// Numbas version: finer_feedback_settings {"percentPass": 0, "showstudentname": true, "feedback": {"advicethreshold": 0, "intro": "", "showanswerstate": true, "allowrevealanswer": true, "showactualmark": true, "feedbackmessages": [], "showtotalmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "duration": 0, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questions": [{"name": "Using Laws for Addition and Subtraction of Logarithms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Aiden McCall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1592/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "tags": ["addition and subtraction of logarithms", "Laws of logarithms", "laws of logarithms", "logarithms", "Logarithms", "logs", "Logs", "taxonomy"], "advice": "
We need to use the rule
\n\\[\\log_a(x)+\\log_a(y)=\\log_a(xy)\\text{.}\\]
\nSubstituting in our values for $x$ and $y$ gives
\n\\[\\begin{align}
\\log_a(\\var{x1[1]})+\\log_a(\\var{x1[0]})&=\\log_a(\\var{x1[1]}\\times \\var{x1[0]})\\\\
&=\\log_a(\\var{x1[1]*x1[0]})\\text{.}
\\end{align}\\]
\n
We need to use the rule
\n\\[\\log_a(x)-\\log_a(y)=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}\\]
\nSubstituting in our values for $x$ and $y$ gives
\n\\[\\begin{align}
\\log_a(\\var{x1[4]*y1})-\\log_a(\\var{x1[4]})&=\\log_a(\\var{x1[4]*y1}\\div \\var{x1[4]})\\\\
&=\\log_a(\\var{y1})\\text{.}
\\end{align}\\]
Simplify the expressions to fill in the gaps.
", "variable_groups": [], "parts": [{"scripts": {}, "variableReplacements": [], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "stepsPenalty": 0, "gaps": [{"correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "type": "numberentry", "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "maxValue": "x1[1]*x1[0]", "showFeedbackIcon": true, "minValue": "x1[1]*x1[0]", "correctAnswerStyle": "plain", "allowFractions": false, "mustBeReduced": false, "scripts": {}, "variableReplacements": [], "marks": "2", "showCorrectAnswer": true}], "showCorrectAnswer": true, "prompt": "$\\log_a(\\var{x1[1]})+ \\log_a(\\var{x1[0]})=\\log_a($ [[0]]$)$
", "steps": [{"scripts": {}, "variableReplacements": [], "type": "information", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "showCorrectAnswer": true, "prompt": "When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are
\n\\[\\begin{align}
\\log_a(x)+\\log_a(y)&=\\log_a(xy)\\text{,}\\\\
\\log_a(x)-\\log_a(y)&=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}
\\end{align}\\]
$\\log_a(\\var{(x1[4])*y1})-\\log_a(\\var{x1[4]})=\\log_a($ [[0]]$)$
", "steps": [{"scripts": {}, "variableReplacements": [], "type": "information", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "showCorrectAnswer": true, "prompt": "When adding and subtracting logarithms we can simplify the expressions using some logarithm laws. These laws are
\n\\[\\begin{align}
\\log_a(x)+\\log_a(y)&=\\log_a(xy)\\text{,}\\\\
\\log_a(x)-\\log_a(y)&=\\log_a\\left(\\frac{x}{y}\\right)\\text{.}
\\end{align}\\]
Use laws for addition and subtraction of logarithms to simplify a given logarithmic expression to an arbitrary base.
"}, "functions": {}}, {"name": "Rearranging Logarithms involving Indices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "statement": "When logarithms involve indices we can rearrange them using the rule,
\n\\[\\log_a(x^y)=y\\log_a(x)\\text{.}\\]
\nThis can also be useful for removing integers from the front of logarithms.
