// Numbas version: finer_feedback_settings {"showQuestionGroupNames": false, "feedback": {"showactualmark": true, "advicethreshold": 0, "allowrevealanswer": true, "showtotalmark": true, "intro": "", "showanswerstate": true, "feedbackmessages": [], "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "metadata": {"description": "

Some questions on working with surds.

", "licence": "Creative Commons Attribution 4.0 International"}, "timing": {"allowPause": true, "timedwarning": {"message": "", "action": "none"}, "timeout": {"message": "", "action": "none"}}, "name": "Nick's copy of Surds", "question_groups": [{"name": "Group", "pickQuestions": 1, "pickingStrategy": "all-ordered", "questions": [{"name": "Using Surds, Rationalising the Denominator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}], "tags": ["Fractions", "fractions", "rationalise the denominator", "surds", "Surds", "taxonomy"], "metadata": {"description": "

Manipulate surds and rationalise the denominator of a fraction when it is a surd.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

To include a square root sign in your answer use sqrt(). For example, to write $\\sqrt{3}$, type sqrt(3) into the answer box. If you are entering a number multiplied by the square root of some other number, for example $3\\sqrt{5}$, type 3*sqrt(5) into the answer box.

", "advice": "

a)

\n

Surds can be manipulated using the rule

\n

 \\[\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b}.\\]

\n

We are asked to state which of $\\sqrt{\\var{p}}$, $\\sqrt{\\simplify{{a}*{n}^2}}$, and $\\sqrt{\\var{a}}$ can be simplified further. Commonly, surds can be simplified if the number inside of the square root has a square number as a factor.

\n

Here, $\\var{p}$ is a prime number which means that its only divisors are $\\var{p}$ and $1$.

\n

Therefore, $\\sqrt{\\var{p}}$ cannot be simplified any further.

\n

Similarly, $\\var{a}$ is also a prime number, so $\\sqrt{\\var{a}}$ also cannot be simplified any further.

\n

On the other hand, $\\simplify{{a}*{n}^2}$ is not a prime number and we can use the previous rule to simplify $\\sqrt{\\simplify{{a}*{n}^2}}$ as

\n

\\[
\\begin{align}
\\sqrt{\\simplify{{a}*{n}^2}} &= \\sqrt{\\simplify{{n}^2}} \\times \\sqrt{\\var{a}}\\\\
&= \\simplify{{n}*sqrt({a})}.
\\end{align}
\\]

\n

b)

\n

Using the same rule of manipulation as in part a), we can simplify $\\sqrt{\\simplify{{n}^2*{p}}}$ as

\n

\\[
\\begin{align}
\\sqrt{\\simplify{{n}^2*{p}}} &= \\sqrt{\\simplify{{n}^2}} \\times \\sqrt{\\var{p}}\\\\
&= \\simplify{{n}*sqrt({p})}.
\\end{align}
\\]

\n

c)

\n

Here, we can use both of the rules for manipulating surds:

\n

\\[\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b} \\text{.} \\]

\n

\\[ \\sqrt{\\frac{a}{b}} = \\frac{\\sqrt{a}}{\\sqrt{b}} \\text{.} \\]

\n

We can simplify $\\displaystyle\\frac{ \\sqrt{\\simplify{{a}*{v}}} }{ \\sqrt{\\var{a}} }$ as follows.

\n

\\[
\\begin{align}
\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}} &= \\frac{\\sqrt{\\var{a}} \\times \\sqrt{\\var{v}}}{\\sqrt{\\var{a}}} \\\\[0.5em]
&= \\frac{\\sqrt{\\var{a}}}{\\sqrt{\\var{a}}} \\times \\sqrt{\\var{v}} \\\\[0.5em]
&= \\simplify{{sqrt(a)/sqrt(a)}} \\times \\sqrt{\\var{v}} \\\\[0.5em]
&= \\sqrt{\\var{v}} \\text{.}
\\end{align}
\\]

\n

Or,

\n

\\[
\\begin{align}
\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}} &= \\sqrt{\\frac{\\simplify{{a}*{v}}}{\\var{a}}} \\\\[0.5em]
&= \\sqrt{\\var{v}} \\text{.}
\\end{align}
\\]

\n

d)

\n

We can simplify the fraction as

\n

\\[
\\begin{align}
\\frac{\\sqrt{\\simplify{({b}{m})^2*{s}}}}{\\var{m}} &= \\frac{\\sqrt{\\simplify{({b*m})^2}} \\times \\sqrt{\\var{s}}}{\\var{m}} \\\\[0.5em]
&= \\frac{\\simplify{{b*m}} \\times \\sqrt{\\var{s}}}{\\var{m}} \\\\[0.5em]
&= \\simplify{{b}*sqrt({s})} \\text{.}
\\end{align}
\\]

\n

e)

\n

\\[
\\begin{align}
\\simplify{{d}sqrt({a}) - {b}sqrt({v}^2{a})+{n}sqrt({b}^2*{a})} &= \\var{d}\\sqrt{\\var{a}} - \\var{b}(\\sqrt{\\simplify{{v}^2}} \\times \\sqrt{\\var{a}})+\\var{n}(\\sqrt{\\simplify{{b}^2}} \\times \\sqrt{\\var{a}}) \\\\
&= \\var{d}\\sqrt{\\var{a}} -\\var{b}(\\simplify{{v}*sqrt({a})})+\\var{n}(\\simplify{{b}*sqrt({a})}) \\\\
&= \\simplify{{d}sqrt({a})}-\\simplify{{b}*{v}sqrt({a})}+\\simplify{{n}*{b}sqrt({a})} \\\\
&= \\simplify{({d}-{b}*{v}+{n}*{b})sqrt({a})} \\text{.}
\\end{align}
\\]

\n

f)

\n

We rationalise the denominator of fractions of the form $\\displaystyle\\frac{1}{\\sqrt{a}}$, by multiplying the top and bottom by $\\sqrt{a}$.

