// Numbas version: finer_feedback_settings {"type": "exam", "duration": 0, "question_groups": [{"name": "", "questions": [{"name": "Power rule 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Power rule
"}, "rulesets": {}, "functions": {}, "ungrouped_variables": ["a1", "a2", "b1", "b2", "c1"], "statement": "Differentiate the function:
\n\\(f(x)=\\var{a1}x^{\\var{a2}}+\\var{b1}x^{\\var{b2}}+\\var{c1}\\)
", "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..10#1)", "description": "", "templateType": "randrange", "name": "a1", "group": "Ungrouped variables"}, "b1": {"definition": "random(2..14#1)", "description": "", "templateType": "randrange", "name": "b1", "group": "Ungrouped variables"}, "c1": {"definition": "random(3..18#1)", "description": "", "templateType": "randrange", "name": "c1", "group": "Ungrouped variables"}, "b2": {"definition": "random(1..5#1)", "description": "", "templateType": "randrange", "name": "b2", "group": "Ungrouped variables"}, "a2": {"definition": "random(5..12#1)", "description": "", "templateType": "randrange", "name": "a2", "group": "Ungrouped variables"}}, "variable_groups": [], "tags": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "parts": [{"type": "gapfill", "gaps": [{"answer": "{a1}*{a2}*x^{{a2}-1}+{b1}*{b2}*x^{{b2}-1}", "showpreview": true, "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "checkingaccuracy": 0.001, "type": "jme", "marks": 1, "vsetrange": [0, 1], "variableReplacements": [], "vsetrangepoints": 5, "checkingtype": "absdiff", "showCorrectAnswer": true, "scripts": {}, "expectedvariablenames": []}], "prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}], "advice": "Apply the rule:
\n\\(y=ax^n\\,\\,\\,then\\,\\,\\,\\frac{dy}{dx}=nax^{n-1}\\)
\nIn this example
\n\\(f(x)=\\var{a1}x^{\\var{a2}}+\\var{b1}x^{\\var{b2}}+\\var{c1}\\)
\n\\(\\frac{df}{dx}=\\var{a2}*\\var{a1}x^{\\var{a2}-1}+\\var{b2}*\\var{b1}x^{\\var{b2}-1}\\)
\n\\(\\frac{dy}{dx}=\\simplify{{a2}*{a1}x^{{a2}-1}+{b2}*{b1}x^{{b2}-1}}\\)
", "type": "question"}, {"name": "Power rule 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "parts": [{"variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "marks": 0, "prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "type": "gapfill", "gaps": [{"variableReplacements": [], "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "type": "jme", "answer": "-{a1}*{a2}/x^{{a2}+1}+(1/{a3})x^{1/{a3}-1}", "scripts": {}, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "checkingtype": "absdiff", "showCorrectAnswer": true, "vsetrange": [0, 1], "marks": 1, "expectedvariablenames": []}]}], "metadata": {"description": "Power rule
", "licence": "Creative Commons Attribution 4.0 International"}, "advice": "\\(f(x)=\\frac{\\var{a1}}{x^{\\var{a2}}}+\\sqrt[\\var{a3}]{x}\\)
\n\\(f(x)=\\var{a1}x^{-\\var{a2}}+{x}^{\\frac{1}{\\var{a3}}}\\)
\n\\(\\frac{df}{dx}=-\\var{a2}*\\var{a1}x^{-\\var{a2}-1}+\\frac{1}{\\var{a3}}{x}^{\\frac{1}{\\var{a3}}-1}\\)
\n\\(\\frac{df}{dx}=-\\simplify{{a2}*{a1}x^{-{a2}-1}}+\\frac{1}{\\var{a3}}{x}^{\\simplify{{1-{a3}}/{a3}}}\\)
\n", "ungrouped_variables": ["a1", "a2", "a3"], "tags": [], "functions": {}, "rulesets": {}, "variables": {"a2": {"group": "Ungrouped variables", "templateType": "randrange", "description": "", "name": "a2", "definition": "random(2..8#1)"}, "a3": {"group": "Ungrouped variables", "templateType": "randrange", "description": "", "name": "a3", "definition": "random(3..6#1)"}, "a1": {"group": "Ungrouped variables", "templateType": "randrange", "description": "", "name": "a1", "definition": "random(6..18#1)"}}, "statement": "Differentiate the function:
\n\\(f(x)=\\frac{\\var{a1}}{x^{\\var{a2}}}+\\sqrt[\\var{a3}]{x}\\)
", "type": "question"}, {"name": "Slope of a curve at a point", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "preamble": {"js": "", "css": ""}, "statement": "Calculate the slope of the curve
\n\\(f(x)=\\var{a}x^3-\\var{b}x^2+\\var{c}x+\\var{d}\\)
\nat the point where \\(x=\\var{f}\\).
