// Numbas version: finer_feedback_settings {"name": "Vectors revision (HP48)", "metadata": {"description": "

Some basic tasks involving vectors, including converting to/from component form, scalar product, resultant vectors.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "duration": 3600, "percentPass": "75", "showQuestionGroupNames": false, "shuffleQuestionGroups": false, "showstudentname": true, "question_groups": [{"name": "Group", "pickingStrategy": "all-ordered", "pickQuestions": 1, "questionNames": ["", "", "", "", "", ""], "variable_overrides": [[], [], [], [], [], []], "questions": [{"name": "Calculate vector magnitude and direction", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Component.gif", "/srv/numbas/media/question-resources/Component.gif"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Let $\\underline{v}=\\left(\\begin{array}{c}\\var{x}\\\\ \\var{y}\\end{array}\\right)$

\n

You are going to calculate the magnitude and direction of this vector. Refer to the diagram below:

\n

\n

", "advice": "", "rulesets": {}, "variables": {"y": {"name": "y", "group": "Ungrouped variables", "definition": "random(1..10 except x)", "description": "", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "random(1..10)", "description": "", "templateType": "anything"}, "angle": {"name": "angle", "group": "Ungrouped variables", "definition": "degrees(arctan(y/x))", "description": "", "templateType": "anything"}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "sqrt(x^2+y^2)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x", "y", "r", "angle"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the horizontal component of $\\underline{v}$?

", "minValue": "{x}", "maxValue": "{x}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the vertical component of $\\underline{v}$?

", "minValue": "{y}", "maxValue": "{y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnitude of $\\underline{v}$.

", "minValue": "{r}", "maxValue": "{r}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "2", "precisionPartialCredit": "0", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the direction of the vector $\\underline{v}$.

", "minValue": "{angle}", "maxValue": "{angle}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Calculate component form of vector", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Component.gif", "/srv/numbas/media/question-resources/Component.gif"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

A ship travels $\\var{m}$ nautical miles on a bearing of $\\var{d}^\\circ$.

\n

You will calculate its horizontal (east/west) component and its vertical (north/south) component.

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"northpoint": {"name": "northpoint", "group": "Ungrouped variables", "definition": "if(d<90 or d>270,1,0)", "description": "", "templateType": "anything", "can_override": false}, "eastpoint": {"name": "eastpoint", "group": "Ungrouped variables", "definition": "if(d<180,1,0)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "m*cos(radians(d))", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "m*sin(radians(d))", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(10..300 #10)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(0..360#5 except [0,45,90,135,180,225,270,315,360])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["y", "x", "m", "d", "northpoint", "eastpoint"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Bearings are measured clockwise from north. Draw a diagram to help you to understand the vector.

\n

The ship has travelled [[0]] and [[1]].

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

east

", "

west

"], "matrix": ["{eastpoint}", "1-{eastpoint}"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

north

", "

south

"], "matrix": ["{northpoint}", "1-{northpoint}"], "distractors": ["", ""]}], "sortAnswers": false}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

East and North will give a positive component.

\n

West and South will give a negative component.

"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the horizontal component of the vector.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

How far east or west has the ship travelled? (If it is west, then enter a negative number.)

\n

Refer to Lesson 1 for examples.

"}], "minValue": "{x}", "maxValue": "{x}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the vertical component of the vector.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

How far north or south has the ship travelled? (If it is south, then enter a negative number.)

\n

Refer to Lesson 1 for examples.

"}], "minValue": "{y}", "maxValue": "{y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Now write the vector in component form.