\n

Therefore, to rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\sqrt{\\var{a}}}$, we multiply top and bottom by $\\sqrt{\\var{a}}$.

\n

\\[
\\begin{align}
\\frac{1}{\\sqrt{\\var{a}}} &= \\frac{1}{\\sqrt{\\var{a}}} \\times \\frac{\\sqrt{\\var{a}}}{\\sqrt{\\var{a}}} \\\\[0.5em]
&= \\frac{\\sqrt{\\var{a}}}{\\var{a}} \\text{.}
\\end{align}
\\]

\n

g)

\n

We rationalise the denominator of fractions of the form $\\displaystyle\\frac{1}{a+\\sqrt{b}}$ by multiplying the top and bottom by $a-\\sqrt{b}$.

\n

Therefore, to rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\var{n}+\\sqrt{\\var{a}}}$, we multiply the top and bottom by $\\var{n} - \\sqrt{\\var{a}}$.

\n

\\[
\\begin{align}
\\frac{1}{\\var{n}+\\sqrt{\\var{a}}} &=  \\frac{1}{\\var{n}+\\sqrt{\\var{a}}} \\times \\frac{\\var{n}-\\sqrt{\\var{a}}}{\\var{n}-\\sqrt{\\var{a}}} \\\\[0.5em]
&=\\frac{\\var{n}-\\sqrt{\\var{a}}}{(\\var{n}+\\sqrt{\\var{a}})(\\var{n}-\\sqrt{\\var{a}})} \\\\[0.5em]
&=\\frac{\\var{n}-\\sqrt{\\var{a}}}{\\simplify{{n}^2}-\\var{a}} \\\\[0.5em]
&=\\frac{\\var{n}-\\sqrt{\\var{a}}}{\\simplify{{n}^2-{a}}} \\text{.}
\\end{align}
\\]

\n

h)

\n

We rationalise the denominator of fractions of the form $\\displaystyle\\frac{1}{a-\\sqrt{b}}$ by multiplying the top and bottom by $a+\\sqrt{b}$.

\n

Therefore, to rationalise the denominator of the fraction $\\displaystyle\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}}$, we multiply the top and bottom by $\\var{d+p}+\\sqrt{\\var{p}}$.

\n

\\[
\\begin{align}
\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}} &= \\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}} \\times \\frac{\\var{d+p}+\\sqrt{\\var{p}}}{\\var{d+p}+\\sqrt{\\var{p}}} \\\\[0.5em]
&=\\frac{\\var{t}(\\var{d+p}+\\sqrt{\\var{p}})}{(\\var{d+p}-\\sqrt{\\var{p}})(\\var{d+p}+\\sqrt{\\var{p}})} \\\\[0.5em]
&=\\frac{\\var{t}(\\var{d+p}+\\sqrt{\\var{p}})}{\\simplify{{d+p}^2}-\\var{p}} \\\\[0.5em]
&=\\frac{\\var{t}(\\var{d+p}+\\sqrt{\\var{p}})}{\\simplify{{d+p}^2-{p}}} \\\\[0.5em]
&=\\simplify{{t}/{(d+p)^2-p}}(\\var{d+p}+\\sqrt{\\var{p}}) \\\\[0.5em]
&= \\simplify[all,!noleadingMinus]{({t*(d+p)}+{t}*sqrt({p}))/({(d+p)^2-p})} \\text{.}
\\end{align}
\\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(3..10 #1)", "description": "

all numbers from 3-10 for parts a, b, e, g

", "templateType": "anything", "can_override": false}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "random(2,3,5)", "description": "

Parts c and e

", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "(m)/(b)", "description": "

Fraction in answer for part d.

", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5 #1 except n^2)", "description": "

parts b and d

", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(1..20 #2 except 1 except 9 except 15 except a)", "description": "

prime number for parts a,b and h

", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2..7 except 4)", "description": "

Parts a, d,e and h

", "templateType": "anything", "can_override": false}, "s": {"name": "s", "group": "Ungrouped variables", "definition": "random(2..7 except 4 except 6)", "description": "

Short list of primes for part d.

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..5 #1 except v except sqrt(m^2*d) except 3)", "description": "

parts d and e

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..19 #1 except 4 except 6 except 8 except 9 except 10 except 12 except 14 except 15 except 16 except 18 except v) ", "description": "

shorter list of primes for parts a,c,e,f and g

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "n^2 > a", "maxRuns": 100}, "ungrouped_variables": ["p", "d", "n", "m", "b", "a", "v", "t", "c", "s"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Which of the following can be simplified further?

", "minMarks": 0, "maxMarks": "3", "minAnswers": "3", "maxAnswers": "3", "shuffleChoices": false, "shuffleAnswers": true, "displayType": "checkbox", "warningType": "warn", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["

Can be simplified further

", "

Cannot be simplified further

"], "matrix": [[0, "1", 0], ["1", 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["

$\\sqrt{\\var{p}}$

", "

$\\sqrt{\\simplify{{a}*{n}^2}}$

", "

$\\sqrt{\\var{a}}$

"]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify $\\sqrt{\\simplify{{n}^2*{p}}}$.