", "parts": [{"prompt": "Input your answer correct to one decimal place.
\n\\(slope = \\) [[0]]
", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "gaps": [{"notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "mustBeReduced": false, "precisionPartialCredit": 0, "minValue": "3*{a}*{f}^2-2*{b}*{f}+{c}", "customMarkingAlgorithm": "", "allowFractions": false, "marks": 1, "precisionType": "dp", "precision": "1", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "showPrecisionHint": false, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "3*{a}*{f}^2-2*{b}*{f}+{c}", "mustBeReducedPC": 0, "unitTests": []}], "variableReplacements": [], "showCorrectAnswer": true, "sortAnswers": false, "unitTests": [], "customMarkingAlgorithm": "", "marks": 0}], "metadata": {"description": "Slope of a curve at a point
", "licence": "Creative Commons Attribution 4.0 International"}, "variables": {"c": {"description": "", "templateType": "randrange", "name": "c", "definition": "random(5..12#1)", "group": "Ungrouped variables"}, "f": {"description": "", "templateType": "randrange", "name": "f", "definition": "random(0..4#1)", "group": "Ungrouped variables"}, "b": {"description": "", "templateType": "randrange", "name": "b", "definition": "random(2..10#1)", "group": "Ungrouped variables"}, "d": {"description": "", "templateType": "randrange", "name": "d", "definition": "random(10..20#1)", "group": "Ungrouped variables"}, "a": {"description": "", "templateType": "randrange", "name": "a", "definition": "random(2..6#1)", "group": "Ungrouped variables"}}, "ungrouped_variables": ["a", "b", "c", "d", "f"], "advice": "\\(f(x)=\\var{a}x^3-\\var{b}x^2+\\var{c}x+\\var{d}\\)
\nThe equation for the slope of a curve is found by differentiating the function.
\n\\(\\frac{df}{dx}=3*\\var{a}x^2-2*\\var{b}x+\\var{c}\\)
\nTo find the slope at a particular point we simply insert the x-coordinate value into this equation.
\nSlope = \\(3*\\var{a}*\\var{f}^2-2*\\var{b}*\\var{f}+\\var{c}\\)
\nSlope = \\(\\simplify{3*{a}*{f}^2-2*{b}*{f}+{c}}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "functions": {}, "rulesets": {}, "type": "question"}, {"name": "Chain rule 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4"], "tags": [], "advice": "\\(f(x)=\\var{a1}sin(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
\nRecall the chain rule: \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)
\nlet \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\) then \\(f(x)=\\var{a1}sin(u)\\)
\n\\(\\frac{df}{du}=\\var{a1}cos(u)\\) and \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)
\n\\(\\frac{df}{dx}=\\var{a1}cos(u).\\simplify{{a2}*{a3}x^{{a3}-1}}\\)
\n\\(\\frac{df}{dx}=\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}cos(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{a1}*{a2}*{a3}x^({a3}-1)cos({a2}x^{a3}+{a4})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function:
\n\\(f(x)=\\var{a1}sin(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..7#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a4": {"definition": "random(3..12#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Chain rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Chain rule 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4"], "tags": [], "advice": "\\(f(x)=\\var{a1}ln(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
\nRecall the chain rule: \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)
\nlet \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\) then \\(f(x)=\\var{a1}ln(u)\\)
\n\\(\\frac{df}{du}=\\frac{\\var{a1}}{u}\\) and \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)
\n\\(\\frac{df}{dx}=\\frac{\\var{a1}}{u}.\\simplify{{a2}*{a3}x^{{a3}-1}}\\)
\n\\(\\frac{df}{dx}=\\frac{\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}}{\\var{a2}x^{\\var{a3}}+\\var{a4}}\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({a1}*{a2}*{a3}x^{{a3}-1})/({a2}x^{a3}+{a4})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": false, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function:
\n\\(f(x)=\\var{a1}ln(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..8#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(1..4#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a4": {"definition": "random(1..14#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Chain rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Chain rule 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "\\(f(x)=({\\var{a2}x^{\\var{a3}}+\\var{a4}})^\\var{a1}\\)
