// Numbas version: finer_feedback_settings {"metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
4 questions on using partial fractions to solve indefinite integrals.
"}, "timing": {"timeout": {"message": "", "action": "none"}, "allowPause": true, "timedwarning": {"message": "", "action": "none"}}, "navigation": {"onleave": {"message": "", "action": "none"}, "preventleave": false, "showfrontpage": false, "browse": true, "showresultspage": "oncompletion", "allowregen": true, "reverse": true}, "question_groups": [{"pickQuestions": 1, "name": "Group", "pickingStrategy": "all-ordered", "questions": [{"name": "Integration by partial fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["2 distinct linear factors", "Calculus", "Steps", "calculus", "compare coefficients", "identify coefficients", "integrals", "integration", "logarithms", "partial fractions", "steps", "two distinct linear factors"], "advice": "\nUsing partial fractions we have to find $A$ and $B$ such that:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:
$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}}\\Rightarrow \\simplify[std]{(A+B)*x+{b}A+{a}B={c}}$.
\nWe now identify coefficients on both sides of this equation.
\nIdentifying coefficients:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {c}}$
\nCoefficent $x$: $ \\simplify[std]{A + B = 0}$ which gives $A = -B$
\nHence we obtain $\\displaystyle \\simplify[std]{A = {c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={-c}/{b-a}}$
\nWhich gives: \\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = ({c}/{b-a})*(1/(x+{a}) -1/(x+{b}))}\\]
\nSo \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({c}/{b-a})*(Int(1/(x+{a}),x) -Int(1/(x+{b}),x))}\\\\ &=& \\simplify[std]{({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C} \\end{eqnarray*}\\]
\nOr equivalently: $\\displaystyle I= \\simplify[std]{({c}/{b-a})*(ln((x+{a})/(x+{b})))+C}$
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\nClick on Show steps for help if you need it. You will lose 1 mark if you do so.
\n ", "gaps": [{"notallowed": {"message": "Input all numbers as fractions or integers and not decimals.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [11.0, 12.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C", "type": "jme"}], "steps": [{"prompt": "\n \n \nUse partial fractions in order to write:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
for suitable integers or fractions $A$ and $B$.
\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "\nFind the following integral.
\n\\[I = \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "s1*random(1..9)", "name": "a"}, "c": {"definition": "if(c1=2*a,c1+1,c1)", "name": "c"}, "b": {"definition": "if(b1=a,b1+s3,b1)", "name": "b"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b1": {"definition": "s2*random(1..9)", "name": "b1"}, "c1": {"definition": "random(2..9)", "name": "c1"}}, "metadata": {"notes": "\n \t\t5/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tAdded decimal point as forbidden string.
\n \t\tNote the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?
\n \t\tImproved display of Advice. Added alternative solution at end using log laws.
\n \t\tAdded information about Show steps, also introduced penalty of 1 mark.
\n \t\tAdded !noLeadingMinus to ruleset std for display purposes.
\n \t\t", "description": "Find $\\displaystyle\\int \\frac{a}{(x+b)(x+c)}\\;dx,\\;b \\neq c $.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by partial fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "functions": {}, "tags": ["2 distinct linear factors", "Calculus", "Steps", "calculus", "compare coefficients", "identify coefficients", "integrals", "integration", "logarithms", "partial fractions", "steps", "two distinct linear factors"], "advice": "\nUsing partial fractions we have to find $A$ and $B$ such that:
\\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b}))}\\;= \\simplify[std]{A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:
$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}*x+{d}} \\Rightarrow \\simplify[std]{(A+B)*x+{b}*A+{a}*B={c}*x+{d}}$
\nIdentifying coefficients:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {d}}$
\nCoefficent $x$: $ \\simplify[std]{A+B={c}}$ which gives $A =\\var{c} -B$
\nOn solving these equations we obtain $\\displaystyle \\simplify[std]{A = {d-a*c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={d-b*c}/{a-b}}$
\nWhich gives: \\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b}))}\\; =\\simplify[std]{ ({d-a*c}/{b-a})*(1/(x+{a}) )+({d-b*c}/{a-b})*(1/(x+{b}))}\\]
\nSo \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int(({c}*x+{d})/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*(Int(1/(x+{a}),x)) +({d-b*c}/{a-b})Int(1/(x+{b}),x)}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C} \\end{eqnarray*}\\]
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\nClick on Show steps for help if you need it. You will lose 1 mark if you do so.
