// Numbas version: exam_results_page_options {"timing": {"timedwarning": {"message": "", "action": "none"}, "allowPause": true, "timeout": {"message": "", "action": "none"}}, "percentPass": 0, "showstudentname": true, "question_groups": [{"pickingStrategy": "all-ordered", "pickQuestions": 1, "name": "Group", "questions": [{"name": "Factorising Quadratic Equations with $x^2$ Coefficients Greater than 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "advice": "

#### a)

\n

As this question involves a number greater than $1$ before the $x^2$ value it has a factorised form $(ax+b)(cx+d)$.

\n

To find $a$ and $c$, we need to consider the factors of $\\var{a*c}$.

\n

We are already given that one of them is $\\var{a}$, so we know that the other one must be $\\var{c}$.

\n

This means our factorised equation must take the form

\n

\$(\\var{a}x+b)(\\var{c}x+d)=0\\text{.}\$

\n

This expands to

\n

\$\\simplify{ {a*c}x^2 + ({a}*d+{c}*b)x + a*b} \$

\n

So we must find two numbers which add together to make $\\var{a*d+b*c}$, and multiply together to make $\\var{b*d}$.

\n

Therefore $b$ and $d$ must satisfy

\n

\\begin{align}
b \\times d &=\\var{b*d}\\\\
\\simplify{{a}d+{c}b} &= \\var{a*d+b*c}\\text{.}
\\end{align}

\n

$b = \\var{b}$ and $d = \\var{d}$ satisfy these equations:

\n

\\begin{align}
\\var{b} \\times \\var{d} &=\\var{b*d}\\\\
\\simplify[]{ {a}*{d} + {b}*{c} } &= \\var{a*d+b*c}
\\end{align}

\n

So the factorised form of the equation is

\n

\$\\simplify{({a}x+{b})({c}x+{d}) = 0} \\text{.}\$

\n

#### b)

\n

$\\simplify{({a}x+{b})({c}x+{d}) = 0}$ when either $\\var{a}x+\\var{b} = 0$ or $\\var{c}x+ \\var{d} = 0$.

\n

So the roots of the equation are $\\var[fractionnumbers]{-b/a}$ and $\\var[fractionnumbers]{-d/c}$.

\n

", "statement": "", "variables": {"b": {"templateType": "anything", "name": "b", "description": "

$b$ in $(ax+b)(cx+d)$

", "group": "last q", "definition": "random(-5..5 except 0)"}, "c": {"templateType": "anything", "name": "c", "description": "

$c$ in $(ax+b)(cx+d)$

", "group": "last q", "definition": "random(2..8 except a)"}, "a": {"templateType": "anything", "name": "a", "description": "

$a$ in $(ax+b)(cx+d)$

", "group": "last q", "definition": "random(2..3)"}, "roots": {"templateType": "anything", "name": "roots", "description": "

The roots of the equation

", "group": "last q", "definition": "sort([-b/a,-d/c])"}, "d": {"templateType": "anything", "name": "d", "description": "

$d$ in $(ax+b)(cx+d)$

", "group": "last q", "definition": "random(-8..8 except 0)"}}, "tags": ["coefficient of x^2 greater than 1", "Factorisation", "factorisation", "factorising", "factorising quadratic equations", "Factorising quadratic equations", "factorising quadratic equations with x^2 coefficients greater than 1", "taxonomy"], "ungrouped_variables": [], "functions": {}, "rulesets": {}, "metadata": {"description": "

Factorise a quadratic equation where the coefficient of the $x^2$ term is greater than 1 and then write down the roots of the equation

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "variable_groups": [{"variables": ["a", "b", "c", "d", "roots"], "name": "last q"}], "preamble": {"js": "", "css": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "b", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "b", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "c", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "c", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "d", "correctAnswerFraction": false, "allowFractions": false, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "d", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}], "type": "gapfill", "marks": 0, "variableReplacementStrategy": "originalfirst", "prompt": "

