "binomial product", "difference of two squares", "distributive law", "expanding", "Expanding", "factorisation", "Factorisation", "factors", "Factors", "monic", "perfect square", "quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
Expand and simplify the following.
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..2]+random([neg,pos], [pos,neg])", "description": "", "templateType": "anything", "can_override": false}, "neg": {"name": "neg", "group": "Ungrouped variables", "definition": "random(-12..-1)", "description": "", "templateType": "anything", "can_override": false}, "pos": {"name": "pos", "group": "Ungrouped variables", "definition": "random(1..12 except -neg)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "127"}, "ungrouped_variables": ["a", "neg", "pos"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{(x+{a[0]})(x-{a[0]})}$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (difference of two squares)
\nNotice that the product will expand to be a difference of two squares. Therefore, we can square the first term and subtract the square of the second term (see the other methods below if you aren't sure why):
\n$\\simplify{(x+{a[0]})(x-{a[0]})}=\\simplify{x^2-{a[0]*a[0]}}$
\nMethod 2 (the distributive law)
\nWe expand $\\simplify[basic]{(x+{a[0]})(x-{a[0]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{x(x-{a[0]})+{a[0]}(x-{a[0]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{x^2-{a[0]}x+{a[0]}x-{a[0]*a[0]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{x^2-{a[0]*a[0]}}$
\nMethod 3 (FOIL)
\nMultiply the First terms in each bracket to get $x^2$, then the Outer terms to get $\\var{-a[0]}x$, then the Inner terms to get $\\var{a[0]}x$, and then the Last terms to get $-\\var{a[0]*a[0]}$. Now add them all together: $\\simplify[basic, unitfactor]{x^2-{a[0]*a[0]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2-{a[0]*a[0]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n `| $v^2+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{(r+{a[3]})(r+{a[3]})}$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (perfect square)
\nNotice that $\\simplify{(r+{a[3]})(r+{a[3]})}$ is a perfect square. Therefore, we can square the first term $r$, double the product of the two terms $r$ and $\\var{a[3]}$, then square the last term $\\var{a[3]}$, add them all together (see the other methods below if you aren't sure why):
\n$\\simplify{(r+{a[3]})(r+{a[3]})}=\\simplify{r^2+{2*a[3]}r+{a[3]*a[3]}}$
\nMethod 2 (the distributive law)
\nWe expand $\\simplify[basic]{(r+{a[3]})(r+{a[3]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{r(r+{a[3]})+{a[3]}(r+{a[3]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{r^2+{a[3]}r+{a[3]}r+{a[3]*a[3]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{r^2+{a[3]+a[3]}r+{a[3]*a[3]}}$
\nMethod 3 (FOIL)
\nMultiply the First terms in each bracket to get $r^2$, then the Outer terms to get $\\var{a[3]}r$, then the Inner terms to get $\\var{a[3]}r$, and then the Last terms to get $\\var{a[3]*a[3]}$. Now add them all together: $\\simplify[basic, unitfactor]{r^2+{a[3]+a[3]}r+{a[3]*a[3]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "r^2+{2*a[3]}r+{a[3]*a[3]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "r", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{(x+{a[2]})^2}$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "It is important to realise that $\\simplify{(x+{a[2]})^2}=\\simplify[basic]{(x+{a[2]})(x+{a[2]})}$. Recall that squaring something is multiplying it by itself.
\n\n
Method 1 (perfect square)
\nNotice that $\\simplify{(x+{a[3]})(x+{a[3]})}$ is a perfect square. Therefore, we can square the first term $r$, double the product of the two terms $r$ and $\\var{a[3]}$, then square the last term $\\var{a[3]}$, add them all together (see the other methods below if you aren't sure why):
\n$\\simplify{(x+{a[3]})(x+{a[3]})}=\\simplify{x^2+{2*a[3]}x+{a[3]*a[3]}}$
\nMethod 2 (the distributive law)
\nWe expand $\\simplify[basic]{(x+{a[3]})(x+{a[3]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{x(x+{a[3]})+{a[3]}(x+{a[3]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{x^2+{a[3]}x+{a[3]}x+{a[3]*a[3]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{x^2+{a[3]+a[3]}x+{a[3]*a[3]}}$
\nMethod 3 (FOIL)
\nMultiply the First terms in each bracket to get $x^2$, then the Outer terms to get $\\var{a[3]}x$, then the Inner terms to get $\\var{a[3]}x$, and then the Last terms to get $\\var{a[3]*a[3]}$. Now add them all together: $\\simplify[basic, unitfactor]{x^2+{a[3]+a[3]}x+{a[3]*a[3]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2+{2*a[2]}x+{a[2]*a[2]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Expanding a binomial product (monic factors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["binomial", "Binomial", "binomial product", "distributive law", "expanding", "Expanding", "factorisation", "Factorisation", "factors", "Factors", "monic", "quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Expand and simplify the following.