\n

$\\sqrt{\\simplify{{n}^2*{p}}} =$ [[0]]$\\sqrt{\\var{p}}$.

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Recall the  first rule of surds

\n

$\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b}$.

\n

\n

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "$n", "partialCredit": 0, "message": "You haven't fully simplified.", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify $\\displaystyle\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}}$.

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{{a}*{v}}}}{\\sqrt{\\var{a}}} =$ [[0]].

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You could use either of the following rules:

\n

$\\sqrt{(ab)} = \\sqrt{a} \\times \\sqrt{b}$.

\n

$\\displaystyle\\sqrt{\\frac{a}{b}} = \\displaystyle\\frac{\\sqrt{a}}{\\sqrt{b}}$.

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sqrt({v})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["sqrt", "(", ")"], "showStrings": true, "partialCredit": 0, "message": "

You must simplify your answer further.

"}, "notallowed": {"strings": ["/"], "showStrings": false, "partialCredit": 0, "message": "

You must simplify your answer further.

"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify $\\displaystyle\\frac{\\sqrt{\\simplify{({b}{m})^2*{s}}}}{\\var{m}}$.

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{({b}*{m})^2*{s}}}}{\\var{m}} =$ [[0]]$\\sqrt{\\var{s}}$.

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{b}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Simplify $\\simplify{{d}sqrt({a}) - {b}sqrt({v}^2*{a})+{n}sqrt({b}^2*{a})}$.

\n

$\\simplify{{d}sqrt({a}) - {b}sqrt({v}^2*{a})+{n}sqrt({b}^2*{a})} =$ [[0]].

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(d-b*v+n*b)}sqrt({a})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+- $n*sqrt($n)", "partialCredit": 0, "message": "You haven't fully simplified.", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\sqrt{\\var{a}}}$.

\n

$\\displaystyle\\frac{1}{\\sqrt{\\var{a}}} =$  [[0]] [[1]] .

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

To rationalise the denominator of fractions in the form $\\frac{1}{\\sqrt{a}}$, multiply the top and bottom by $\\sqrt{a}$.

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sqrt({a})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["sqrt", "(", ")"], "showStrings": false, "partialCredit": 0, "message": ""}, "notallowed": {"strings": ["/"], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rationalise the denominator of the fraction $\\displaystyle\\frac{1}{\\var{n}+\\sqrt{\\var{a}}}$.

\n

$\\displaystyle\\frac{1}{\\var{n}+\\sqrt{\\var{a}}} =$  [[0]] [[1]] .

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

To rationalise the denominator of fractions in the form $\\displaystyle\\frac{1}{a+\\sqrt{b}}$, multiply the top and bottom by $a-\\sqrt{b}$.

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n}-sqrt({a})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{n^2-a}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rationalise the denominator of the fraction $\\displaystyle\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}}$.

\n

$\\displaystyle\\frac{\\var{t}}{\\var{d+p}-\\sqrt{\\var{p}}} =$  [[0]] [[1]] .

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

To rationalise the denominator of fractions in the form, $\\displaystyle\\frac{1}{a-\\sqrt{b}}$, multiply the top and bottom by ${a+\\sqrt{b}}$.

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{t}({d+p}+sqrt({p}))", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{(d+p)^2-p}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Rationalising the denominator - surds", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Shweta Sharma", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21418/"}], "tags": ["adding fractions", "compound denominators", "Fractions", "fractions", "rationalising the denominator", "rationalising the denominator of surds", "simplifying fractions", "surds", "Surds", "taxonomy"], "metadata": {"description": "

Rationalise the denominator with increasingly difficult examples involving compound denominators. 

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Rationalising the denominator means removing any surds on the denominator.

\n

Try the following questions to practise rationalising with expressions in different forms.

", "advice": "

a)

\n

The rule that should be used is $\\displaystyle\\frac{\\sqrt{a}}{\\sqrt{b}} = \\sqrt{\\frac{a}{b}}$.

\n

i)

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{{square_nums[0]}{prime_nums[0]}}}}{\\sqrt{\\var{prime_nums[0]}}} = \\sqrt{\\frac{{\\simplify{{square_nums[0]}{prime_nums[0]}}}}{{\\var{prime_nums[0]}}}} = \\sqrt{\\var{square_nums[0]}}= \\simplify{{sqrt(square_nums[0])}}$; and

\n

ii)

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{{square_nums[1]}{prime_nums[1]}}}}{\\sqrt{\\var{prime_nums[1]}}} = \\sqrt{\\frac{{\\simplify{{square_nums[1]}{prime_nums[1]}}}}{{\\var{prime_nums[1]}}}} = \\sqrt{\\var{square_nums[1]}} = \\simplify{{sqrt(square_nums[1])}}$.

\n

b)

\n

To rationalise the denominator, you have to use the rule $\\displaystyle\\sqrt{a}\\times\\sqrt{a}=a$.

\n

You are asked to rationalise the denominator of the expression $\\displaystyle\\frac{\\sqrt{\\var{n_lcm}}}{\\sqrt{\\var{m_lcm}}}$.

\n

As ${\\sqrt{\\var{m_lcm}}}$ is the denominator, we must multiply the whole fraction by ${\\sqrt{\\var{m_lcm}}}$.