Factorise the equation

\n

$\\simplify{{a*c}x^2+{a*d+b*c}x+{b*d}=0}\\text{.}$

\n

$(\\var{a}x+\\phantom{.}$[[0]]$) ($[[1]]$x+\\phantom{.}$[[2]]$)\\; = 0$

", "variableReplacements": [], "showFeedbackIcon": true}, {"scripts": {}, "showCorrectAnswer": true, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "roots[0]", "correctAnswerFraction": true, "allowFractions": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "roots[0]", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}, {"notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "variableReplacements": [], "mustBeReducedPC": 0, "minValue": "roots[1]", "correctAnswerFraction": true, "allowFractions": true, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "scripts": {}, "maxValue": "roots[1]", "showCorrectAnswer": true, "type": "numberentry", "marks": 1, "variableReplacementStrategy": "originalfirst"}], "type": "gapfill", "marks": 0, "variableReplacementStrategy": "originalfirst", "prompt": "

\n

Write down the roots of the equation above.

\n

Input your answer as $x_1$ and $x_2$, where $x_1<x_2$.

\n

$x_1=$ [[0]]

\n

$x_2=$ [[1]]

", "variableReplacements": [], "showFeedbackIcon": true}]}, {"name": "Complete the square and find solutions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}], "variable_groups": [], "variables": {"bits": {"templateType": "anything", "description": "

After completing the square, the expression will have the form $(x + \\mathrm{bits}[0])^2 - \\mathrm{bits}[1]^2$.

", "definition": "sort(shuffle(1..9)[0..2])", "name": "bits", "group": "Ungrouped variables"}, "big": {"templateType": "anything", "description": "

The constant term in the expanded quadratic.

", "definition": "bits[0]^2-bits[1]^2", "name": "big", "group": "Ungrouped variables"}, "sml": {"templateType": "anything", "description": "

The coefficient of $x$ in the expanded quadratic.

", "definition": "2*bits[0]", "name": "sml", "group": "Ungrouped variables"}}, "parts": [{"type": "gapfill", "showCorrectAnswer": true, "unitTests": [], "prompt": "

Write the following expression in the form $a(x+b)^2-c$.

\n

$\\simplify {x^2+{sml}x+{big}} =$ [[0]]

", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "scripts": {}, "customMarkingAlgorithm": "", "gaps": [{"showCorrectAnswer": true, "checkVariableNames": false, "useCustomName": false, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "musthave": {"partialCredit": 0, "showStrings": false, "strings": [")^2"], "message": "

It doesn't look like you've completed the square.

"}, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "notallowed": {"partialCredit": 0, "showStrings": false, "strings": ["x^2"], "message": "

It doesn't look like you've completed the square.

"}, "vsetRange": [0, 1], "variableReplacements": [], "customMarkingAlgorithm": "", "vsetRangePoints": 5, "adaptiveMarkingPenalty": 0, "customName": "", "type": "jme", "checkingAccuracy": 0.001, "answer": "(x+{bits[0]})^2-{bits[1]^2}", "valuegenerators": [{"value": "", "name": "x"}], "checkingType": "absdiff", "scripts": {}, "showPreview": true, "marks": 1}], "marks": 0, "variableReplacements": [], "useCustomName": false, "adaptiveMarkingPenalty": 0, "customName": ""}, {"type": "gapfill", "showCorrectAnswer": true, "unitTests": [], "prompt": "

\n

\$\\simplify {x^2+{sml}x+{big}} = 0\\text{.} \$

\n

$x_1=$ [[0]]

\n

or

\n

$x_2=$ [[1]]

", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "sortAnswers": true, "scripts": {}, "customMarkingAlgorithm": "", "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "showCorrectAnswer": true, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "minValue": "{-bits[0]-bits[1]}", "maxValue": "{-bits[0]-bits[1]}", "showFractionHint": true, "variableReplacements": [], "customMarkingAlgorithm": "", "adaptiveMarkingPenalty": 0, "customName": "", "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "useCustomName": false, "correctAnswerStyle": "plain", "scripts": {}, "marks": 1}, {"correctAnswerFraction": false, "mustBeReduced": false, "showCorrectAnswer": true, "unitTests": [], "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "minValue": "{-bits[0]+bits[1]}", "maxValue": "{-bits[0]+bits[1]}", "showFractionHint": true, "variableReplacements": [], "customMarkingAlgorithm": "", "adaptiveMarkingPenalty": 0, "customName": "", "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "useCustomName": false, "correctAnswerStyle": "plain", "scripts": {}, "marks": 1}], "marks": 0, "variableReplacements": [], "useCustomName": false, "adaptiveMarkingPenalty": 0, "customName": ""}], "advice": "

Completing the square works by noticing that

\n

\$(x+a)^2 = x^2 + 2ax + a^2 \$

\n

So when we see an expression of the form $x^2 + 2ax$, we can rewrite it as $(x+a)^2-a^2$.

\n

#### a)

\n

Rewrite $x^2+\\var{sml}x$ as $\\simplify[basic]{ (x+{sml/2})^2 - {sml/2}^2}$.

\n

\\begin{align}
\\simplify[basic]{x^2+{sml}x+{big}} &= \\simplify[basic]{(x+{sml/2})^2-{(sml/2)}^2+{big}} \\\\
&= \\simplify[basic]{(x+{sml/2})^2+{-(sml/2)^2+big}} \\text{.}
\\end{align}

\n

#### b)

\n

We showed above that

\n

\$\\simplify[basic]{x^2+{sml}x+{big}} = 0 \$

\n

is equivalent to

\n

\$\\simplify[basic]{(x+{bits[0]})^2-{bits[1]^2}} = 0 \\text{.} \$

\n

We can then rearrange this equation to solve for $x$.

\n

\\begin{align}
\\simplify{(x+{bits[0]})^2-{(bits[1])^2} } &= 0 \\\\
(x+\\var{bits[0]})^2 &= \\var{bits[1]^2} \\\\
x+\\var{bits[0]} &= \\pm \\var{bits[1]} \\\\
x &= -\\var{bits[0]} \\pm \\var{bits[1]} \\\2em] x_1 &= \\var{-bits[0]-bits[1]} \\text{,}\\\\ x_2 &= \\var{-bits[0]+bits[1]} \\text{.} \\end{align} ", "tags": ["taxonomy"], "preamble": {"css": "", "js": ""}, "rulesets": {}, "functions": {}, "ungrouped_variables": ["big", "sml", "bits"], "statement": " We can rewrite quadratic equations given in the form ax^2+bx+c as a square plus another term - this is called \"completing the square\". \n This can be useful when it isn't obvious how to fully factorise a quadratic equation. ", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": " Solve a quadratic equation by completing the square. The roots are not pretty! "}, "variablesTest": {"condition": "", "maxRuns": 100}}, {"name": "Completing the square", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "metadata": {"description": " Rearrange expressions in the form ax^2+bx+c to a(x+b)^2+c. ", "licence": "Creative Commons Attribution 4.0 International"}, "ungrouped_variables": ["all", "all2", "multiall", "big", "sml", "multiall2"], "type": "question", "advice": " Completing the square works by noticing that \n \\[ (x+a)^2 = x^2 + 2ax + a^2 \

\n

So when we see an expression of the form $x^2 + 2ax$, we can rewrite it as $(x+a)^2-a^2$.

\n

#### a)

\n

We have $x^2+ \\var{evens1}x$, so we can replace it with $(x+\\var{evens1/2})^2-\\var{evens1/2}^2 = (x+\\var{evens1/2})^2 - \\var{evens1^2/4}$.