", "advice": "i)
\nWe need to use the rule
\n\\[k\\log_a(x)=\\log_a(x^k)\\text{.}\\]
\nSubsituting in our values for $x$ and $k$ gives
\n\\[\\var{x1[3]}\\log_a(\\var{z1[0]})=\\log_a(\\var{z1[0]^x1[3]})\\text{.}\\]
\nii)
\nWe need to use the rule
\n\\[k\\log_a(x)=\\log_a(x^k)\\text{.}\\]
\nSubsituting in our values for $x$ and $k$ gives
\n\\[\\var{x1[1]}\\log_a(\\var{z1[1]})=\\log_a(\\var{z1[1]^x1[1]})\\text{.}\\]
\ni)
\nThe rule for indices in logarithms also works the other way around,
\n\\[\\log_a(x^k)=k\\log_a(x)\\text{.}\\]
\nWe can use this to rearrange our expression by substituting in values for $x$ and $k$.
\n\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[5]})&=k\\log_a(\\var{x1[3]})\\\\
\\var{x1[3]^z1[5]}&=\\var{x1[3]}^k\\\\
\\var{x1[3]^z1[5]}&=\\var{x1[3]}^\\var{z1[5]}\\\\
k&=\\var{z1[5]}\\\\
\\log_a(\\var{x1[3]^z1[5]})&=\\var{z1[5]}\\log_a(\\var{x1[3]})
\\end{align}\\]
ii)
\nAs with i) we can use the rule
\n\\[\\log_a(x^k)=k\\log_a(x)\\text{.}\\]
\nWe can use this to rearrange our expression by substituting in values for $x$ and $k$.
\n\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[6]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[6]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[6]}&=\\var{x1[5]}^\\var{z1[6]}\\\\
k&=\\var{z1[6]}\\\\
\\log_a(\\var{x1[5]^z1[6]})&=\\var{z1[6]}\\log_a(\\var{x1[5]})
\\end{align}\\]
i)
\nFrom the structure of this question we can tell that the answer can be written in the form $k\\log_a(\\var{x1[3]})$, meaning all of the values in the expression
\n\\[\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})\\]
\ncan be written in the form $k\\log_a(\\var{x1[3]})$.
\nIf we look at each log individually we can make sure they all take this form.
\n\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[2]})&=k\\log_a(\\var{x1[3]})\\\\
\\var{x1[3]^z1[2]}&=\\var{x1[3]}^k\\\\
\\var{x1[3]^z1[2]}&=\\var{x1[3]}^\\var{z1[2]}\\\\
k&=\\var{z1[2]}\\\\
\\log_a(\\var{x1[3]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})
\\end{align}\\]
We can now write our expression as
\n\\[\\begin{align}
\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})+\\log_a(\\var{x1[3]})\\\\
&=\\var{z1[2]+1}\\log_a(\\var{x1[3]})\\text{.}
\\end{align}\\]
ii)
\nFrom this question we know our answer is written in the form $k\\log_a(\\var{x1[4]})$, meaning all of the values in the expression
\n\\[\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})\\]
\ncan be written in the form $k\\log_a(\\var{x1[4]})$.
\nIf we look at each log individually we can make sure they all take this form.
\n\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[1]})&=k\\log_a(\\var{x1[4]})\\\\
\\var{x1[4]^z1[1]}&=\\var{x1[4]}^k\\\\
\\var{x1[4]^z1[1]}&=\\var{x1[4]}^\\var{z1[1]}\\\\
k&=\\var{z1[1]}\\\\
\\log_a(\\var{x1[4]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})
\\end{align}\\]
\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[0]})&=k\\log_a(\\var{x1[4]})\\\\
\\var{x1[4]^z1[0]}&=\\var{x1[4]}^k\\\\
\\var{x1[4]^z1[0]}&=\\var{x1[4]}^\\var{z1[0]}\\\\
k&=\\var{z1[0]}\\\\
\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[0]}\\log_a(\\var{x1[4]})
\\end{align}\\]
We can now write our expression as
\n\\[\\begin{align}
\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})+\\var{z1[0]}\\log_a(\\var{x1[4]})\\\\
&=\\var{z1[1]+z1[0]}\\log_a(\\var{x1[4]})\\text{.}
\\end{align}\\]
iii)
\nFrom this question we know our answer is written in the form $k\\log_a(\\var{x1[5]})$, meaning all of the values in the expression
\n\\[\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})\\]
\ncan be written in the form $k\\log_a(\\var{x1[5]})$.