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..4]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..4]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "[1,1,1,1]", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "[1,1,1,1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "127"}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{(x+{a[0]})(x+{b[0]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{(x+{a[0]})(x+{b[0]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{x(x+{b[0]})+{a[0]}(x+{b[0]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{x^2+{a[0]+b[0]}x+{a[0]*b[0]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $x^2$, then the Outer terms to get $\\var{b[0]}x$, then the Inner terms to get $\\var{a[0]}x$, and then the Last terms to get $\\var{a[0]*b[0]}$. Now add them all together: $\\simplify[basic, unitfactor]{x^2+{a[0]+b[0]}x+{a[0]*b[0]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2+{a[0]+b[0]}x+{a[0]*b[0]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{(x+{a[1]})(x+{b[1]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{(x+{a[1]})(x+{b[1]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{x(x+{b[1]})+{a[1]}(x+{b[1]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{x^2+{a[1]+b[1]}x+{a[1]*b[1]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $x^2$, then the Outer terms to get $\\var{b[1]}x$, then the Inner terms to get $\\var{a[1]}x$, and then the Last terms to get $\\var{a[1]*b[1]}$. Now add them all together: $\\simplify[basic, unitfactor]{x^2+{a[1]+b[1]}x+{a[1]*b[1]}}$
\nEnsure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{(m+{a[2]})(m+{b[2]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{(m+{a[2]})(m+{b[2]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{m(m+{b[2]})+{a[2]}(m+{b[2]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{m^2+{a[2]+b[2]}m+{a[2]*b[2]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $m^2$, then the Outer terms to get $\\var{b[2]}m$, then the Inner terms to get $\\var{a[2]}m$, and then the Last terms to get $\\var{a[2]*b[2]}$. Now add them all together: $\\simplify[basic, unitfactor]{m^2+{a[2]+b[2]}m+{a[2]*b[2]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "m^2+{a[2]+b[2]}m+{a[2]*b[2]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "m", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{(t+{a[3]})(t+{b[3]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{(t+{a[3]})(t+{b[3]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{t(t+{b[3]})+{a[3]}(t+{b[3]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{t^2+{a[3]+b[3]}t+{a[3]*b[3]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $t^2$, then the Outer terms to get $\\var{b[3]}t$, then the Inner terms to get $\\var{a[3]}t$, and then the Last terms to get $\\var{a[3]*b[3]}$. Now add them all together: $\\simplify[basic, unitfactor]{t^2+{a[3]+b[3]}t+{a[3]*b[3]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "t^2+{a[3]+b[3]}t+{a[3]*b[3]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "t", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Expanding a binomial product (non-monic factors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["binomial", "Binomial", "binomial product", "distributive law", "expanding", "Expanding", "factorisation", "Factorisation", "factors", "Factors", "non-monic", "quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Expand and simplify the following.
