// Numbas version: finer_feedback_settings {"shuffleQuestions": false, "navigation": {"onleave": {"action": "none", "message": ""}, "allowregen": true, "showresultspage": "oncompletion", "reverse": true, "showfrontpage": true, "preventleave": true, "browse": true}, "timing": {"timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "none", "message": ""}, "allowPause": true}, "feedback": {"allowrevealanswer": true, "showanswerstate": true, "showtotalmark": true, "feedbackmessages": [], "showactualmark": true, "intro": "", "advicethreshold": 0, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "metadata": {"description": "

Critical points, absolute minimum, local maximum and minimum points, increasing and decreasing, concavity

\n

rebel

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "exam", "allQuestions": true, "pickQuestions": 0, "percentPass": 0, "question_groups": [{"pickingStrategy": "all-ordered", "name": "", "questions": [{"name": "Critical Points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "j"], "tags": ["rebel", "Rebel", "rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

$f(x) = \\var{a}x^2 + \\var{b}x$.

\n

Critical value $x = $ [[0]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "-{b}/(2{a})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$f(x) = \\frac{1}{3}x^3 \\simplify{-({c}+{d})/2x^2 + {c}{d}x}$

\n

Smaller critical value, $x = $[[0]]. Larger critical value, $x = $ [[1]]. 

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{c}", "minValue": "{c}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{d}", "minValue": "{d}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$f(p) = \\frac{p-1}{p^2-p+1}$

\n

Smaller critical value $p = $ [[0]]. Larger critical value $p = $ [[1]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "0", "minValue": "0", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "2", "minValue": "2", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$g(y) = y^\\var{j}e^{\\simplify{-({j}+1)}y}$

\n

Smaller critical value, $y = $ [[0]]. Larger critical value, $y = $ [[1]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "0", "minValue": "0", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{j}/({j}+1)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Find the critical numbers of the functions:

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..8 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(1..3) + c", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "j": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "j", "description": ""}}, "metadata": {"description": "

Critical Points

\n

rebel rebelmaths

\n

Rebel

\n

", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Absolute Minima", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "ungrouped_variables": [], "tags": ["rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

$f(x) = 3x^2-12x+5$ on $[0,3]$

\n

Absolute minimum at $x = $ [[0]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "2", "minValue": "2", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$f(x) = (x^2-1)^3$ on $[-1,2]$.

\n

Absolute minimum at $x = $ [[0]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "0", "minValue": "0", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$f(x) = \\ln(x^2+x+1)$ on $[-1,1]$.

\n

Absolute minimum at $x = $ [[0]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "-1/2", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$f(x) = x\\sqrt{4-x^2}$.

\n

Absolute minimum at $x = $ [[0]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "-1", "minValue": "-1", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Find the absolute minimum value of $f$ on the given interval.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {}, "metadata": {"description": "

calculus min minimum

\n

rebel

\n

rebelmaths

\n

", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": " Optimisation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "ungrouped_variables": ["c", "b", "d"], "tags": ["rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

Find two numbers whose difference is {b} and whose product is minimum.

\n

Smaller number : [[0]]. Larger number: [[1]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "-{b}/2", "minValue": "-{b}/2", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{b}/2", "minValue": "{b}/2", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Find two positive numbers whose product is $\\simplify{{c}^2}$ and whose sum is minimum.

\n

Smaller number: [[0]]. Larger number: [[1]].

\n

(If the numbers are the same size still be sure to fill in both boxes.)

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{c}", "minValue": "{c}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{c}", "minValue": "{c}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

The sum of two positive numbers is {d}. What is the smallest possible value for the sum of their squares?

", "allowFractions": false, "variableReplacements": [], "maxValue": "{d}^2/2", "minValue": "{d}^2/2", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"c": {"definition": "random(5..12)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "2*random(10..30)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "2*random(3..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"description": "

Optimisation using calculus

\n

rebel

\n

rebelmaths

\n

Rebel

\n

", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Shapes of Graphs", "extensions": [], "custom_part_types": [], "resources": [["question-resources/graph1.pdf", "/srv/numbas/media/question-resources/graph1.pdf"], ["question-resources/graph1_1.jpg", "/srv/numbas/media/question-resources/graph1_1.jpg"], ["question-resources/graph2.jpg", "/srv/numbas/media/question-resources/graph2.jpg"], ["question-resources/graph3.jpg", "/srv/numbas/media/question-resources/graph3.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "ungrouped_variables": [], "tags": ["rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"displayColumns": 0, "prompt": "

\n

The function is 

", "matrix": [0, "1", 0], "shuffleChoices": false, "variableReplacements": [], "choices": ["

Decreasing only

", "

Increasing only

", "

Both increasing and decreasing

"], "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "distractors": ["", "", ""], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}, {"displayColumns": 0, "prompt": "

\n

On the interval [-1,0] the function is: 

", "matrix": [0, 0, "1"], "shuffleChoices": false, "variableReplacements": [], "choices": ["

Increasing only

", "

Decreasing only

", "

Both increasing and decreasing

"], "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "distractors": ["", "", ""], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}, {"displayColumns": 0, "prompt": "

\n

On the interval [0,1] the derivative of the function is 

", "matrix": [0, "1", 0], "shuffleChoices": false, "variableReplacements": [], "choices": ["

Positive

", "

Negative

", "

Cannot tell

"], "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "distractors": ["", "", ""], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {}, "metadata": {"description": "

using calculus

\n

rebel

\n

rebelmaths

\n

Rebel

", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Concavity", "extensions": [], "custom_part_types": [], "resources": [["question-resources/graph4.jpg", "/srv/numbas/media/question-resources/graph4.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b"], "tags": ["rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"displayColumns": 0, "prompt": "

\n

The function graphed above is:

", "matrix": ["1", 0, 0], "shuffleChoices": false, "variableReplacements": [], "choices": ["

Concave upward

", "

Concave downward

", "

Cannot tell

"], "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "distractors": ["", "", ""], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}, {"displayColumns": 0, "prompt": "

The graph of the function $f(x) = -\\var{a}x^2-\\var{b}x+\\var{c}$ is 

\n

", "matrix": [0, "1", 0], "shuffleChoices": false, "variableReplacements": [], "choices": ["

Concave upward

", "

Concave downward

", "

Cannot tell

"], "variableReplacementStrategy": "originalfirst", "maxMarks": 0, "distractors": ["", "", ""], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(1..9 except a except b)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..9 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}}, "metadata": {"description": "

Concavity using Calculus

\n

rebel

\n

rebelmaths

\n

Rebel

", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}], "pickQuestions": 0}], "questions": [], "showQuestionGroupNames": false, "duration": 0, "name": "Milena's copy of Curve Sketching using Calculus", "contributors": [{"name": "Milena Venkova", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2169/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/graph1.pdf", "/srv/numbas/media/question-resources/graph1.pdf"], ["question-resources/graph1_1.jpg", "/srv/numbas/media/question-resources/graph1_1.jpg"], ["question-resources/graph2.jpg", "/srv/numbas/media/question-resources/graph2.jpg"], ["question-resources/graph3.jpg", "/srv/numbas/media/question-resources/graph3.jpg"], ["question-resources/graph4.jpg", "/srv/numbas/media/question-resources/graph4.jpg"]]}