\n \n ", "gaps": [{"notallowed": {"message": "Input all numbers as fractions or integers and not decimals.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [11.0, 12.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C", "type": "jme"}], "steps": [{"prompt": "\nUse partial fractions in order to write:
\\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b}))}\\; = \\simplify[std]{A/(x+{a})+B/(x+{b})}\\]
for suitable integers or fractions $A$ and $B$.
\n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "statement": "\nFind the following integral.
\n\\[I = \\simplify[std]{Int(({c}*x+{d})/((x +{a})*(x+{b})),x )}\\]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\n \n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "s1*random(1..9)", "name": "a"}, "c": {"definition": "random(2..9)", "name": "c"}, "b": {"definition": "if(b1=a,b1+s3,b1)", "name": "b"}, "d": {"definition": "if(d1=a*c,if(d1+1=b*c,d1+2,d1+1),if(d1=b*c,if(d1+1=a*c,d1+2,d1+1),d1))", "name": "d"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b1": {"definition": "s2*random(1..9)", "name": "b1"}, "d1": {"definition": "s3*random(1..9)", "name": "d1"}}, "metadata": {"notes": "\n \t\t \t\t5/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tAdded decimal point as forbidden string.
\n \t\t \t\tNote the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?
\n \t\t \t\tImproved display of Advice.
\n \t\t \t\tAdded information about Show steps, also introduced penalty of 1 mark.
\n \t\t \t\tAdded !noLeadingMinus to ruleset std for display purposes.
\n \t\t \n \t\t", "description": "Find $\\displaystyle\\int \\frac{ax+b}{(x+c)(x+d)}\\;dx,\\;a\\neq 0,\\;c \\neq d $.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Integration by partial fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}], "tags": ["2 distinct linear factors", "calculus", "Calculus", "completing the square", "constant of integration", "factorising a quadratic", "factorizing a quadratic", "indefinite integration", "integrals", "integration", "partial fractions", "Steps", "steps", "two distinct linear factors"], "metadata": {"description": "\n \t\tFactorise $x^2+bx+c$ into 2 distinct linear factors and then find $\\displaystyle \\int \\frac{a}{x^2+bx+c }\\;dx$ using partial fractions or otherwise.
\n \t\t\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "
Find the following integral.
\n\\[I = \\simplify[std]{Int({c}/(x^2+{a+b}*x+{a*b}),x )}\\]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
", "advice": "\nFirst we factorise $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+{a})*(x+{b})}$.
\nYou can do this by spotting the factors or by completing the square.
\nNext we use partial fractions to find $A$ and $B$ such that:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:
$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}}\\Rightarrow \\simplify[std]{(A+B)x+{b}A+{a}B={c}}$
\nIdentifying coefficients:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {c}}$
\nCoefficent $x$: $ \\simplify[std]{A + B = 0}$ which gives $A = -B$.
\nHence we obtain $\\displaystyle \\simplify[std]{A = {c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={-c}/{b-a}}$
\nWhich gives: \\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = ({c}/{b-a})*(1/(x+{a}) -1/(x+{b}))}\\]
\nSo \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int({c}/(x^2+{a+b}*x+{a*b}),x )}\\\\ &=& \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({c}/{b-a})*(Int(1/(x+{a}),x) -Int(1/(x+{b}),x))}\\\\ &=& \\simplify[std]{({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C} \\end{eqnarray*}\\]
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "if(b1=a,b1+s3,b1)", "description": "", "templateType": "anything"}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "s3", "s2", "s1", "b1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\nClick on Show steps for help if you need it. You will lose 1 mark if you do so.
\n ", "stepsPenalty": 1, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "First of all factorise the denominator.
\nYou have to find $a$ and $b$ such that $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+a)*(x+b)}$.
\nThen use partial fractions to write:
\\[\\simplify[std]{{c}/((x +a)*(x+b)) = A/(x+a)+B/(x+b)}\\]
for suitable integers or fractions $A$ and $B$.
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.0001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [11, 12], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as fractions or integers and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Jack's copy of Integration by partial fractions. ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Gemma Crowe", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2440/"}, {"name": "Jack Dunham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2484/"}], "statement": "Find the following integral.