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except [0,1])[0..2]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..2]", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..2]", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except [0,1])[0..2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "127"}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[basic]{({c[0]}x+{a[0]})({d[0]}x+{b[0]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{({c[0]}x+{a[0]})({d[0]}x+{b[0]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{{c[0]}x({d[0]}x+{b[0]})+{a[0]}({d[0]}x+{b[0]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{{c[0]*d[0]}x^2+{c[0]*b[0]}x+{d[0]*a[0]}x+{a[0]*b[0]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{{c[0]*d[0]}x^2+{d[0]*a[0]+c[0]*b[0]}x+{a[0]*b[0]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $\\var{c[0]*d[0]}x^2$, then the Outer terms to get $\\var{c[0]*b[0]}x$, then the Inner terms to get $\\var{d[0]*a[0]}x$, and then the Last terms to get $\\var{a[0]*b[0]}$. Now add them all together: $\\simplify[basic, unitfactor]{{c[0]*d[0]}x^2+{d[0]*a[0]+c[0]*b[0]}x+{a[0]*b[0]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c[0]*d[0]}x^2+{d[0]*a[0]+c[0]*b[0]}x+{a[0]*b[0]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "`+-$n*$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[basic]{({c[1]}x+{a[1]})({d[1]}x+{b[1]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{({c[1]}x+{a[1]})({d[1]}x+{b[1]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{{c[1]}x({d[1]}x+{b[1]})+{a[1]}({d[1]}x+{b[1]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{{c[1]*d[1]}x^2+{c[1]*b[1]}x+{d[1]*a[1]}x+{a[1]*b[1]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{{c[1]*d[1]}x^2+{d[1]*a[1]+c[1]*b[1]}x+{a[1]*b[1]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $\\var{c[1]*d[1]}x^2$, then the Outer terms to get $\\var{c[1]*b[1]}x$, then the Inner terms to get $\\var{d[1]*a[1]}x$, and then the Last terms to get $\\var{a[1]*b[1]}$. Now add them all together: $\\simplify[basic, unitfactor]{{c[1]*d[1]}x^2+{d[1]*a[1]+c[1]*b[1]}x+{a[1]*b[1]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c[1]*d[1]}x^2+{d[1]*a[1]+c[1]*b[1]}x+{a[1]*b[1]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "`+-$n*$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}, {"pickingStrategy": "all-ordered", "pickQuestions": 1, "name": "Factorising Quadratics", "questions": [{"name": "Factorising Quadratic Equations with $x^2$ Coefficients of 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "metadata": {"description": "Factorise three quadratic equations of the form $x^2+bx+c$.
\nThe first has two negative roots, the second has one negative and one positive, and the third is the difference of two squares.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Factorise the following quadratic equations.
\n", "variables": {"v1": {"name": "v1", "group": "Part A ", "definition": "random(1..10)", "templateType": "anything", "description": ""}, "v2": {"name": "v2", "group": "Part A ", "definition": "random(2..6 except v1)", "templateType": "anything", "description": ""}, "v4": {"name": "v4", "group": "Part A ", "definition": "random(1..10 except -v3)", "templateType": "anything", "description": ""}, "v5": {"name": "v5", "group": "Part A ", "definition": "random(2..10)", "templateType": "anything", "description": ""}, "v3": {"name": "v3", "group": "Part A ", "definition": "random(-8..-1)", "templateType": "anything", "description": ""}, "v6": {"name": "v6", "group": "Part A ", "definition": "-v5", "templateType": "anything", "description": ""}}, "tags": ["Factorisation", "factorisation", "factorising quadratic equations", "Factorising quadratic equations", "taxonomy"], "ungrouped_variables": [], "functions": {}, "preamble": {"js": "question.is_factorised = function(part,penalty) {\n penalty = penalty || 0;\n if(part.credit>0) {\n // Parse the student's answer as a syntax tree\n var studentTree = Numbas.jme.compile(part.studentAnswer,Numbas.jme.builtinScope);\n\n // Create the pattern to match against \n // we just want two sets of brackets, each containing two terms\n // or one of the brackets might not have a constant term\n // or for repeated roots, you might write (x+a)^2\n var rule = Numbas.jme.compile('m_all(m_any(x,x+m_pm(m_number),x^m_number,(x+m_pm(m_number))^m_number))*m_nothing');\n\n // Check the student's answer matches the pattern. \n var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n // If not, take away marks\n if(!m) {\n part.multCredit(penalty,'Your answer is not fully factorised.');\n }\n }\n}", "css": ""}, "advice": "Quadratic equations of the form
\n\\[x^2+bx+c=0\\]
\ncan be factorised to create an equation of the form
\n\\[(x+m)(x+n)=0\\text{.}\\]
\nWhen we expand a factorised quadratic expression we obtain
\n\\[(x+m)(x+n)=x^2+(m+n)x+(m \\times n)\\text{.}\\]
\nTo factorise an equation of the form $x^2+bx+c$, we need to find two numbers which add together to make $b$, and multiply together to make $c$.
\n\\[\\simplify{x^2+{v1+v2}x+{v1*v2}=0}\\]
\nWe need to find two values that add together to make $\\var{v1+v2}$ and multiply together to make $\\var{v1*v2}$.