\nIf we look at each log individually we can make sure they all take this form.
\n\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[1]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[1]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[1]}&=\\var{x1[5]}^\\var{z1[1]}\\\\
k&=\\var{z1[1]}\\\\
\\log_a(\\var{x1[5]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})
\\end{align}\\]
\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[2]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[2]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[2]}&=\\var{x1[5]}^\\var{z1[2]}\\\\
k&=\\var{z1[2]}\\\\
\\log_a(\\var{x1[5]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[5]})
\\end{align}\\]
\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[4]})&=k\\log_a(\\var{x1[5]})\\\\
\\var{x1[5]^z1[4]}&=\\var{x1[5]}^k\\\\
\\var{x1[5]^z1[4]}&=\\var{x1[5]}^\\var{z1[4]}\\\\
k&=\\var{z1[4]}\\\\
\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[4]}\\log_a(\\var{x1[5]})
\\end{align}\\]
We can now write our expression as
\n\\[\\begin{align}
\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})+\\var{z1[0]}\\log_a(\\var{x1[5]})-\\var{z1[4]}\\log_a(\\var{x1[5]})\\\\
&=\\var{z1[1]+z1[2]-z1[4]}\\log_a(\\var{x1[5]})\\text{.}
\\end{align}\\]
Simplify the following expressions.
\ni)
\n$\\var{z1[0]}\\log_a(\\var{x1[3]})=\\log_a($ [[0]]$)$
\nii)
\n$\\var{z1[1]}\\log_a(\\var{x1[1]})=\\log_a($ [[1]]$)$
", "marks": 0}, {"scripts": {}, "variableReplacements": [], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "type": "jme", "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "expectedvariablenames": [], "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answer": "{z1[5]}", "marks": 1, "variableReplacements": [], "checkvariablenames": false, "showpreview": true}, {"checkingtype": "absdiff", "scripts": {}, "type": "jme", "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "expectedvariablenames": [], "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answer": "{z1[6]}", "marks": 1, "variableReplacements": [], "checkvariablenames": false, "showpreview": true}], "showCorrectAnswer": true, "prompt": "Simplify the following expressions.
\ni)
\n$\\log_a(\\var{x1[3]^z1[5]})=$ [[0]] $\\log_a(\\var{x1[3]})$
\nii)
\n$\\log_a(\\var{x1[5]^z1[6]})=$ [[1]] $\\log_a(\\var{x1[5]})$
", "marks": 0}, {"scripts": {}, "variableReplacements": [], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "type": "jme", "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "expectedvariablenames": [], "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answer": "{z1[2]+1}", "marks": 1, "variableReplacements": [], "checkvariablenames": false, "showpreview": true}, {"checkingtype": "absdiff", "scripts": {}, "type": "jme", "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "expectedvariablenames": [], "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answer": "{z1[1]+z1[0]}", "marks": 1, "variableReplacements": [], "checkvariablenames": false, "showpreview": true}, {"checkingtype": "absdiff", "scripts": {}, "type": "jme", "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "expectedvariablenames": [], "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answer": "{z1[1]+z1[2]-z1[4]}", "marks": 1, "variableReplacements": [], "checkvariablenames": false, "showpreview": true}], "showCorrectAnswer": true, "prompt": "i)
\n$\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})=$ [[0]]$\\log_a(\\var{x1[3]})$
\nii)
\n$\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})=$ [[1]]$\\log_a(\\var{x1[4]})$
\niii)
\n$\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})=$ [[2]]$\\log_a(\\var{x1[5]})$
", "marks": 0}], "ungrouped_variables": ["x1", "y1", "z1", "b1", "c", "b4", "b", "b2"], "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Use the rule $\\log_a(n^b) = b\\log_a(n)$ to rearrange some expressions.