\n

Check that this is equivalent to the original expression by expanding the brackets:

\n

\\begin{align}
(x+\\var{evens1/2})^2 - \\var{evens1^2/4} &= \\simplify[basic]{ x^2 + 2*{evens1/2}*x + {evens1/2}^2 - {evens1^2/4} } \\\\
&= x^2 + \\var{evens1}x \\text{.}
\\end{align}

\n

#### b)

\n

Replace $x^2 + \\var{odds}x$ by $\\simplify[basic]{(x+{odds}/2)^2-({odds}/2)^2}$, to obtain

\n

\\begin{align}
x^2 + \\var{odds}x &= \\simplify[basic]{(x+{odds}/2)^2-({odds}/2)^2} \\\0.5em] &= \\simplify[basic]{ (x+{odds}/2)^2 - {odds^2}/4} \\text{.} \\end{align} \n #### c) \n Replace x^2+\\var{evens2}x with (x+\\var{evens2/2})^2 - \\var{evens2/2}^2. Remember to keep the \\var{evens2-evens1} term on the end! \n \\begin{align} \\simplify[basic]{ x^2 + {evens2}x + {evens2-evens1}} &= \\simplify[basic]{ (x+{evens2/2})^2 - {evens2/2}^2 + {evens2-evens1} } \\\\ &= \\simplify[basic]{ (x+{evens2/2})^2 + {evens2-evens1 - evens2^2/4} } \\end{align} \n #### d) \n First, notice that \\simplify[basic]{ {all}x^2 + {multiall}x } = \\simplify[basic]{ {all}*( x^2 + {multiall/all} x)}. \n Then, we can replace x^2 + \\var{multiall/all}x with (x+\\var{multiall/all/2})^2 - \\var{multiall/all/2}^2. \n \\begin{align} \\simplify[basic]{ {all}x^2 + {multiall}x + {odds3-evens2}} &= \\simplify[basic]{ {all}*( x^2 + {multiall/all} x) + {odds3-evens2}} & \\text{Extract the common factor of } \\var{all} \\\\ &= \\simplify[basic]{ {all}*( (x+{multiall/all/2})^2 - {multiall/all/2}^2) + {odds3-evens2} } & \\text{Complete the square}\\\\ &= \\simplify[basic]{ {all}*(x+{multiall/all/2})^2 - {all}*{(multiall/all/2)^2} + {odds3-evens2} } & \\text{Expand the constant term}\\\\ &= \\simplify[basic]{ {all}*(x+{multiall/all/2})^2 + {odds3-evens2 - (multiall/2)^2/all}} & \\text{Collect constants} \\end{align} \n \n", "variable_groups": [{"name": "Odds and Evens", "variables": ["evens1", "evens2", "evens3", "odds", "odds2", "odds3"]}], "rulesets": {}, "statement": " We can rewrite quadratic equations given in the form ax^2+bx+c as a square plus another term - this is called \"completing the square\". \n This can be useful when it isn't obvious how to fully factorise a quadratic equation. \n Rewrite the following expressions in the form \\[(x+b)^2-c\ or \$a(x+b)^2-c\$

", "parts": [{"scripts": {}, "gaps": [{"showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "checkingaccuracy": 0.001, "showFeedbackIcon": true, "checkvariablenames": false, "type": "jme", "answer": "(x+{evens1/2})^2-{evens1/2}^2", "musthave": {"message": "

It doesn't look like you've completed the square.

", "showStrings": false, "strings": ["(x", ")^2"], "partialCredit": 0}, "scripts": {}, "variableReplacements": [], "checkingtype": "absdiff", "vsetrange": [0, 1], "marks": 1, "expectedvariablenames": []}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

$x^2+ \\var{evens1}x =$ [[0]]

\n

", "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "gaps": [{"showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "checkingaccuracy": 0.001, "showFeedbackIcon": true, "checkvariablenames": false, "type": "jme", "answer": "(x+{odds}/2)^2-{(odds/2)^2}", "musthave": {"message": "

It doesn't look like you've completed the square.