\nRecall the chain rule: \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)
\nlet \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\) then \\(f(x)=u^\\var{a1}\\)
\n\\(\\frac{df}{du}=\\var{a1}u^{\\var{a1}-1}\\) and \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)
\n\\(\\frac{df}{dx}=\\var{a1}u^{\\simplify{{a1}-1}}.\\simplify{{a2}*{a3}x^{{a3}-1}}\\)
\n\\(\\frac{df}{dx}=\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}({\\var{a2}x^{\\var{a3}}+\\var{a4}})^{\\simplify{{a1}-1}}\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx}=\\)[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({a1}*{a2}*{a3}x^{{a3}-1})({a2}x^{{a3}}+{a4})^{{a1}-1}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function:
\n\\(f(x)=({\\var{a2}x^{\\var{a3}}+\\var{a4}})^\\var{a1}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a1": {"definition": "random(2..8#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(1..4#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a4": {"definition": "random(1..14#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Chain rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4", "a5"], "tags": [], "advice": "\\(f(x)=(\\var{a1}x^\\var{a2}+\\var{a3})e^{\\var{a4}x+\\var{a5}}\\)
\nRecall the product rule if \\(f(x)=u.v\\) where \\(u\\) and \\(v\\) are both functions of \\(x\\) then
\n\\(\\frac{df}{dx}=v.\\frac{du}{dx}+u.\\frac{dv}{dx}\\)
\nlet \\(u=\\var{a1}x^\\var{a2}+\\var{a3}\\) and \\(v=e^{\\var{a4}x+\\var{a5}}\\)
\n\\(\\frac{du}{dx}=\\var{a2}*\\var{a1}x^{\\var{a2}-1}\\) and \\(\\frac{dv}{dx}=\\var{a4}*e^{\\var{a4}x+\\var{a5}}\\)
\n\\(\\frac{df}{dx}=e^{\\var{a4}x+\\var{a5}}*\\var{a2}*\\var{a1}x^{\\var{a2}-1}+(\\var{a1}x^\\var{a2}+\\var{a3})*\\var{a4}*e^{\\var{a4}x+\\var{a5}}\\)
\n\\(\\frac{df}{dx}=\\simplify{e^({a4}x+{a5})*{a1}*{a2}x^{{a2}-1}+({a1}x^{a2}+{a3})*{a4}*e^({a4}x+{a5})}\\)
\n\\(\\frac{df}{dx}=(\\simplify{{a1}*{a4}x^{a2}+{a1}*{a2}x^{{a2}-1}+{a3}*{a4}})\\simplify{e^({a4}x+{a5})}\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx}=\\)[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({a1}*{a4}x^{a2}+{a1}*{a2}x^{{a2}-1}+{a3}*{a4})*e^({a4}x+{a5})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function
\n\\(f(x)=(\\var{a1}x^\\var{a2}+\\var{a3})e^{\\var{a4}x+\\var{a5}}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..9#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(1..12#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a5": {"definition": "random(4..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a5", "description": ""}, "a4": {"definition": "random(2..8#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Product rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a", "b", "c", "f", "d"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "\\(f(x)=\\frac{\\var{a}x^{\\var{b}}+\\var{f}}{\\var{c}cos(\\var{d}x)}\\)
\nRecall the quotient rule: if \\(y=\\frac{u}{v}\\) where \\(u\\) and \\(v\\) are both functions of \\(x\\) then
\n\\(\\frac{dy}{dx}=\\frac{v\\frac{du}{dx}-u\\frac{dv}{dx}}{v^2}\\)
\nLet \\(u=\\var{a}x^{\\var{b}}+\\var{f}\\) and \\(v=\\var{c}cos(\\var{d}x)\\)
\nthen \\(\\frac{du}{dx}=\\var{b}*\\var{a}x^{\\var{b}-1}\\) and \\(\\frac{dv}{dx}=-\\var{d}*\\var{c}sin(\\var{d}x)\\)
\nPutting these results together as shown in the rule gives:
\n\\(\\frac{df}{dx}=\\frac{(\\var{c}cos(\\var{d}x))*\\var{b}*\\var{a}x^{\\var{b}-1}-(\\var{a}x^{\\var{b}}+\\var{f})*(-\\var{d}*\\var{c}sin(\\var{d}x))}{(\\var{c}cos(\\var{d}x))^2}\\)
\n\\(\\frac{df}{dx}=\\frac{\\simplify{({c}*cos({d}x))*{b}*{a}x^{{b}-1}+({a}x^{{b}}+{f})*({c}*{d}*sin({d}x))}}{(\\var{c}*cos(\\var{d}x))^2}\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx} = \\) [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({c}*cos({d}*x)*{a}*{b}*x^({b}-1)+({a}*x^{b}+{f})*{c}*{d}*sin({d}*x))/({c}*cos({d}*x))^2", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function:
\n\\(f(x)=\\frac{\\var{a}x^{\\var{b}}+\\var{f}}{\\var{c}cos(\\var{d}x)}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..12#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(2..7#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "d", "description": ""}, "f": {"definition": "random(1..11#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "f", "description": ""}}, "metadata": {"description": "Quotient rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Turning points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "preamble": {"css": "", "js": ""}, "parts": [{"type": "gapfill", "marks": 0, "prompt": "Input the smaller of the two \\(x\\) values.