"}, "preamble": {"css": "", "js": ""}, "functions": {}}, {"name": "Using the Logarithm Equivalence $\\log_ba=c \\Longleftrightarrow a=b^c$", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "type": "question", "statement": "Changing the subject of an equation involving logarithms often requires the use of the equivalence
\n\\[\\log_ba=c \\Longleftrightarrow a=b^c\\text{.}\\]
", "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"h2": {"group": "part3", "description": "", "templateType": "anything", "name": "h2", "definition": "random(2..4)"}, "f3": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "f3", "definition": "random(3..8)"}, "h1": {"group": "part3", "description": "", "templateType": "anything", "name": "h1", "definition": "random(1..10 except h2)"}, "g2": {"group": "part 2", "description": "", "templateType": "anything", "name": "g2", "definition": "random(2..10except g1)"}, "f2": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "f2", "definition": "random(2..10 except f3 f)"}, "f5": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "f5", "definition": "random(2..6 except f1)"}, "f4": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "f4", "definition": "random(5..12 except f2 f)"}, "f1": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "f1", "definition": "random(2..5 except f)"}, "g1": {"group": "part 2", "description": "", "templateType": "anything", "name": "g1", "definition": "random(2..10)"}, "f": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "f", "definition": "random(2..10)"}, "g3": {"group": "part 2", "description": "", "templateType": "anything", "name": "g3", "definition": "random(2..10except g1 g2)"}, "g4": {"group": "part 2", "description": "", "templateType": "anything", "name": "g4", "definition": "random(2..10except g1 g2 g3)"}}, "functions": {}, "tags": ["logarithm", "Logarithm", "Logarithm equivalence law", "logarithm laws", "Logs", "logs", "taxonomy"], "variable_groups": [{"name": "part 2", "variables": ["g3", "g2", "g4", "g1"]}, {"name": "part3", "variables": ["h1", "h2"]}], "parts": [{"scripts": {}, "variableReplacements": [], "marks": 0, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showpreview": true, "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "expectedvariablenames": [], "marks": 1, "variableReplacements": [], "answer": "{f^f1}", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "prompt": "Rearrange the equation to find $x$.
\n$\\log_\\var{f}(x)=\\var{f1}$
\n$x=$ [[0]]
", "type": "gapfill"}, {"scripts": {}, "variableReplacements": [], "marks": 0, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showpreview": true, "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "expectedvariablenames": [], "marks": 1, "variableReplacements": [], "answer": "{g1}^(y+{g2})", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "prompt": "Make $x$ the subject of the following equation.
\n$\\log_\\var{g1}(x)=y+\\var{g2}$
\n$x=$ [[0]]
Make $x$ the subject of the equation, leaving your answer in the form $a^{\\frac{1}{b}}$.
\n$\\log_x(y+\\var{h1})=\\var{h2}$
\n$x=$ [[0]]
", "type": "gapfill"}, {"maxAnswers": 0, "minMarks": 0, "distractors": ["", "", "", "", "", ""], "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "choices": ["$\\log_a(a^x)$
", "$a^{\\log_a(x)}$
", "$e^{\\ln(x)}$
", "$\\log_{10}(x)$
", "$\\log_e(x)$
", "$\\ln(e^x)$
"], "showFeedbackIcon": true, "prompt": "Which of the following expressions are equivalent to $x$?
", "minAnswers": 0, "shuffleChoices": true, "matrix": ["1", "1", "1", "-5", "-5", "1"], "variableReplacements": [], "marks": 0, "displayColumns": 0, "scripts": {}, "warningType": "none", "showCorrectAnswer": true, "displayType": "checkbox", "type": "m_n_2"}], "ungrouped_variables": ["f", "f2", "f1", "f3", "f4", "f5"], "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Rearrange some expressions involving logarithms by applying the relation $\\log_b(a) = c \\iff a = b^c$.
"}, "preamble": {"css": "", "js": ""}, "advice": "i)
\nWe can rearrange logarithms using indices.
\n\\[\\log_ba=c \\Longleftrightarrow a=b^c\\]
\nUsing this equivalence we can rewrite $\\log_\\var{f}x=\\var{f1}$.
\n\\[\\begin{align}
x&= \\var{f}^\\var{f1} \\\\
&=\\var{f^f1}
\\end{align}\\]
\n
i)
\nWe can use the equivalence to rewrite our equation.