", "showStrings": false, "strings": ["(x", ")^2"], "partialCredit": 0}, "scripts": {}, "variableReplacements": [], "checkingtype": "absdiff", "vsetrange": [0, 1], "marks": 1, "expectedvariablenames": [], "answersimplification": "basic, fractionNumbers"}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

$x^2+\\var{odds}x =$ [[0]]

", "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "gaps": [{"showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "checkingaccuracy": 0.001, "showFeedbackIcon": true, "checkvariablenames": false, "type": "jme", "answer": "(x+{evens2/2})^2+{-(evens2/2)^2+evens2-evens1}", "musthave": {"message": "

It doesn't look like you've completed the square.

", "showStrings": false, "strings": ["(x", ")^2"], "partialCredit": 0}, "scripts": {}, "variableReplacements": [], "checkingtype": "absdiff", "vsetrange": [0, 1], "marks": 1, "expectedvariablenames": [], "answersimplification": "basic, fractionNumbers"}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

$\\simplify {x^2+ {evens2}x +{evens2-evens1}} =$ [[0]]

", "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "gaps": [{"showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "checkingaccuracy": 0.001, "showFeedbackIcon": true, "checkvariablenames": false, "type": "jme", "answer": "{all}(x+{multiall/all/2})^2+{-all*(multiall/all/2)^2+odds3-evens2}", "musthave": {"message": "

It doesn't look like you've completed the square.

", "showStrings": false, "strings": ["^2", ")", "(x"], "partialCredit": 0}, "scripts": {}, "variableReplacements": [], "checkingtype": "absdiff", "vsetrange": [0, 1], "marks": 1, "expectedvariablenames": [], "answersimplification": "basic, fractionNumbers"}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

$\\simplify {{all} x^2+{multiall}x+{odds3-evens2}} =$ [[0]]

", "variableReplacementStrategy": "originalfirst"}], "tags": ["complete the square", "completing the square", "taxonomy"], "preamble": {"css": "", "js": ""}, "functions": {}, "variables": {"multiall2": {"description": "", "group": "Ungrouped variables", "definition": "all2*random(2..10 #2)", "name": "multiall2", "templateType": "anything"}, "odds3": {"description": "", "group": "Odds and Evens", "definition": "random(11..30 #2 except odds odds2)", "name": "odds3", "templateType": "anything"}, "evens3": {"description": "", "group": "Odds and Evens", "definition": "random(2..30 #2 except evens1 evens2)", "name": "evens3", "templateType": "anything"}, "evens2": {"description": "", "group": "Odds and Evens", "definition": "random(10..30 #2 except evens1)", "name": "evens2", "templateType": "anything"}, "multiall": {"description": "", "group": "Ungrouped variables", "definition": "all*random(2..10#2)", "name": "multiall", "templateType": "anything"}, "evens1": {"description": "", "group": "Odds and Evens", "definition": "random(10..30 #2)", "name": "evens1", "templateType": "anything"}, "all2": {"description": "", "group": "Ungrouped variables", "definition": "random(2..6 except all)", "name": "all2", "templateType": "anything"}, "odds2": {"description": "", "group": "Odds and Evens", "definition": "random(11..30 #2 except odds)", "name": "odds2", "templateType": "anything"}, "big": {"description": "", "group": "Ungrouped variables", "definition": "random(30..50)", "name": "big", "templateType": "anything"}, "all": {"description": "", "group": "Ungrouped variables", "definition": "random(2..6)", "name": "all", "templateType": "anything"}, "sml": {"description": "", "group": "Ungrouped variables", "definition": "random(2..6#2)", "name": "sml", "templateType": "anything"}, "odds": {"description": "", "group": "Odds and Evens", "definition": "random(11..30 #2)", "name": "odds", "templateType": "anything"}}, "variablesTest": {"maxRuns": 100, "condition": ""}}, {"name": "Using the Quadratic Formula to Solve Equations of the Form $ax^2 +bx+c=0$", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "metadata": {"description": "

Apply the quadratic formula to find the roots of a given equation. The quadratic formula is given in the steps if the student requires it.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "ungrouped_variables": ["a1", "a2", "a3", "a4", "b1", "b2", "b3", "b4", "x1", "p1", "p2", "x2", "a", "m"], "rulesets": {}, "advice": "