", "correctAnswer": "matrix([{x}],[{y}])", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": "0", "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Arithmetic with vectors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "variable_groups": [], "ungrouped_variables": ["x1", "y1", "z1", "x2", "y2", "z2", "v1", "v2", "a", "b", "c"], "tags": [], "advice": "", "rulesets": {}, "functions": {}, "variables": {"v1": {"description": "", "name": "v1", "group": "Ungrouped variables", "definition": "matrix([x1],[y1],[z1])", "templateType": "anything"}, "x1": {"description": "", "name": "x1", "group": "Ungrouped variables", "definition": "random(-5..5)", "templateType": "anything"}, "b": {"description": "", "name": "b", "group": "Ungrouped variables", "definition": "random(2..8 except a)", "templateType": "anything"}, "z1": {"description": "", "name": "z1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "templateType": "anything"}, "x2": {"description": "", "name": "x2", "group": "Ungrouped variables", "definition": "random(-5..5)", "templateType": "anything"}, "y2": {"description": "", "name": "y2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "templateType": "anything"}, "c": {"description": "", "name": "c", "group": "Ungrouped variables", "definition": "random(2..8 except b)", "templateType": "anything"}, "y1": {"description": "", "name": "y1", "group": "Ungrouped variables", "definition": "random(-5..5)", "templateType": "anything"}, "v2": {"description": "", "name": "v2", "group": "Ungrouped variables", "definition": "matrix([x2],[y2],[z2])", "templateType": "anything"}, "a": {"description": "", "name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "templateType": "anything"}, "z2": {"description": "", "name": "z2", "group": "Ungrouped variables", "definition": "random(-5..5 except z1*y2/y1)", "templateType": "anything"}}, "preamble": {"css": "", "js": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "

Let $\\underline{a}=\\left(\\begin{array}{c}\\var{x1}\\\\ \\var{y1}\\\\ \\var{z1}\\end{array}\\right)$ and let $\\underline{b}=\\left(\\begin{array}{c}\\var{x2}\\\\ \\var{y2}\\\\ \\var{z2}\\end{array}\\right)$

\n

Calculate the following vectors:

", "metadata": {"licence": "None specified", "description": ""}, "parts": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "marks": "3", "variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "markPerCell": true, "numRows": "3", "tolerance": 0, "type": "matrix", "showFeedbackIcon": true, "allowResize": false, "numColumns": 1, "prompt": "

What is $\\underline{a}+\\underline{b}$?

", "correctAnswer": "{v1+v2}"}, {"scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "marks": "3", "variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "markPerCell": true, "numRows": "3", "tolerance": 0, "type": "matrix", "showFeedbackIcon": true, "allowResize": false, "numColumns": 1, "prompt": "

What is $\\var{a}\\underline{a}$?

", "correctAnswer": "{a}*{v1}"}, {"scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "marks": "3", "variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "markPerCell": true, "numRows": "3", "tolerance": 0, "type": "matrix", "showFeedbackIcon": true, "allowResize": false, "numColumns": 1, "prompt": "

What is $\\var{b}\\underline{a}-\\var{c}\\underline{b}$?

", "correctAnswer": "{b}*{v1}-{c}*{v2}"}], "type": "question"}, {"name": "Colinearity of points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Let $A,B,C$ be the points

\n

\\[A=(\\var{x1},\\var{y1},\\var{z1})\\qquad B=(\\var{x2},\\var{y2},\\var{z2})\\qquad C=(\\var{x3},\\var{y3},\\var{z3})\\]

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"z1": {"name": "z1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "x3": {"name": "x3", "group": "Ungrouped variables", "definition": "x2+n*(x2-x1)", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "z3": {"name": "z3", "group": "Ungrouped variables", "definition": "z2+n*(z2-z1)", "description": "", "templateType": "anything", "can_override": false}, "z2": {"name": "z2", "group": "Ungrouped variables", "definition": "random(-5..5 except z1*y2/y1)", "description": "", "templateType": "anything", "can_override": false}, "y3": {"name": "y3", "group": "Ungrouped variables", "definition": "y2+n*(y2-y1)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x1", "y1", "z1", "x2", "y2", "z2", "n", "x3", "y3", "z3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the vector $\\overrightarrow{AB}$?

", "correctAnswer": "matrix([{x2-x1}],[{y2-y1}],[{z2-z1}])", "correctAnswerFractions": false, "numRows": "3", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the vector $\\overrightarrow{BC}$?

", "correctAnswer": "matrix([{x3-x2}],[{y3-y2}],[{z3-z2}])", "correctAnswerFractions": false, "numRows": "3", "numColumns": 1, "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Are the points colinear?