\n\\[\\log_ba=c \\Longleftrightarrow a=b^c\\]
\nWe can write out our values to makes it easier.
\n\\[\\begin{align}
a&=x \\\\
b&=\\var{g1}\\\\
c&=y+\\var{g2}
\\end{align}\\]
Then we can write out our equation in the required form.
\n\\[x=\\var{g1}^{y+\\var{g2}}\\]
\n\n
We can use the same equivalence as in part b).
\n\\[\\log_ba=c \\Longleftrightarrow a=b^c\\]
\nWe have
\n\\begin{align}
a&=y+\\var{h1} \\\\
b&=x\\\\
c&=\\var{h2}\\text{.} \\\\ \\\\
\\log_{x}(y+\\var{h1}) &= \\var{h2} \\\\
\\implies y+\\var{h1} &= x^{\\var{h2}} \\\\
x &= (y+\\var{h1})^{\\frac{1}{\\var{h2}}}
\\end{align}
The two in this list that don't equal $x$ are $\\log_e(x)$ and $\\log_{10}(x)$.
\n\\[\\begin{align}
\\log_e(x)&=\\ln(x)\\\\
\\log_{10}(x)&=\\log(x)\\text{.}
\\end{align}\\]
Apply and combine logarithm laws in a given equation to find the value of $x$.
", "licence": "Creative Commons Attribution 4.0 International"}, "ungrouped_variables": ["x1", "y1", "z1", "b1", "c", "b4", "b", "b2"], "type": "question", "rulesets": {}, "advice": "We can use the logarithm law
\n\\[k\\log_a(x)=\\log_a(x^k)\\text{,}\\]
\nto also give a more specific rule
\n\\[\\begin{align}
\\log_a\\left(\\frac{1}{x}\\right)&=\\log_a(x^{-1})\\\\
&=-\\log_a(x)\\text{.}
\\end{align}\\]
This means we can write our expression as
\n\\[\\log_\\var{b1}(x-\\var{b2})+\\log_\\var{b1}({x})=\\var{b4}\\text{.}\\]
\nThen using the rule
\n\\[\\log_a(x)+\\log_a(y)=\\log_a(x\\times y)\\text{,}\\]
\nwe can write our equation as
\n\\[\\begin{align}
\\log_\\var{b1}(x(x-\\var{b2}))&=\\var{b4}\\\\
\\log_\\var{b1}(x^2-\\var{b2}x)&=\\var{b4}\\text{.}\\\\
\\end{align}\\]
We then rely on the definition of $\\log_a$
\n\\[b=a^c \\Longleftrightarrow \\log_{a}b=c\\]
\nto write our equation as
\n\\[\\begin{align}
x^2-\\var{b2}x&=\\var{b1}^\\var{b4}\\\\
&=\\var{b1^b4}\\text{.}
\\end{align}\\]
We can then write out our equation and solve either by factorising or using the quadratic formula;
\n\\[\\begin{align}
x^2-\\var{b2}x-\\var{b1^{b4}}&=0\\\\
(x+2)(x-\\var{b})&=0\\text{.}
\\end{align}\\]
As logarithms can only be applied to positive numbers, the only possible value for $x$ is $\\var{b}$.
\n$\\ln(x)$ is a shorthand for $\\log_e(x)$, so we can apply the same laws of logarithms here.
\nTherefore applying the rule
\n\\[k\\log_a(x)=\\log_a(x^k)\\]
\nwe can write our equation as
\n\\[\\ln(x^\\var{p})+\\ln(\\var{q})=\\var{m}\\text{.}\\]
\nThen using the rule
\n\\[\\log_a(x)+\\log_a(y)=\\log_a(x\\times y)\\]
\nwe can write our equation as
\n\\[\\ln(\\var{q}x^\\var{p})=\\var{m}\\text{.}\\]
\nAs $\\ln=\\log_e$ we can use
\n\\[a=b^c \\Longleftrightarrow \\log_ba=c\\]
\nto write our equation as
\n\\[\\var{q}x^\\var{p}=e^\\var{m}\\text{.}\\]
\nWe then just need to rearrange our equation
\n\\[\\begin{align}
\\var{q}x^\\var{p}&=e^\\var{m}\\\\[0.5em]
x^\\var{p}&=\\frac{e^\\var{m}}{\\var{q}}\\\\[0.5em]
x&=\\frac{e^{\\var{m}/\\var{p}}}{\\var{q^(1/{p})}}
\\end{align}\\]
Solve for $x$.