\n

\$x={\\frac {-b\\pm\\sqrt{b^2-4\\times a\\times c}}{2a}}\\text{.}\$

\n

#### a)

\n

From the equation, we can read off values for $a$, $b$ and $c$:

\n

\\\begin{align} a&=1\\text{,}\\\\ b&=\\var{a+m}\\text{,}\\\\ c&=\\var{a*m} \\text{.} \\end{align}\

\n

Substituting these values into the quadratic formula,

\n

\$x = \\frac {-\\var{a+m}\\pm\\sqrt{\\var{a+m}^2-4\\times \\var{a*m}}}{2}\\text{.}\$

\n

Note the $\\pm$ symbol in the formula. This means there are two solutions: one using $+$, the other using $-$.

\n

The two solutions are

\n

\\\begin{align} x_1&=\\var{m}\\text{,}\\\\ x_2&=\\var{a}\\text{.} \\end{align}\

\n

#### b)

\n

Note that the right-hand side of the given equation is not zero. We need to rewrite it in the form $ax^2+bx+c=0$:

\n

\\\begin{align} \\simplify{{a1}x^2+{a2}x+{a3}}&=\\var{a4}\\\\ \\simplify{{a1}x^2+{a2}x+{a3-a4}}&=0\\text{.} \\end{align}\

\n

Then we can read off values for $a$, $b$ and $c$:

\n

\\\begin{align} a&=\\var{a1}\\\\ b&=\\var{a2}\\\\ c&=\\var{a3-a4} \\text{.} \\end{align}\

\n

We can now substitute these values into the quadratic formula:

\n

\$x = {\\frac {-\\var{a2}\\pm\\sqrt{\\var{a2}^2-4\\times \\var{a1}\\times \\var{a3-a4}}}{2\\times\\var{a1}}}\\text{.}\$

\n

So the two solutions are

\n

\\\begin{align} x_1&=\\var{dpformat(x1,2)}\\\\ x_2&=\\var{dpformat(x2,2)}\\text{.} \\end{align}\

\n

#### c)

\n

We first rearrange our equation into the form $ax^2+bx+c=0$:

\n

\\\begin{align} \\simplify{{b1}x^2+{b2}x+{b3}}&=0=\\var{b4}x\\\\ \\simplify{{b1}x^2+{b2-b4}x+{b3}}&=0\\text{.} \\end{align}\

\n

We can then read off the values for $a, b$ and $c$, which are

\n

\\\begin{align} a&=\\var{b1}\\text{,}\\\\ b&=\\var{b2-b4}\\text{,}\\\\ c&=\\var{b3}\\text{.} \\end{align}\

\n

Substituting these values into the quadratic formula,

\n

\$x = {\\frac {-\\var{b2-b4}\\pm\\sqrt{\\var{b2-b4}^2-4\\times \\var{b1}\\times \\var{b3}}}{2\\times\\var{b1}}},\$

\n

we obtain solutions

\n

\\\begin{align} x_1&=\\var{dpformat(p1,2)}\\text{,}\\\\ x_2&=\\var{dpformat(p2,2)}\\text{.} \\end{align}\

", "variable_groups": [{"name": "part 2", "variables": ["b", "c"]}], "statement": "

When quadratic equations can't be factorised, or if equations are difficult to factorise (perhaps if the coefficients are large), we need to use the quadratic formula to solve the equations.

\n

Use the quadratic formula to calculate values for $x$ in these equations. Input the possible values as $x_1$ and $x_2$, where $x_1<x_2$.