\n\\(x=\\) [[0]]
\nInput the larger of the two \\(x\\) values.
\n\\(x=\\) [[1]]
", "variableReplacementStrategy": "originalfirst", "gaps": [{"marks": 1, "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "allowFractions": false, "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "{a}", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "maxValue": "{a}", "correctAnswerStyle": "plain"}, {"marks": 1, "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "allowFractions": false, "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "{b}", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "maxValue": "{b}", "correctAnswerStyle": "plain"}], "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "showCorrectAnswer": false}], "tags": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "The function \\(f(x)=2x^3-\\simplify{3*({a}+{b})x^2+6*{a}*{b}x}+\\var{c}\\) has two turning points.
", "ungrouped_variables": ["a", "b", "c"], "advice": "\\(f(x)=2x^3-\\simplify{3*({a}+{b})x^2+6*{a}*{b}x}+\\var{c}\\)
\nTo locate a turning point, differentite the function, set equal to zero and solve.
\n\\(f'(x)=6x^2-\\simplify{6*({a}+{b})x+6*{a}*{b}}=0\\)
\nDivide across by 6 to get the quadratic equation
\n\\(x^2-\\simplify{({a}+{b})x+{a}*{b}}=0\\)
\nThis has factors
\n\\((x-\\var{a})(x-\\var{b})=0\\)
\n\\(x-\\var{a}=0\\) or \\(x-\\var{b}=0\\)
\n\\(x=\\var{a}\\) or \\(x=\\var{b}\\)
", "metadata": {"description": "Turning points of a cubic function
", "licence": "Creative Commons Attribution 4.0 International"}, "functions": {}, "rulesets": {}, "variable_groups": [], "variables": {"a": {"definition": "random(1..5#1)", "templateType": "randrange", "description": "", "name": "a", "group": "Ungrouped variables"}, "c": {"definition": "random(1..15#1)", "templateType": "randrange", "description": "", "name": "c", "group": "Ungrouped variables"}, "b": {"definition": "random(6..11#1)", "templateType": "randrange", "description": "", "name": "b", "group": "Ungrouped variables"}}, "type": "question"}, {"name": "Chain rule 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4"], "tags": [], "advice": "\\(f(x)=\\var{a1}e^{\\var{a2}x^{\\var{a3}}+\\var{a4}}\\)
\nRecall the chain rule: \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)
\nlet \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\) then \\(f(x)=\\var{a1}e^{u}\\)
\n\\(\\frac{df}{du}=\\var{a1}e^{u}\\) and \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)
\n\\(\\frac{df}{dx}=\\var{a1}e^{u}.\\simplify{{a2}*{a3}x^{{a3}-1}}\\)
\n\\(\\frac{df}{dx}=\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}e^{\\var{a2}x^{\\var{a3}}+\\var{a4}}\\)
\n", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({a1}*{a2}*{a3}x^{{a3}-1})e^({a2}x^{{a3}}+{a4})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function:
\n\\(f(x)=\\var{a1}e^{\\var{a2}x^{\\var{a3}}+\\var{a4}}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..8#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(1..4#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a4": {"definition": "random(1..14#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Chain rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Rate of change", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "ungrouped_variables": ["a", "b"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Rate of change problem involving velocity & acceleration
"}, "statement": "A missile is launched straight up in the air. The height of the missile, \\(h\\) metres, above the ground \\(t\\) seconds after the launch button is pressed is given by:
\n\\(h=\\var{a}t-4.9t^2\\)
", "rulesets": {}, "variable_groups": [], "functions": {}, "preamble": {"css": "", "js": ""}, "advice": "\\(h=\\var{a}t-4.9t^2\\)
\nRecall that speed is the rate of change of position with respect to time i.e. \\(v=\\frac{dh}{dt}\\)
\n\\(v=\\frac{dh}{dt}=\\var{a}-2*4.9t\\)
\nwhen \\(t=\\var{b}\\)
\n\\(v=\\var{a}-2*4.9*\\var{b}\\)
\n\\(v=\\simplify{{a}-9.8*{b}}m/s\\)
\n\nThe missile will reach its maximum height when its speed = 0. i.e. \\(v=\\frac{dh}{dt}=\\var{a}-2*4.9t=0\\)
\n\\(\\var{a}=9.8t\\)
\n\\(t=\\var{a}/9.8\\)
\nThe maximum height reached will occur when \\(t=\\simplify{{a}/9.8}\\)
\n\\(h=\\var{a}*\\left(\\simplify{{a}/9.8}\\right)-4.9*\\left(\\simplify{{a}/9.8}\\right)^2\\)
\n\\(h=\\simplify{{a}^2/19.6}\\)
\n\\(h=\\simplify{{{a}/{19.6}^0.5}^2}\\)
\n\n", "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"b": {"templateType": "randrange", "description": "", "definition": "random(3..10#1)", "name": "b", "group": "Ungrouped variables"}, "a": {"templateType": "randrange", "description": "", "definition": "random(100..300#5)", "name": "a", "group": "Ungrouped variables"}}, "tags": [], "parts": [{"showCorrectAnswer": true, "type": "gapfill", "variableReplacements": [], "prompt": "Calculate the speed of the missile (m/s) \\(\\var{b}\\) seconds after launch. Give your answer correct to one decimal place.
\n\\(v = \\) [[0]]m/s
\nWhat is the maximum height achieved by this missile? Give your answer correct to one decimal place.
\n\\(h = \\) [[1]]m
", "gaps": [{"precisionPartialCredit": 0, "variableReplacements": [], "precisionType": "dp", "correctAnswerFraction": false, "showPrecisionHint": false, "strictPrecision": false, "allowFractions": false, "scripts": {}, "minValue": "{a}-9.8*{b}", "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "precision": "1", "marks": 1, "maxValue": "{a}-9.8*{b}", "precisionMessage": "You have not given your answer to the correct precision."}, {"precisionPartialCredit": 0, "variableReplacements": [], "precisionType": "dp", "correctAnswerFraction": false, "showPrecisionHint": false, "strictPrecision": false, "allowFractions": false, "scripts": {}, "minValue": "{a}^2/19.6", "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "precision": "1", "marks": 1, "maxValue": "{a}^2/19.6", "precisionMessage": "You have not given your answer to the correct precision."}], "marks": 0, "scripts": {}, "variableReplacementStrategy": "originalfirst"}], "type": "question"}, {"name": "Maximum/minimum2", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Untitled2.jpg", "/srv/numbas/media/question-resources/Untitled2.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["v"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "\\(\\pi r^2h=\\var{v}\\)
\n\\(h=\\frac{\\var{v}}{\\pi r^2}\\)
\nThe total surface area is to be a minimum.
\nLid + curved surface area + base
\n\\(A=\\pi r^2+2\\pi rh+\\pi r^2\\)
\n\\(A=2\\pi r^2+2\\pi r\\left(\\frac{\\var{v}}{\\pi r^2}\\right)\\)
\n\\(A=2\\pi r^2+\\simplify{2*{v}}r^{-1}\\)
\n\\(\\frac{dA}{dr}=4\\pi r-\\simplify{2{v}}r^{-2}=0\\)
\n\\(4\\pi r=\\simplify{2*{v}}/{r^2}\\)
\n\\(r^3=\\frac{\\var{v}}{2\\pi}\\)
\n\\(r=\\simplify{({v}/(2*pi))^(1/3)}\\)
\nFrom the second line we have the relation \\(h=\\frac{\\var{v}}{\\pi r^2}\\) to get
\n\\(h=2*\\simplify{({v}/(2*pi))^(1/3)}\\)
\n", "rulesets": {}, "parts": [{"prompt": "Input the cyinder height, correct to two decimal places.
\n\\(h = \\) [[0]]
\nInput the required cylinder radius, correct to two decimal places.