\n$\\log_\\var{b1}(x-\\var{b2})-\\log_\\var{b1}\\left(\\displaystyle\\frac{1}{x}\\right)=\\var{b4}$
\n$x=$ [[0]]
", "variableReplacements": [], "showFeedbackIcon": true, "marks": 0, "gaps": [{"scripts": {}, "vsetrangepoints": 5, "showCorrectAnswer": true, "checkingaccuracy": 0.001, "showFeedbackIcon": true, "marks": "2", "checkvariablenames": false, "type": "jme", "answer": "{b}", "showpreview": true, "variableReplacementStrategy": "originalfirst", "checkingtype": "absdiff", "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": []}]}, {"scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true, "steps": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "information", "showCorrectAnswer": true, "prompt": "You may find the following conversion useful
\n\\[\\ln(x)=\\log_e(x)\\]
", "variableReplacements": [], "showFeedbackIcon": true, "marks": 0}], "prompt": "Solve for $x$ and leave your answer in the form $x=\\displaystyle\\frac{e^{a}}{b}$.
\n$\\var{p}\\ln(x)+\\ln(\\var{q})=\\var{m}$
\n$x=$ [[0]]
", "variableReplacements": [], "showFeedbackIcon": true, "marks": 0, "gaps": [{"scripts": {}, "vsetrangepoints": 5, "showCorrectAnswer": true, "checkingaccuracy": 0.001, "showFeedbackIcon": true, "marks": "2", "checkvariablenames": false, "type": "jme", "answer": "e^({m}/{p})/{v}", "notallowed": {"partialCredit": 0, "showStrings": false, "message": "", "strings": ["*", ")^"]}, "showpreview": true, "variableReplacementStrategy": "originalfirst", "checkingtype": "absdiff", "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": []}], "stepsPenalty": 0}], "tags": ["logarithm", "Logarithm", "logs", "Logs", "taxonomy"], "preamble": {"js": "", "css": ""}, "variable_groups": [{"name": "part c", "variables": ["p", "v", "q", "m"]}], "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}}, {"name": "nth roots of a complex number", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Daniel Mansfield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/743/"}], "rulesets": {}, "metadata": {"description": "", "licence": "None specified"}, "preamble": {"css": "", "js": ""}, "variables": {"theta_n": {"name": "theta_n", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(-1*(theta_d-1)..theta_d - 1)", "description": ""}, "answers": {"name": "answers", "group": "Unnamed group", "templateType": "anything", "definition": "map(r*e^(pi*i*theta),theta,args)", "description": ""}, "args": {"name": "args", "group": "Unnamed group", "templateType": "anything", "definition": "filter(-1 < arg && arg <= 1, arg, map((theta_n + 2*theta_d*k)/(n*theta_d),k,-n..n))", "description": ""}, "argsset": {"name": "argsset", "group": "Unnamed group", "templateType": "anything", "definition": "set(args)", "description": ""}, "ks": {"name": "ks", "group": "Unnamed group", "templateType": "anything", "definition": "map(k,k,filter(-1 < (theta_n + 2*theta_d*k)/(n*theta_d) && (theta_n + 2*theta_d*k)/(n*theta_d) <= 1, k,-n..n))", "description": ""}, "r": {"name": "r", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(2..5)", "description": ""}, "rn": {"name": "rn", "group": "Unnamed group", "templateType": "anything", "definition": "r^n", "description": ""}, "theta_d": {"name": "theta_d", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(2,3,4)", "description": ""}, "n": {"name": "n", "group": "Ungrouped variables", "templateType": "anything", "definition": "5", "description": ""}}, "variablesTest": {"maxRuns": 100, "condition": "not(theta_n = 0)"}, "ungrouped_variables": ["n", "r", "theta_d", "theta_n"], "parts": [{"prompt": "In polar form, the roots are
\n$A$ | \n$B$ | \n$C$ | \n$D$ | \n$E$ | \n
[[0]] | \n[[1]] | \n[[2]] | \n[[3]] | \n[[4]] | \n
The syntax for $2e^{\\frac{i \\pi}{3}}$ is $\\verb|2e^(i pi/3)|$.