", "parts": [{"scripts": {}, "variableReplacements": [], "type": "gapfill", "prompt": "

$\\simplify{x^2+{a+m}x+{a*m}=0}$

\n

$x_1=$ [[0]]

\n

$x_2=$ [[1]]

", "stepsPenalty": 0, "steps": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "information", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

An equation of the form

\n

\$ax^2+bx+c=0\\text{,}\$

\n

\n

can be solved using the quadratic formula

\n

\$x={\\frac {-b\\pm\\sqrt{b^2-4\\times a\\times c}}{2a}}\\text{.}\$

\n

"}], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "correctAnswerFraction": false, "precision": "2", "precisionPartialCredit": 0, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "showFeedbackIcon": true, "precisionType": "dp", "minValue": "-a", "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "maxValue": "-a", "mustBeReduced": false, "marks": 1, "variableReplacements": [], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "strictPrecision": false, "showPrecisionHint": true}, {"allowFractions": false, "correctAnswerFraction": false, "precision": "2", "precisionPartialCredit": 0, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "showFeedbackIcon": true, "precisionType": "dp", "minValue": "-m", "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "maxValue": "-m", "mustBeReduced": false, "marks": 1, "variableReplacements": [], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "strictPrecision": false, "showPrecisionHint": true}], "showFeedbackIcon": true, "marks": 0, "showCorrectAnswer": true}, {"scripts": {}, "variableReplacements": [], "type": "gapfill", "prompt": "

\n

$\\simplify{{a1}x^2+{a2}x+{a3}={a4}}$

\n

$x_1=$ [[0]]

\n

$x_2=$ [[1]]

\n

", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "correctAnswerFraction": false, "precision": "2", "precisionPartialCredit": 0, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "showFeedbackIcon": true, "precisionType": "dp", "minValue": "x1", "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "maxValue": "x1", "mustBeReduced": false, "marks": 1, "variableReplacements": [], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "strictPrecision": false, "showPrecisionHint": true}, {"allowFractions": false, "correctAnswerFraction": false, "precision": "2", "precisionPartialCredit": 0, "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "showFeedbackIcon": true, "precisionType": "dp", "minValue": "x2", "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "maxValue": "x2", "mustBeReduced": false, "marks": 1, "variableReplacements": [], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "strictPrecision": false, "showPrecisionHint": true}], "showFeedbackIcon": true, "marks": 0}, {"scripts": {}, "variableReplacements": [], "type": "gapfill", "prompt": "

$\\simplify{{b1}x^2+{b2}x+{b3}={b4}x}$

\n

$x_1=$ [[0]]

\n

$x_2=$ [[1]]

Solve the equation $\\simplify {x^2+{b_3}*k*x+{c_2}k^2=0}$. Give your answer in terms of $k$. Assuming $k$ is positive, enter the lowest root first.

\n

$x_1=$ [[0]]

\n

$x_2=$ [[1]]

", "steps": [{"variableReplacementStrategy": "originalfirst", "type": "information", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "scripts": {}, "showFeedbackIcon": true, "prompt": "

\n

\${\\frac {-b\\pm\\sqrt{b^2-4\\times a\\times c}}{2a}}\\text{.}\$

\n

\${\\frac {-b\\pm\\sqrt{b^2-4\\times a\\times c}}{2a}}\\text{.}\$

\n

We can list our values for $a, b$ and $c$.

\n

\\\begin{align} a&=1\\\\ b&=\\var{b_3}k\\\\ c&=\\var{c_2}k^2 \\end{align}\

\n

Then by substituting them into the quadratic formula, we obtain

\n

\$x=\\frac {-\\var{b_3}k\\pm\\sqrt{\\var{b_3}^2k^2-4\\times \\var{c_2}k^2}}{2}\$

\n

We can then simplify this equation to

\n

\\\begin{align} x&=\\frac {-\\var{b_3}k\\pm k\\sqrt{\\var{b_3}^2-\\var{4c_2}}}{2}\\\\ \\end{align}\
\\\begin{align} &=k\\left(\\frac{-\\var{b_3}}{2}\\pm \\frac {\\sqrt{\\var{b_3}^2-\\var{4c_2}}}{2}\\right)\\\\ \\end{align}\
\\\begin{align} &=k\\left(-\\frac{\\var{b_3}}{2} \\pm\\frac{\\sqrt{\\var{(b_3^2-4c_2)}}}{2}\\right)\\\\ \\end{align}\