\n\\[\\begin{align}
\\var{v1} \\times \\var{v2}&=\\var{v1*v2}\\\\
\\var{v1}+\\var{v2}&=\\var{v1+v2}\\\\
\\end{align} \\]
So the factorised form of the equation is
\n\\[\\simplify{(x+{v1})(x+{v2})}=0\\text{.}\\]
\n\nWe can begin factorising by finding factors of $\\var{v3*v4}$ that add together to give $\\var{v3+v4}$.
\n\\[\\begin{align}
\\var{v3} \\times \\var{v4}&=\\var{v3*v4}\\\\
\\var{v3}+\\var{v4}&=\\var{v3+v4}\\\\
\\end{align} \\]
So the factorised form of the equation is
\n\\[\\simplify{(x+{v3})(x+{v4})}=0\\text{.}\\]
\nWhen factorising the quadratic expression
\n\\[\\simplify{x^2+{v5*v6}=0}\\]
\nwe need to find two values that add together to make $0$ and multiply together to make $\\var{v5*v6}$.
\n\\begin{align}
\\var{v5} \\times \\var{v6}& = \\var{v5*v6}\\\\
\\simplify[]{ {v5} + {v6}} &= 0 \\\\
\\end{align}
So the factorised form of the equation is
\n\\[\\simplify{(x+{v5})(x+{v6})}=0\\text{.}\\]
", "type": "question", "variable_groups": [{"variables": ["v1", "v2", "v3", "v4", "v5", "v6"], "name": "Part A "}], "parts": [{"scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "gaps": [{"mustmatchpattern": {"pattern": "(`+-x^$n`? + `+- $n)`* * $z", "message": "Your answer is not fully factorised.", "partialCredit": 0, "nameToCompare": ""}, "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkingAccuracy": 0.001, "scripts": {}, "failureRate": 1, "checkVariableNames": false, "marks": 1, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "useCustomName": false, "showPreview": true, "customName": "", "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "(x+{v1})(x+{v2})", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "vsetRangePoints": 5}], "type": "gapfill", "marks": 0, "customMarkingAlgorithm": "", "prompt": "$\\simplify{x^2+{v1+v2}x+{v1*v2}=0}$
\n[[0]] $=0$
\n", "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "gaps": [{"mustmatchpattern": {"pattern": "(`+-x^$n`? + `+- $n)`* * $z", "message": "Your answer is not fully factorised.", "partialCredit": 0, "nameToCompare": ""}, "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkingAccuracy": 0.001, "scripts": {}, "failureRate": 1, "checkVariableNames": false, "marks": 1, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "useCustomName": false, "showPreview": true, "customName": "", "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "(x+{v3})(x+{v4})", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "vsetRangePoints": 5}], "type": "gapfill", "marks": 0, "customMarkingAlgorithm": "", "prompt": "
$\\simplify{x^2+{v3+v4}x+{v3*v4}}=0$
\n[[0]] $=0$
\n", "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "gaps": [{"mustmatchpattern": {"pattern": "(`+-x^$n`? + `+- $n)`* * $z", "message": "
$\\simplify{x^2+{v5*v6}}=0$
\n[[0]] $=0$
", "variableReplacementStrategy": "originalfirst"}], "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}}, {"name": "Factorising Quadratic Equations with $x^2$ Coefficients Greater than 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "advice": "As this question involves a number greater than $1$ before the $x^2$ value it has a factorised form $(ax+b)(cx+d)$.
\nTo find $a$ and $c$, we need to consider the factors of $\\var{a*c}$.
\nWe are already given that one of them is $\\var{a}$, so we know that the other one must be $\\var{c}$.
\nThis means our factorised equation must take the form
\n\\[(\\var{a}x+b)(\\var{c}x+d)=0\\text{.}\\]
\nThis expands to
\n\\[ \\simplify{ {a*c}x^2 + ({a}*d+{c}*b)x + a*b} \\]
\nSo we must find two numbers which add together to make $\\var{a*d+b*c}$, and multiply together to make $\\var{b*d}$.