", "showCorrectAnswer": false, "stepsPenalty": 0, "steps": [{"showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "marks": 0, "type": "information", "scripts": {}, "prompt": "Consider all possible expressions of $w$ by adding $2 \\pi k i$ to the argument, where $k$ is an integer.
\n\\[w = \\var{rn} e^{\\simplify{ {theta_n} / {theta_d} }\\pi i + 2\\pi k i}\\]
\nNow suppose that $re^{i \\theta}$ is an $\\var{n}$'th root of $w$. This means that $(re^{i \\theta})^\\var{n} = w$ and so
\n\\[ r^{\\var{n}} e^{i \\var{n} \\theta} = (re^{i \\theta})^\\var{n} = w = \\var{rn} e^{\\simplify{ {theta_n} / {theta_d} }\\pi i + 2\\pi k i}\\].
", "unitTests": [], "variableReplacements": []}, {"prompt": "Equating the modulus, we see that \\(r^{\\var{n}} = \\var{rn}\\). Hence all the roots have the same modulus, which is
", "notationStyles": ["plain", "en", "si-en"], "showCorrectAnswer": true, "mustBeReduced": false, "correctAnswerStyle": "plain", "scripts": {}, "type": "numberentry", "unitTests": [], "maxValue": "{r}", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "minValue": "{r}", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "correctAnswerFraction": false, "mustBeReducedPC": 0, "allowFractions": false, "marks": 1, "variableReplacements": []}, {"showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "marks": 0, "type": "information", "scripts": {}, "prompt": "Equating the argument, we see that $\\var{n} \\theta =\\pi\\left( \\simplify{ {theta_n} / {theta_d} + 2 k}\\right)$. This expression gives us a formula for $\\theta$:
\n\\[\\theta = \\frac{\\pi}{\\simplify{{n} {theta_d}}} \\left( \\simplify{ {theta_n} + {theta_d} 2 k}\\right)\\]
\nwhere each integer $k$ gives a different value for $\\theta$. However, there are exactly \\(\\var{n}\\) values of \\(\\theta\\) in the principal argument range: $-\\pi < \\theta \\leq \\pi$.
", "unitTests": [], "variableReplacements": []}, {"prompt": "When $k=\\var{ks[0]}$ this gives the argument of the point $A$:
", "checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{pi*args[0]}", "variableReplacements": []}, {"prompt": "When $k=\\var{ks[1]}$ this gives the argument of the point $B$:
", "checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{pi*args[1]}", "variableReplacements": []}, {"prompt": "When $k=\\var{ks[2]}$ this gives the argument of the point $C$:
", "checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{pi*args[2]}", "variableReplacements": []}, {"prompt": "When $k=\\var{ks[3]}$ this gives the argument of the point $D$:
", "checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{pi*args[3]}", "variableReplacements": []}, {"prompt": "When $k=\\var{ks[4]}$ this gives the argument of the point $E$:
", "checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{pi*args[4]}", "variableReplacements": []}], "scripts": {}, "type": "gapfill", "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{answers[0]}", "variableReplacements": []}, {"checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{answers[1]}", "variableReplacements": []}, {"checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{answers[2]}", "variableReplacements": []}, {"checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{answers[3]}", "variableReplacements": []}, {"checkingAccuracy": 0.001, "showCorrectAnswer": true, "expectedVariableNames": [], "vsetRange": [0, 