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

If $\\overrightarrow{BC}$ is a multiple of $\\overrightarrow{AB}$ then the vectors are parallel and the points are colinear.

\n

Otherwise the points are not colinear.

"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Yes

", "

No

"], "matrix": ["1", 0], "distractors": ["Correct. $\\overrightarrow{BC}$ is a multiple of $\\overrightarrow{AB}$ so the vectors are parallel", "Incorrect. $\\overrightarrow{BC}$ is a multiple of $\\overrightarrow{AB}$ so the vectors are parallel"]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Complete the following:

\n

$\\overrightarrow{BC}=$ [[0]]$\\times\\overrightarrow{AB}$

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{n}", "maxValue": "{n}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Calculate resultant vector", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Component.gif", "/srv/numbas/media/question-resources/Component.gif"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

A body is subject to two forces:

\n\n

We will calculate the resultant force $F_r$.

\n

", "advice": "

Part a)

\n

$F_1$ is purely horizontal so

\n

\\[F_1=\\var{mat1}\\]

\n

Part b)

\n

The horizontal component of $F_2$ is calculated with trigonometry:

\n

\\[\\var{m2}\\times\\cos(\\var{d2})=\\var{precround(x2,1)}\\]

\n

Part c)

\n

The vertical component of $F_2$ is calculated with trigonometry:

\n

\\[\\var{m2}\\times\\sin(\\var{d2})=\\var{precround(y2,1)}\\]

\n

Part d)

\n

Therefore, in component form:

\n

\\[F_2=\\var{precround(mat2,1)}\\]

\n

Part e)

\n

The resultant vector $F_r$ is found by adding the vectors $F_1$ and $F_2$.

\n

\\[F_r=\\var{mat1}+\\var{precround(mat2,1)}=\\var{precround(mat1+mat2,1)}\\]

\n

Part f)

\n

The magnitude of the resultant force $F_r$ is calculated with Pythagoras:

\n

\\[\\sqrt{\\var{precround(x1+x2,1)}^2+\\var{precround(y2,1)}^2}=\\var{precround(mr,0)}\\]

\n

Part g)

\n

The direction of the resultant force $F_r$ is calculated with trigonometry:

\n

\\[\\tan^{-1}\\left(\\frac{\\var{precround(y2,1)}}{\\var{precround(x1+x2,1)}}\\right)=\\var{precround(dr,0)}^\\circ\\]

\n

The resultant force is acting at {precround(dr,0)}º to the horizontal.

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"mat1": {"name": "mat1", "group": "Ungrouped variables", "definition": "matrix([{x1}],[0])", "description": "", "templateType": "anything", "can_override": false}, "mr": {"name": "mr", "group": "Ungrouped variables", "definition": "sqrt((x1+x2)^2+y2^2)", "description": "", "templateType": "anything", "can_override": false}, "mat2": {"name": "mat2", "group": "Ungrouped variables", "definition": "matrix([{x2}],[{y2}])", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "m2*cos(radians(d2))", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "m2*sin(radians(d2))", "description": "", "templateType": "anything", "can_override": false}, "m2": {"name": "m2", "group": "Ungrouped variables", "definition": "random(10..300 #10)", "description": "", "templateType": "anything", "can_override": false}, "dr": {"name": "dr", "group": "Ungrouped variables", "definition": "degrees(arctan(y2/(x1+x2)))", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "random(0..90#5 except [0,45,90])", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "random(10..300#10 except m2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x2", "y2", "d2", "m2", "x1", "mat2", "mat1", "mr", "dr"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Sketch a diagram to help you understand the situation.

"}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write the vector $F_1$ in component form.

", "correctAnswer": "{mat1}", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": "0", "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the horizontal component of vector $F_2$, in Newtons.

", "minValue": "{x2}", "maxValue": "{x2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the vertical component of vector $F_2$, in Newtons.

", "minValue": "{y2}", "maxValue": "{y2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Now write vector $F_2$ in component form.

", "correctAnswer": "{mat2}", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": "0", "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the resultant vector $F_r$ of the two vectors $F_1$ and $F_2$.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The resultant of two vectors is calculated by adding them together. Refer to Lesson 2 for examples.