\n

\\[ \\frac{\\sqrt{\\var{n_lcm}}}{\\sqrt{\\var{m_lcm}}}\\times\\frac{\\sqrt{\\var{m_lcm}}}{\\sqrt{\\var{m_lcm}}} \\]

\n

By using the rule $\\sqrt{a}\\times\\sqrt{b}$ = $\\sqrt{ab}$, we can get the numerator as $\\sqrt{\\var{num}}$.

\n

The denominator is ${\\sqrt{\\var{m_lcm}}}\\times{\\sqrt{\\var{m_lcm}}} = {\\var{m_lcm}}$.

\n

So the whole expression is

\n

\\[ \\frac{\\sqrt{\\var{num}}}{\\var{m_lcm}} \\]

\n

Finally, we can cancel down by finding the greatest common divisor of the top and bottom to obtain

\n

\\[ \\frac{\\sqrt{\\var{a[0]*b[0]}}}{\\var{b[0]}} \\]

\n

c)

\n

The first thing to do in this question is multiply the whole fraction by the surd on the denominator, $\\sqrt{\\var{f}}$. Using the rule $\\displaystyle\\sqrt{a}\\times\\sqrt{a}=a$, the new value of the denominator is $\\var{d}\\times\\var{f}=\\var{df}$.

\n

$\\displaystyle\\frac{\\var{c}}{\\var{d}\\sqrt{\\var{f}}}\\times\\simplify[all,!simplifyFractions,!sqrtDivision]{sqrt({f})/(sqrt({f}))}={\\frac{\\simplify{{c}*sqrt({f})}}{{(\\var{d}\\times\\var{f})}}}=\\frac{\\simplify{{c}*sqrt({f})}}{\\var{d*f}}$.

\n

Make sure to simplify your fractions down to their simplest form. The fraction can be cancelled down using the highest common divisor, $\\var{gcd_cdf}$, to give a final answer of

\n

\\[\\frac{\\simplify{{c}*sqrt({f})}}{\\var{d*f}}=\\frac{\\simplify{{c_coprime}*sqrt({f})}}{\\var{df_coprime}}\\]

\n

We are asked to find an answer in the form $\\frac{a \\sqrt{\\var{f}}}{b}$, so $a = \\var{c_coprime}$ and $b = \\var{df_coprime}$.

\n

\n

d)

\n

When rationalising an expression with a compound denominator, like $\\displaystyle\\frac{\\var{g}}{\\sqrt{\\var{h}}+\\var{j}}$, we must multiply the fraction by the conjugate of the denominator.

\n

The conjugate of $(\\sqrt{a}+b)$ is $(\\sqrt{a}-b)$, and therefore the conjugate of $(\\sqrt{\\var{h}}+\\var{j})$ is $(\\sqrt{\\var{h}}-\\var{j})$.

\n

\\[ \\frac{\\var{g}}{\\sqrt{\\var{h}}+\\var{j}}\\times\\frac{(\\sqrt{\\var{h}}-\\var{j})}{(\\sqrt{\\var{h}}-\\var{j})}=\\frac{\\var{g}(\\sqrt{\\var{h}}-\\var{j})}{(\\sqrt{\\var{h}}+\\var{j})(\\sqrt{\\var{h}}-\\var{j})}\\text{.} \\]

\n

From this point, we need to multiply out the brackets on the numerator and denominator, using the rule $\\displaystyle\\sqrt{a}\\times\\sqrt{a}=a$.

\n

$\\displaystyle\\frac{\\var{g}(\\sqrt{\\var{h}}-\\var{j})}{(\\sqrt{\\var{h}}+\\var{j})(\\sqrt{\\var{h}}-\\var{j})}==\\frac{\\simplify[all,!collectNumbers,!noLeadingMinus]{({-{g}*{j}})+{g}}\\sqrt{\\var{h}}}{\\var{h}{-\\simplify{{j}*sqrt({h})}}+\\simplify{{j}*sqrt({h})}-{{\\var{j^2}}}}$.

\n

The two $\\simplify{{j}*sqrt({h})}$ terms will cancel on the denominator, so that you are left with

\n

\\[ \\frac{ \\simplify{ {g*-j} + {g}*sqrt({h})} }{\\var{h-j^2}}\\text{,} \\]

\n

which simplifies to

\n

\\[ \\var{o}\\sqrt{\\var{h}}-{\\var{l}}\\text{.} \\]

\n

\n

e)

\n

$\\displaystyle\\frac{\\var{t}-\\sqrt{\\var{u}}}{\\var{t}+\\sqrt{\\var{u}}}$ =

\n

To rationalise the denominator of this fraction, multiply the whole fraction by the conjugate of the denominator, multiply out the brackets and collect like terms. 

\n

$\\displaystyle\\frac{\\var{t}-\\sqrt{\\var{u}}}{\\var{t}+\\sqrt{\\var{u}}}\\times\\frac{\\var{t}-\\sqrt{\\var{u}}}{\\var{t}-\\sqrt{\\var{u}}}=\\frac{(\\var{t}-\\sqrt{\\var{u}})(\\var{t}-\\sqrt{\\var{u}})}{(\\var{t}+\\sqrt{\\var{u}})(\\var{t}-\\sqrt{\\var{u}})}=\\frac{\\var{t^2}-\\var{2t}\\sqrt{\\var{u}}+\\var{u}}{\\var{t^2}-\\var{u}}$.

\n

$\\displaystyle\\frac{\\var{t^2}-\\var{2t}\\sqrt{\\var{u}}+\\var{u}}{\\var{t^2}-\\var{u}}=\\frac{\\var{t^2+u}-\\var{2t}{\\sqrt{\\var{u}}}}{\\var{t^2-u}}$.