1], "scripts": {}, "type": "jme", "checkVariableNames": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "showPreview": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "checkingType": "absdiff", "customMarkingAlgorithm": "", "marks": 1, "vsetRangePoints": 5, "answer": "{answers[4]}", "variableReplacements": []}], "customMarkingAlgorithm": "", "marks": 0, "variableReplacements": []}], "tags": [], "functions": {"nthroots": {"language": "javascript", "parameters": [["r", "number"], ["args", "list"], ["n", "number"]], "type": "html", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n{boundingBox: [-(r+1),(r+1),(r+1),-(r+1)],\n axis: true,\n showNavigation: false,\n grid: false\n});\n\n \n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar board = div.board; \n\nvar p;\n\nfor (var i = 0; i < n; i++) {\n p = board.createElement('point',[r*Math.cos(Math.PI*args[i]),r*Math.sin(Math.PI*args[i])], {visible: true,fixed:true});\n}\n\nvar p1 = board.createElement('point',[0,0], {visible: false});\n\nboard.createElement('circle',[p1,p], \n {strokeWidth:3, dash:2,fillColor:'#ffffff',fillOpacity:0.3});\n\n\nreturn div;"}}, "variable_groups": [{"name": "Unnamed group", "variables": ["rn", "args", "answers", "ks", "argsset"]}], "statement": "The $\\var{n}$'th roots of
\n\\[w=\\var{rn} e^{\\simplify{ {theta_n} / {theta_d} }\\pi i}\\]
\nare displayed in the diagram below, labelled $A,B,C,D$ and $E$.
\n{nthroots(r,args,n)}
", "advice": "Suppose that $re^{i \\theta}$ is an $\\var{n}$'th root of $w$. This means that $(re^{i \\theta})^\\var{n} = w$ and so for any integer \\(k\\):
\n\\[ r^{\\var{n}} e^{i \\var{n} \\theta} = (re^{i \\theta})^\\var{n} = w = \\var{rn} e^{\\simplify{ {theta_n} / {theta_d} }\\pi i + 2\\pi k i}.\\]
\nEquating the modulus, we see that \\(r^{\\var{n}} = \\var{rn}\\). So \\(r = \\var{r}\\).
\nEquating the argument, we see that $\\var{n} \\theta =\\pi\\left( \\simplify{ {theta_n} / {theta_d} + 2 k}\\right)$. So \\[\\theta = \\frac{\\pi}{\\simplify{{n} {theta_d}}} \\left( \\simplify{ {theta_n} + {theta_d} 2 k}\\right)\\] where each integer $k$ gives a different value for $\\theta$. The \\(\\var{n}\\) values of \\(\\theta\\) which lie within the principal argument range $-\\pi < \\theta \\leq \\pi$ are:
\\[ \\theta = \\var[fractionNumbers]{args[0]}\\pi, \\var[fractionNumbers]{args[1]}\\pi, \\var[fractionNumbers]{args[2]}\\pi, \\var[fractionNumbers]{args[3]}\\pi, \\var[fractionNumbers]{args[4]}\\pi. \\]
\nSince the points \\(A,B,C,D,E\\) are orderd from smallest argument to largest, we have that
\n\\[A = \\var{r}e^{\\var[fractionNumbers]{args[0]}\\pi i}, B = \\var{r}e^{\\var[fractionNumbers]{args[1]}\\pi i}, C = \\var{r}e^{\\var[fractionNumbers]{args[2]}\\pi i}, D = \\var{r}e^{\\var[fractionNumbers]{args[3]}\\pi i}, E = \\var{r}e^{\\var[fractionNumbers]{args[4]}\\pi i}. \\]
", "type": "question"}]}], "showQuestionGroupNames": false, "timing": {"timeout": {"message": "", "action": "none"}, "timedwarning": {"message": "", "action": "none"}, "allowPause": true}, "navigation": {"preventleave": true, "onleave": {"message": "", "action": "none"}, "showfrontpage": true, "browse": true, "allowregen": true, "showresultspage": "oncompletion", "reverse": true}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Questions on manipulating logarithms.
"}, "name": "franco's copy of Joshua's copy of Printable assignment using NUMBAS", "type": "exam", "contributors": [{"name": "franco chooramen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1979/"}], "extensions": ["jsxgraph"], "custom_part_types": [], "resources": []}