\nTherefore $b$ and $d$ must satisfy
\n\\begin{align}
b \\times d &=\\var{b*d}\\\\
\\simplify{{a}d+{c}b} &= \\var{a*d+b*c}\\text{.}
\\end{align}
$b = \\var{b}$ and $d = \\var{d}$ satisfy these equations:
\n\\begin{align}
\\var{b} \\times \\var{d} &=\\var{b*d}\\\\
\\simplify[]{ {a}*{d} + {b}*{c} } &= \\var{a*d+b*c}
\\end{align}
So the factorised form of the equation is
\n\\[ \\simplify{({a}x+{b})({c}x+{d}) = 0} \\text{.}\\]
\n$\\simplify{({a}x+{b})({c}x+{d}) = 0}$ when either $\\var{a}x+\\var{b} = 0$ or $\\var{c}x+ \\var{d} = 0$.
\nSo the roots of the equation are $\\var[fractionnumbers]{-b/a}$ and $\\var[fractionnumbers]{-d/c}$.
\n", "statement": "", "variables": {"b": {"templateType": "anything", "name": "b", "description": "$b$ in $(ax+b)(cx+d)$
", "group": "last q", "definition": "random(-5..5 except 0)"}, "c": {"templateType": "anything", "name": "c", "description": "$c$ in $(ax+b)(cx+d)$
", "group": "last q", "definition": "random(2..8 except a)"}, "a": {"templateType": "anything", "name": "a", "description": "$a$ in $(ax+b)(cx+d)$
", "group": "last q", "definition": "random(2..3)"}, "roots": {"templateType": "anything", "name": "roots", "description": "The roots of the equation
", "group": "last q", "definition": "sort([-b/a,-d/c])"}, "d": {"templateType": "anything", "name": "d", "description": "$d$ in $(ax+b)(cx+d)$
", "group": "last q", "definition": "random(-8..8 except 0)"}}, "tags": ["coefficient of x^2 greater than 1", "Factorisation", "factorisation", "factorising", "factorising quadratic equations", "Factorising quadratic equations", "factorising quadratic equations with x^2 coefficients greater than 1", "taxonomy"], "ungrouped_variables": [], "functions": {}, "rulesets": {}, "metadata": {"description": "Factorise a quadratic equation where the coefficient of the $x^2$ term is greater than 1 and then write down the roots of the equation
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "variable_groups": [{"variables": ["a", "b", "c", "d", "roots"], "name": "last q"}], "preamble": {"js": "", "css": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "b", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "b", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "c", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "c", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "d", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "d", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}], "type": "gapfill", "marks": 0, "variableReplacementStrategy": "originalfirst", "prompt": "Factorise the equation
\n$\\simplify{{a*c}x^2+{a*d+b*c}x+{b*d}=0}\\text{.}$
\n$(\\var{a}x+\\phantom{.}$[[0]]$) ($[[1]]$x+\\phantom{.}$[[2]]$)\\; = 0$
", "variableReplacements": [], "showFeedbackIcon": true}, {"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "roots[0]", "correctAnswerFraction": true, "allowFractions": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "roots[0]", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "roots[1]", "correctAnswerFraction": true, "allowFractions": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "roots[1]", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}], "type": "gapfill", "marks": 0, "variableReplacementStrategy": "originalfirst", "prompt": "\nWrite down the roots of the equation above.
\nInput your answer as $x_1$ and $x_2$, where $x_1<x_2$.
\n$x_1=$ [[0]]
\n$x_2=$ [[1]]
", "variableReplacements": [], "showFeedbackIcon": true}]}]}], "showQuestionGroupNames": true, "metadata": {"description": "", "licence": "All rights reserved"}, "percentPass": "50", "navigation": {"showresultspage": "oncompletion", "preventleave": true, "onleave": {"message": "", "action": "none"}, "browse": true, "showfrontpage": true, "reverse": true, "allowregen": true}, "feedback": {"allowrevealanswer": true, "intro": "", "feedbackmessages": [], "showanswerstate": true, "advicethreshold": 0, "showactualmark": true, "showtotalmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "duration": 7200, "timing": {"timedwarning": {"message": "You have nearly spent 2 hours on this set of questions. If you are really struggling then please seek help from your Maths teacher.
", "action": "warn"}, "allowPause": false, "timeout": {"message": "", "action": "none"}}, "name": "Week 1 Teacher 1 Support Homework", "type": "exam", "contributors": [{"name": "Heidi Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1773/"}], "extensions": [], "custom_part_types": [], "resources": []}