\n

Dividing all terms by their highest common divisor, ${\\var{gcd_frac}}$, gives

\n

$\\displaystyle\\frac{\\var{num_simp_1}-\\simplify{{num_simp_2}*sqrt({u})}}{\\var{denom_simp}}$. 

\n

\n

\n

f)

\n

To add $\\displaystyle\\frac{\\var{p}}{\\sqrt{\\var{p}}+\\sqrt{\\var{p^3}}}+\\frac{\\var{r_coprime}}{\\var{s_coprime}}$ you must put both terms over the same denominator.

\n

It is good to notice that $\\sqrt{\\var{p^3}}$ can be rewritten as $\\var{p}\\sqrt{\\var{p}}$, meaning we can rewrite the first fraction as 

\n

\\[ \\frac{\\var{p}}{\\sqrt{\\var{p}}+\\var{p}\\sqrt{\\var{p}}} \\text{.} \\]

\n

This can be simplified further by collecting like terms to obtain

\n

\\[ \\frac{\\var{p}}{\\var{p+1}\\sqrt{\\var{p}}} \\text{.} \\]

\n

Therefore, the expression is now $\\displaystyle\\frac{\\var{p}}{{\\var{p+1}}\\sqrt{\\var{p}}}+\\frac{\\var{r_coprime}}{\\var{s_coprime}}$.

\n

In order to complete the addition, the second fraction also has to have the same denominator as the first fraction. We have to multiply it by $\\simplify{{p_p1}sqrt({p})}$ in order to get common denominators across both fractions. 

\n

$\\displaystyle\\frac{\\var{r_coprime}}{\\var{s_coprime}}\\times\\simplify[all,!simplifyFractions,!sqrtDivision]{{p_p1}*sqrt({p})/({p_p1}*sqrt({p}))}=\\frac{\\simplify{{one}*sqrt({p})}}{\\var{two}\\sqrt{\\var{p}}}$,

\n

Both parts of the expression now have the same denominator and we can add them.

\n

\\[ \\frac{\\var{p}}{\\var{p+1}\\sqrt{\\var{p}}}+\\frac{\\simplify{{one}*sqrt({p})}}{\\var{two}\\sqrt{\\var{p}}}= \\frac{\\var{p}+\\simplify{{one}*sqrt({p})}}{\\var{p+1}\\sqrt{\\var{p}}} \\]

\n

When simplifying, if we note that $\\displaystyle\\sqrt{a}\\times\\sqrt{a}=a$, we can pull $\\sqrt{\\var{p}}$ out of the numerator as a common factor:

\n

\\[ \\frac{\\sqrt{\\var{p}}(\\sqrt{\\var{p}}+\\var{r_coprime*p_p1})}{\\var{p+1}\\sqrt{\\var{p}}}\\text{.} \\]

\n

We can then cancel the common $\\sqrt{\\var{p}}$ term on the numerator and denominator to simplify the expression further and get a final answer of

\n

\\[ \\frac{\\sqrt{\\var{p}}+\\var{one}}{\\var{p+1}} \\text{.} \\]

", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"r": {"name": "r", "group": "Part f", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Part e", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Part d", "definition": "k*(h-j^2)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Part b", "definition": "random(2,4,5)", "description": "

Random number.

", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Part c", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "one": {"name": "one", "group": "Part f", "definition": "r_coprime*p_p1", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Part b", "definition": "repeat(random(7..11 except 8 except 9 except 10),5)", "description": "

Random numbers, not square.

", "templateType": "anything", "can_override": false}, "r_coprime": {"name": "r_coprime", "group": "Part f", "definition": "r/gcd(r,s)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Part b", "definition": "random(2,3,4)", "description": "

Random number.

", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Part f", "definition": "random(2..5 except 4)", "description": "", "templateType": "anything", "can_override": false}, "s": {"name": "s", "group": "Part f", "definition": "p+1", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Part d", "definition": "j^2+random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "two": {"name": "two", "group": "Part f", "definition": "s_coprime*p_p1", "description": "", "templateType": "anything", "can_override": false}, "num_simp_1": {"name": "num_simp_1", "group": "Part e", "definition": "(t^2+u)/gcd_frac", "description": "

Simplified numerical term of numerator.

", "templateType": "anything", "can_override": false}, "c_coprime": {"name": "c_coprime", "group": "Part c", "definition": "c/gcd_cdf", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Part d", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "p_p1": {"name": "p_p1", "group": "Part f", "definition": "ceil(p/(s_coprime))", "description": "", "templateType": "anything", "can_override": false}, "gcd_num": {"name": "gcd_num", "group": "Part e", "definition": "gcd(t^2+u, 2*t)", "description": "

GCD of terms in numerator.

", "templateType": "anything", "can_override": false}, "o": {"name": "o", "group": "Part d", "definition": "g/(h-j^2)", "description": "", "templateType": "anything", "can_override": false}, "ghi": {"name": "ghi", "group": "Part e", "definition": "t^2-u", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part b", "definition": "repeat(random(3..5 except 4),5)", "description": "

Random numbers, not square.

", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Part d", "definition": "(g*j)/(h-j^2)", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Part d", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "square_nums": {"name": "square_nums", "group": "Part a", "definition": "shuffle([4,9,16,25])", "description": "

List of square numbers.