\n\\[I = \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
", "advice": "\nFirst we factorise $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+{a})*(x+{b})}$. You can do this by spotting the factors or by completing the square.
Next we use partial fractions to find $A$ and $B$ such that:
\\[\\displaystyle \\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:
$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}*x+{d}} \\Rightarrow \\simplify[std]{(A+B)*x+{b}*A+{a}*B={c}*x+{d}}$
\nIdentifying coefficients:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {d}}$
\nCoefficent $x$: $ \\simplify[std]{A+B={c}}$ which gives $A =\\var{c} -B$
\nOn solving these equations we obtain $\\displaystyle \\simplify[std]{A = {d-a*c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={d-b*c}/{a-b}}$
\nWhich gives: \\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = ({d-a*c}/{b-a})*(1/(x+{a}) )+({d-b*c}/{a-b})*(1/(x+{b}))}\\]
\nSo \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\\\ &=&\\simplify[std]{Int(({c}*x+{d})/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*(Int(1/(x+{a}),x)) +({d-b*c}/{a-b})Int(1/(x+{b}),x)}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C} \\end{eqnarray*}\\]
\n ", "tags": [], "ungrouped_variables": ["b1", "c", "d1", "s2", "s3", "b", "a", "d", "s1"], "functions": {}, "parts": [{"sortAnswers": false, "variableReplacements": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "unitTests": [], "extendBaseMarkingAlgorithm": true, "steps": [{"extendBaseMarkingAlgorithm": true, "variableReplacements": [], "marks": 0, "prompt": "First of all factorise the denominator, i.e. find $a$ and $b$ such that
\n\\[\\simplify[std]{x^2+{a+b}*x+{a*b}} = (x+a)(x+b) \\]
\nThen use partial fractions to write
\n\\[ \\simplify{({c}x + {d})/((x+a)(x+b))} = \\frac{A}{x+a} + \\frac{B}{x+b}\\]
\nfor suitable integers or fractions A and B.
", "customMarkingAlgorithm": "", "type": "information", "unitTests": [], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "showCorrectAnswer": true}], "stepsPenalty": "1", "gaps": [{"checkingAccuracy": 0.001, "failureRate": 1, "variableReplacements": [], "vsetRange": [0, 1], "showFeedbackIcon": true, "checkVariableNames": false, "showCorrectAnswer": true, "marks": 3, "unitTests": [], "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "expectedVariableNames": [], "answerSimplification": "std", "customMarkingAlgorithm": "", "showPreview": true, "answer": "({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C", "type": "jme", "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "scripts": {}, "notallowed": {"strings": ["."], "partialCredit": 0, "message": "Input all numbers as fractions or integers and not decimals.
", "showStrings": false}}], "customMarkingAlgorithm": "", "prompt": "$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\nClick on Show steps for help if you need it. You will lose 1 mark if you do so.
", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "scripts": {}}], "variables": {"d1": {"definition": "s3*random(1..9)", "name": "d1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "c": {"definition": "random(2..9)", "name": "c", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "d": {"definition": "if(d1=a*c,if(d1+1=b*c,d1+2,d1+1),if(d1=b*c,if(d1+1=a*c,d1+2,d1+1),d1))", "name": "d", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "b1": {"definition": "s2*random(1..9)", "name": "b1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "a": {"definition": "s1*random(1..9)", "name": "a", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "s2": {"definition": "random(1,-1)", "name": "s2", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "b": {"definition": "if(b1=a,b1+s3,b1)", "name": "b", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "s3": {"definition": "random(1,-1)", "name": "s3", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "s1": {"definition": "random(1,-1)", "name": "s1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variable_groups": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\\displaystyle \\int \\frac{ax+b}{x^2+cx+d}\\;dx,\\;a \\neq 0$ using partial fractions or otherwise.
\nVideo in Show steps.
"}, "preamble": {"js": "", "css": ""}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "type": "question"}]}], "duration": 0, "percentPass": "0", "name": "Integration using partial fractions", "feedback": {"showactualmark": true, "advicethreshold": 0, "allowrevealanswer": true, "intro": "", "showtotalmark": true, "showanswerstate": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "showstudentname": true, "showQuestionGroupNames": false, "type": "exam", "contributors": [{"name": "Gemma Crowe", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2440/"}, {"name": "Jack Dunham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2484/"}], "extensions": [], "custom_part_types": [], "resources": []}