\n\\(r = \\) [[1]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "2*({v}/(2*pi))^(1/3)", "strictPrecision": false, "minValue": "2*({v}/(2*pi))^(1/3)", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "showPrecisionHint": false, "type": "numberentry"}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "({v}/(2*pi))^(1/3)", "strictPrecision": false, "minValue": "({v}/(2*pi))^(1/3)", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "showPrecisionHint": false, "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "A closed cylindrical tank is to be built having a volume of \\(\\var{v}\\) cc.
\nDetermine the required height, \\(h\\), and radius, \\(r\\), if the total surface area is to be a minimum.
\n", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"v": {"definition": "random(50..300#5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "v", "description": ""}}, "metadata": {"description": "Problem on a closed cylindrical tank having minimum surface area
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Maximum/minimum", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Untitled.jpg", "/srv/numbas/media/question-resources/Untitled.jpg"], ["question-resources/Untitled_qCawkyB.jpg", "/srv/numbas/media/question-resources/Untitled_qCawkyB.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["l", "w"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "The length of the box is \\(\\var{l}-2x\\), the width is \\(\\var{w}-2x\\) and the height is \\(x\\).
\nThe volume is then given by
\n\\(V=(\\var{l}-2x).(\\var{w}-2x).x\\)
\n\\(V=\\simplify{4x^3-2*({w}+{l})x^2+{l}*{w}x}\\)
\n\\(\\frac{dV}{dx}=\\simplify{12x^2-4*({w}+{l})x+{l}*{w}}\\)
\nThis is a quadratic equation.
\n\\(x=\\frac{\\simplify{4*({w}+{l})}\\pm\\sqrt(\\simplify{16*({w}+{l})^2-48*{w}*{l}})}{24}\\)
\n\\(x=\\frac{\\simplify{{w}+{l}}\\pm\\sqrt(\\simplify{{w}^2-{w}*{l}+{l}^2})}{6}\\)
\n\\(\\frac{d^2V}{dx^2}=\\simplify{24x-4*({w}+{l})}\\)
\nwhen \\(x=\\simplify{({w}+{l}-sqrt({w}^2-{w}*{l}+{l}^2))/6}\\) \\(\\frac{d^2V}{dx^2}<0\\) and therefore is the value that gives a maximum.
", "rulesets": {}, "parts": [{"prompt": "Input the value for \\(x\\) correct to one decimal place.
\n\\(x = \\) [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "({w}+{l}-sqrt({w}^2+{l}^2-{w}*{l}))/6", "strictPrecision": false, "minValue": "({w}+{l}-sqrt({w}^2+{l}^2-{w}*{l}))/6", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "1", "scripts": {}, "marks": 1, "showPrecisionHint": false, "type": "numberentry"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "A rectangular sheet of metal of length = \\(\\var{l}cm\\) and width = \\(\\var{w}cm\\) has a square of side \\(x\\,cm\\) cut from each corner. The ends and sides will be folded upwards to form an open box.
\nDetermine the value of \\(x\\) that will maximise the volume of this box.
\n", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"l": {"definition": "random(30..100#5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "l", "description": ""}, "w": {"definition": "random(10..28#2)", "templateType": "randrange", "group": "Ungrouped variables", "name": "w", "description": ""}}, "metadata": {"description": "Maximising the volume of a rectangular box
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}], "pickingStrategy": "all-ordered", "pickQuestions": 0}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "This quiz asks questions on basic techniques of differentation and some introductory applications.
"}, "navigation": {"browse": true, "onleave": {"action": "none", "message": ""}, "allowregen": true, "showfrontpage": true, "reverse": true, "showresultspage": "oncompletion", "preventleave": true}, "timing": {"allowPause": true, "timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}}, "percentPass": 0, "allQuestions": true, "pickQuestions": 0, "shuffleQuestions": false, "feedback": {"advicethreshold": 0, "intro": "", "showanswerstate": true, "showtotalmark": true, "allowrevealanswer": true, "showactualmark": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "name": "Harry's copy of Differentiation Quiz", "showQuestionGroupNames": false, "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}], "extensions": [], "custom_part_types": [], "resources": [["question-resources/Untitled2.jpg", "/srv/numbas/media/question-resources/Untitled2.jpg"], ["question-resources/Untitled.jpg", "/srv/numbas/media/question-resources/Untitled.jpg"], ["question-resources/Untitled_qCawkyB.jpg", "/srv/numbas/media/question-resources/Untitled_qCawkyB.jpg"]]}