", "templateType": "anything", "can_override": false}, "u": {"name": "u", "group": "Part e", "definition": "random(2..10 except 4 except 9) ", "description": "", "templateType": "anything", "can_override": false}, "denom_simp": {"name": "denom_simp", "group": "Part e", "definition": "ghi/gcd_frac", "description": "

Simplified denominator.

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Part c", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "qwerty": {"name": "qwerty", "group": "Part f", "definition": "(r_coprime*p_p1)-1", "description": "", "templateType": "anything", "can_override": false}, "gcd_cdf": {"name": "gcd_cdf", "group": "Part c", "definition": "gcd(c,df)", "description": "", "templateType": "anything", "can_override": false}, "df": {"name": "df", "group": "Part c", "definition": "d*f", "description": "", "templateType": "anything", "can_override": false}, "m_lcm": {"name": "m_lcm", "group": "Part b", "definition": "b[0]*lcm(n,m)", "description": "

Multiple of LCM of n amd m.

", "templateType": "anything", "can_override": false}, "prime_nums": {"name": "prime_nums", "group": "Part a", "definition": "shuffle([3,5,7,11,13])", "description": "

List of prime numbers.

", "templateType": "anything", "can_override": false}, "n_lcm": {"name": "n_lcm", "group": "Part b", "definition": "a[0]*lcm(n,m)", "description": "

Multiple of LCM of n amd m.

", "templateType": "anything", "can_override": false}, "s_coprime": {"name": "s_coprime", "group": "Part f", "definition": "s/gcd(r,s)", "description": "", "templateType": "anything", "can_override": false}, "df_coprime": {"name": "df_coprime", "group": "Part c", "definition": "df/gcd_cdf", "description": "", "templateType": "anything", "can_override": false}, "gcd_frac": {"name": "gcd_frac", "group": "Part e", "definition": "gcd(gcd_num, t^2-u)", "description": "

GCD of all terms in fraction.

", "templateType": "anything", "can_override": false}, "num_simp_2": {"name": "num_simp_2", "group": "Part e", "definition": "2t/gcd_frac", "description": "

Simplified surd term of numerator.

", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Part c", "definition": "random(2..10 except 4 except 9)", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Part b", "definition": "m_lcm*n_lcm", "description": "", "templateType": "anything", "can_override": false}, "sqrt": {"name": "sqrt", "group": "Ungrouped variables", "definition": "", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["sqrt"], "variable_groups": [{"name": "Part a", "variables": ["square_nums", "prime_nums"]}, {"name": "Part b", "variables": ["n", "m", "n_lcm", "m_lcm", "a", "b", "num"]}, {"name": "Part c", "variables": ["c", "d", "f", "df", "gcd_cdf", "c_coprime", "df_coprime"]}, {"name": "Part d", "variables": ["g", "h", "j", "l", "k", "o"]}, {"name": "Part f", "variables": ["p", "r", "s", "r_coprime", "s_coprime", "p_p1", "qwerty", "one", "two"]}, {"name": "Part e", "variables": ["t", "u", "ghi", "denom_simp", "gcd_num", "gcd_frac", "num_simp_1", "num_simp_2"]}], "functions": {}, "preamble": {"js": "", "css": ".fractiontable table {\n width: 20%; \n padding: 0px; \n border-width: 0px; \n layout: fixed;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n width: 15%; \n border-bottom: 1px solid black; \n text-align: center;\n}\n\n.fractiontable .tdeq \n{\n width: 5%; \n border-bottom: 0px;\n font-size: x-large;\n}\n\n\n.fractiontable th {\n background-color:#aaa;\n}\n/*Fix the height of all cells EXCEPT table-headers to 40px*/\n.fractiontable td {\n height:40px;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rationalise the denominator of the following surds to simplify them down to their integer value.

\n

i)

\n

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{{square_nums[0]}{prime_nums[0]}}}}{\\sqrt{\\var{prime_nums[0]}}}=$ [[0]]

\n

\n

ii)

\n

$\\displaystyle\\frac{\\sqrt{\\simplify{{square_nums[1]}{prime_nums[1]}}}}{\\sqrt{\\var{prime_nums[1]}}}=$ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "sqrt{square_nums[0]}", "maxValue": "sqrt{square_nums[0]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "sqrt{square_nums[1]}", "maxValue": "sqrt{square_nums[1]}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rationalise the denominator and rewrite as a fraction in its simplest form.

\n

\n
\n\n\n\n\n\n\n\n\n\n\n
$\\displaystyle\\frac{\\sqrt{\\var{n_lcm}}}{\\sqrt{\\var{m_lcm}}}=$$\\surd$[[0]]
[[1]]
\n

\n
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a[0]*b[0]", "maxValue": "a[0]*b[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b[0]", "maxValue": "b[0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rationalise the denominator of this expression and reduce to lowest terms.

\n

\\[ \\frac{\\var{c}}{\\var{d}\\sqrt{\\var{f}}} = \\frac{a\\sqrt{\\var{f}}}{b}\\text{,} \\]

\n

where

\n

$a =$ [[0]]

\n

$b =$ [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "c_coprime", "maxValue": "c_coprime", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "df_coprime", "maxValue": "df_coprime", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Express the following in the form $a\\sqrt{b}+m$, where $a$, $b$ and $c$ are integers.