"}], "correctAnswer": "{mat1+mat2}", "correctAnswerFractions": false, "numRows": "2", "numColumns": 1, "allowResize": false, "tolerance": "0", "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the magnitude of the resultant force $F_r$, in Newtons.

", "minValue": "{mr}", "maxValue": "{mr}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the direction of the resultant force $F_r$, in degrees from horizontal.

", "minValue": "{dr}", "maxValue": "{dr}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Scalar product of vectors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Let $\\underline{a}=\\left(\\begin{array}{c}\\var{x1}\\\\ \\var{y1}\\\\ \\var{z1}\\end{array}\\right)$ and let $\\underline{b}=\\left(\\begin{array}{c}\\var{x2}\\\\ \\var{y2}\\\\ \\var{z2}\\end{array}\\right)$

", "advice": "", "rulesets": {}, "variables": {"angle": {"name": "angle", "group": "Ungrouped variables", "definition": "degrees(arccos(sp/(r1*r2)))", "description": "", "templateType": "anything"}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything"}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything"}, "sp": {"name": "sp", "group": "Ungrouped variables", "definition": "x1*x2+y1*y2+z1*z2", "description": "", "templateType": "anything"}, "r2": {"name": "r2", "group": "Ungrouped variables", "definition": "sqrt(x2^2+y2^2+z2^2)", "description": "", "templateType": "anything"}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything"}, "r1": {"name": "r1", "group": "Ungrouped variables", "definition": "sqrt(x1^2+y1^2+z1^2)", "description": "", "templateType": "anything"}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything"}, "z1": {"name": "z1", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything"}, "z2": {"name": "z2", "group": "Ungrouped variables", "definition": "random(-5..5 except z1*y2/y1)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x1", "y1", "z1", "x2", "y2", "z2", "r1", "r2", "sp", "angle"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is $|\\underline{a}|$?

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$|\\underline{a}|$ is the magnitude of vector $\\underline{a}$. Refer to Lesson 1.

"}], "minValue": "{r1}", "maxValue": "{r1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is $|\\underline{b}|$?

", "minValue": "{r2}", "maxValue": "{r2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate $\\underline{a}\\cdot\\underline{b}$

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\underline{a}\\cdot\\underline{b}$ is the scalar product of vectors $\\underline{a}$ and $\\underline{b}$. Refer to Lesson 3.

"}], "minValue": "{sp}", "maxValue": "{sp}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Now calculate the angle between vectors $\\underline{a}$ and $\\underline{b}$.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rearrange the following formula:

\n

\\[\\underline{a}\\cdot\\underline{b}=|\\underline{a}||\\underline{b}|\\cos{\\theta}\\]

\n

Refer to Lesson 3 for examples.

"}], "minValue": "{angle}", "maxValue": "{angle}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "allowPrinting": true, "navigation": {"allowregen": true, "reverse": true, "browse": true, "allowsteps": true, "showfrontpage": true, "navigatemode": "menu", "onleave": {"action": "none", "message": ""}, "preventleave": true, "typeendtoleave": false, "startpassword": "", "autoSubmit": true, "allowAttemptDownload": false, "downloadEncryptionKey": "", "showresultspage": "oncompletion"}, "timing": {"allowPause": true, "timeout": {"action": "none", "message": ""}, "timedwarning": {"action": "warn", "message": "

5 minutes remaining!

"}}, "feedback": {"enterreviewmodeimmediately": true, "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showpartfeedbackmessageswhen": "always", "showexpectedanswerswhen": "inreview", "showadvicewhen": "inreview", "allowrevealanswer": true, "intro": "", "end_message": "", "results_options": {"printquestions": true, "printadvice": true}, "feedbackmessages": [], "reviewshowexpectedanswer": true, "showanswerstate": true, "reviewshowfeedback": true, "showactualmark": true, "showtotalmark": true, "reviewshowscore": true, "reviewshowadvice": true}, "diagnostic": {"knowledge_graph": {"topics": [], "learning_objectives": []}, "script": "diagnosys", "customScript": ""}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/Component.gif", "/srv/numbas/media/question-resources/Component.gif"]]}