\n

\n

$\\displaystyle\\frac{\\var{g}}{(\\sqrt{\\var{h}}+\\var{j})}$ = 

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

$\\displaystyle\\var{o}\\sqrt{\\var{h}}+\\var{l}$

", "

$\\displaystyle-\\var{l}-\\var{o}\\sqrt{\\var{h}}$

", "

$\\displaystyle\\var{o}\\sqrt{\\var{h}}-\\var{l}$

", "

$\\displaystyle\\var{l}-\\sqrt{\\var{h}}$

"], "matrix": [0, "0", "2", 0], "distractors": ["", "", "", ""]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rationalise the denominator of this expression and reduce down to its simplest form.

\n

\\[ \\frac{\\var{t}-\\sqrt{\\var{u}}}{\\var{t}+\\sqrt{\\var{u}}} = \\frac{a-b\\sqrt{\\var{u}}}{c} \\text{,} \\]

\n

where:

\n

$a = $ [[0]]

\n

$b = $ [[1]]

\n

$c = $ [[2]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "num_simp_1", "maxValue": "num_simp_1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "num_simp_2", "maxValue": "num_simp_2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "denom_simp", "maxValue": "denom_simp", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Complete this addition by firstly rationalising the denominator of the first fraction. Your final answer should be a fraction with integer denominator.

\n

\\[ \\frac{\\var{p}}{\\sqrt{\\var{p}}+\\sqrt{\\var{p^3}}}+\\frac{\\var{r_coprime}}{\\var{s_coprime}} \\]

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

$\\displaystyle\\frac{\\sqrt{\\var{p}}+\\var{r_coprime*p_p1}}{\\var{p+1}}$

", "

$\\displaystyle\\frac{\\sqrt{\\var{p}}(\\sqrt{\\var{p}}+\\var{r_coprime*p_p1})}{\\var{p+1}\\sqrt{\\var{p}}}$

", "

$\\displaystyle\\frac{\\var{p}+\\var{qwerty}\\sqrt{\\var{p}}}{\\var{p}\\sqrt{\\var{p}}}$

", "

$\\displaystyle\\frac{\\sqrt{\\var{p}}+\\var{r_coprime*p_p1}}{\\var{p}}$

"], "matrix": ["3", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Surds simplification", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}], "variable_groups": [], "preamble": {"js": "", "css": ""}, "type": "question", "parts": [{"minAnswers": 0, "type": "m_n_x", "showCorrectAnswer": true, "shuffleAnswers": false, "minMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "showFeedbackIcon": true, "shuffleChoices": false, "maxAnswers": 0, "answers": ["

Surd

", "

Not a surd

"], "layout": {"expression": "", "type": "all"}, "marks": 0, "maxMarks": 0, "matrix": [[0, "1"], ["1", 0], [0, "1"], ["1", "0"], ["1", 0]], "choices": ["

$\\sqrt{\\var{square}}$

", "

$\\sqrt{\\var{h}}$

", "

$^3\\sqrt{\\var{cube}}$

", "

$\\sqrt{\\var{j}}$

", "

$\\sqrt{\\var{k}}$

"], "scripts": {}, "variableReplacements": [], "warningType": "none", "prompt": "

For the following examples, tick the correct box to determine whether or not they are a surd.

\n

"}, {"variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "gaps": [{"maxMarks": 0, "type": "m_n_x", "showCorrectAnswer": true, "shuffleAnswers": true, "minMarks": 0, "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "showFeedbackIcon": true, "shuffleChoices": true, "maxAnswers": 0, "answers": ["

$4\\sqrt3$

", "

$2\\sqrt{11}$

", "

$2\\sqrt{14}$

", "

$4\\sqrt{2}$

"], "layout": {"expression": "", "type": "all"}, "minAnswers": 0, "marks": 0, "matrix": [["1", 0, 0, "0"], [0, "0", "0", "1"], ["0", "0", "1", 0], [0, "1", 0, 0]], "choices": ["

i) $\\sqrt{48}$

", "

ii) $\\sqrt{32}$

", "

iii) $\\sqrt{56}$

", "

iv) $\\sqrt{44}$

"], "scripts": {}, "variableReplacements": [], "warningType": "none"}], "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

Match each surd with the equivalent simplification.

\n

[[0]]

"}, {"variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "allowFractions": false, "scripts": {}, "minValue": "sqrta", "maxValue": "sqrta", "marks": 1, "variableReplacements": []}, {"correctAnswerFraction": false, "mustBeReduced": false, "type": "numberentry", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "allowFractions": false, "scripts": {}, "minValue": "sqrtd", "maxValue": "sqrtd", "marks": 1, "variableReplacements": []}], "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

Simplify the following surds:

\n

$\\displaystyle\\sqrt{\\var{c}}$ = [[0]]$\\displaystyle\\sqrt{\\var{b}}$

\n

$\\displaystyle\\sqrt{\\var{g}}$ = [[1]]$\\displaystyle\\sqrt{\\var{f}}$

\n

"}], "advice": "

a)

\n

$\\sqrt{\\var{square}}$ and $\\sqrt[3]{\\var{cube}}$ are not surds, as they can be simplified to whole integers: $\\simplify{{sqrt(square)}}$ and $\\var{root}$ respectively. They are roots, but not surds. All surds are roots but not all roots are surds.

\n

$\\sqrt{\\var{h}}$, $\\sqrt{\\var{j}}$ and $\\sqrt{\\var{k}}$ are surds, as they cannot be simplified to a whole integer. There is no number, $b$, such that $b^2=\\var{h}, \\var{j}$ or $\\var{k}$. Therefore, $\\sqrt{\\var{h}}$, $\\sqrt{\\var{j}}$ and $\\sqrt{\\var{k}}$ are both roots and surds.

\n

\n

\n

b)

\n

The rule that should be used is $\\sqrt{a}\\times\\sqrt{b}=\\sqrt{ab}$.

\n

We need to try to find a square number that divides $ab$ and rewrite this as $\\sqrt{b^2}\\times\\sqrt{a}$.

\n

i)

\n

$\\sqrt{48}$ = $\\sqrt{16}\\times\\sqrt3$

\n

$\\sqrt{16}$ simplifies down to $4$ so the final answer is: $4\\sqrt3$.

\n

ii)

\n

$\\sqrt{56}$ = $\\sqrt{4}\\times\\sqrt{14}$

\n

$\\sqrt4$ simplifies down to $2$ so the final answer is: $2\\sqrt{14}$.

\n

iii)

\n

$\\sqrt{32}$ = $\\sqrt{16}\\times\\sqrt{2}$

\n

$\\sqrt{16}$ simplifies down to $4$ so the final answer is: $4\\sqrt2$.

\n

iv)

\n

$\\sqrt{44}$ = $\\sqrt{4}\\times\\sqrt{11}$

\n

$\\sqrt4$ simplifies down to $2$ so the final answer is: $2\\sqrt{11}$.

\n

\n

c)

\n

This question requires you to notice that $\\sqrt{\\var{a}}$ and $\\sqrt{\\var{d}}$ are squared numbers and can be simplified to integers.

\n

$\\sqrt{\\var{a}}$ = $\\var{sqrta}$ such that:

\n

i) $\\sqrt{\\var{c}}$ = $\\sqrt{\\var{a}}$ x $\\sqrt{\\var{b}}$ = $\\var{sqrta}\\sqrt{\\var{b}}$ and

\n

ii) $\\sqrt{\\var{g}}$ = $\\sqrt{\\var{d}}$ x $\\sqrt{\\var{f}}$ = $\\var{sqrtd}\\sqrt{\\var{f}}$.

\n

\n

", "tags": ["not a surd", "simplification of surds", "simplifying surds", "Surds", "surds", "taxonomy"], "variables": {"c": {"templateType": "anything", "description": "

a times b

", "definition": "a*b", "name": "c", "group": "Ungrouped variables"}, "doptions": {"templateType": "list of numbers", "description": "

List of squared numbers from 1 to 144

", "definition": "[ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 ]", "name": "doptions", "group": "Ungrouped variables"}, "sqrtd": {"templateType": "anything", "description": "

square root of the selected square number d.

", "definition": "sqrt(d)", "name": "sqrtd", "group": "Ungrouped variables"}, "cube": {"templateType": "anything", "description": "", "definition": "Random(8,27,64,125)", "name": "cube", "group": "Ungrouped variables"}, "root": {"templateType": "anything", "description": "", "definition": "root(cube,3)", "name": "root", "group": "Ungrouped variables"}, "sqrta": {"templateType": "anything", "description": "

square root of the squared numbers

", "definition": "sqrt(a)", "name": "sqrta", "group": "Ungrouped variables"}, "h": {"templateType": "anything", "description": "", "definition": "random(1..10 except 4 except 9 except 1)", "name": "h", "group": "Ungrouped variables"}, "j": {"templateType": "anything", "description": "", "definition": "random(1..10 except 4 except 9 except h except 1)", "name": "j", "group": "Ungrouped variables"}, "b": {"templateType": "anything", "description": "

Random number between 1 and 12 except 4 and 9.

", "definition": "random(2..12 except 4 except 9)", "name": "b", "group": "Ungrouped variables"}, "square": {"templateType": "anything", "description": "", "definition": "Random(4,9,16,25,36,49,64,81,100)", "name": "square", "group": "Ungrouped variables"}, "g": {"templateType": "anything", "description": "

d times f

", "definition": "d*f", "name": "g", "group": "Ungrouped variables"}, "d": {"templateType": "anything", "description": "

Random squared number but not the same number as a.

", "definition": "random(doptions except a)", "name": "d", "group": "Ungrouped variables"}, "f": {"templateType": "anything", "description": "

Random number between 2 and 12

", "definition": "random(2..12 except 4 except 9)", "name": "f", "group": "Ungrouped variables"}, "k": {"templateType": "anything", "description": "", "definition": "random(10..15 except h except j)", "name": "k", "group": "Ungrouped variables"}, "a": {"templateType": "anything", "description": "

Random squared number

", "definition": "random(aoptions)", "name": "a", "group": "Ungrouped variables"}, "aoptions": {"templateType": "list of numbers", "description": "

List of random square number between 1 and 36

", "definition": "[ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 ]", "name": "aoptions", "group": "Ungrouped variables"}}, "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "functions": {}, "ungrouped_variables": ["aoptions", "b", "a", "c", "sqrta", "doptions", "sqrtd", "d", "f", "g", "square", "cube", "h", "j", "k", "root"], "statement": "

Surds are square roots that cannot be simplified to a whole number. They have a decimal equivalent but their decimal representations are never-ending. Therefore, it is often easier to leave surds as they are in algebraic calculations.

", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

This question tests the student's understanding of what is and is not a surd, and on their simplification of surds.

"}}]}], "showstudentname": true, "navigation": {"browse": true, "showresultspage": "oncompletion", "reverse": true, "onleave": {"message": "", "action": "none"}, "preventleave": true, "allowregen": true, "showfrontpage": true}, "percentPass": 0, "duration": 0, "type": "exam", "contributors": [{"name": "Nick Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2416/"}], "extensions": [], "custom_part_types": [], "resources": []}