\n

This means our possible values for $x$ in terms of $k$ are,

\n

\\begin{align}
x_1 &= \\left( \\simplify[all,!noleadingminus,!collectnumbers,!simplifyfractions]{-{b_3}/2 - {sqrt(b_3^2-4c_2)}/2} \\right) k = \\var[fractionnumbers]{-b_3/2 - sqrt(b_3^2-4*c_2)/2}k \\\\
x_2 &= \\left( \\simplify[all,!noleadingminus,!collectnumbers,!simplifyfractions]{-{b_3}/2 + {sqrt(b_3^2-4c_2)}/2} \\right) k = \\var[fractionnumbers]{-b_3/2 + sqrt(b_3^2-4*c_2)/2}k
\\end{align}

", "tags": ["Quadratic equations", "Quadratic Equations", "quadratic equations", "quadratic formula", "Quadratic formula", "solving quadratic equations", "Solving quadratic equations", "Solving quadratic equations using the quadratic formula", "taxonomy", "unknown variable", "Unknown variable"], "variables": {"b": {"templateType": "anything", "description": "", "definition": "2c^0.5+a1^2", "name": "b", "group": "part 2"}, "m": {"templateType": "anything", "description": "", "definition": "random(9..a)", "name": "m", "group": "Ungrouped variables"}, "n2": {"templateType": "anything", "description": "", "definition": "random(1..10)^2", "name": "n2", "group": "part 2"}, "b_2": {"templateType": "anything", "description": "", "definition": "random(n2^0.5..11 except n2^0.5)^2 ", "name": "b_2", "group": "part 2"}, "b1": {"templateType": "anything", "description": "", "definition": "random(1..10 except a1)", "name": "b1", "group": "Ungrouped variables"}, "p1": {"templateType": "anything", "description": "", "definition": "(-(b2-b4)-((b2-b4)^2-4*b1*b3)^(1/2))/(2*b1)", "name": "p1", "group": "Ungrouped variables"}, "a4": {"templateType": "anything", "description": "", "definition": "random(1..15)", "name": "a4", "group": "Ungrouped variables"}, "a1": {"templateType": "anything", "description": "", "definition": "random(1..9)", "name": "a1", "group": "Ungrouped variables"}, "c": {"templateType": "anything", "description": "", "definition": "random(-10..4 except 0)^2", "name": "c", "group": "part 2"}, "x1": {"templateType": "anything", "description": "", "definition": "(-(a2)-((a2)^2-4*a1*(a3-a4))^(1/2))/(2*a1)", "name": "x1", "group": "Ungrouped variables"}, "b_3": {"templateType": "anything", "description": "", "definition": "b_2^0.5", "name": "b_3", "group": "part 2"}, "c_2": {"templateType": "anything", "description": "", "definition": "(b_2-n2)/4", "name": "c_2", "group": "part 2"}, "a3": {"templateType": "anything", "description": "", "definition": "random(-30..4 except 0)", "name": "a3", "group": "Ungrouped variables"}, "p2": {"templateType": "anything", "description": "", "definition": "(-(b2-b4)+((b2-b4)^2-4*b1*b3)^(1/2))/(2*b1)", "name": "p2", "group": "Ungrouped variables"}, "b2": {"templateType": "anything", "description": "", "definition": "random(20..35 except a2)", "name": "b2", "group": "Ungrouped variables"}, "a": {"templateType": "anything", "description": "", "definition": "random(15..20)", "name": "a", "group": "Ungrouped variables"}, "a2": {"templateType": "anything", "description": "", "definition": "random(9..30 except a1)", "name": "a2", "group": "Ungrouped variables"}, "x2": {"templateType": "anything", "description": "", "definition": "(-(a2)+((a2)^2-4*a1*(a3-a4))^(1/2))/(2*a1)", "name": "x2", "group": "Ungrouped variables"}, "b4": {"templateType": "anything", "description": "", "definition": "random(-5..5)", "name": "b4", "group": "Ungrouped variables"}, "b3": {"templateType": "anything", "description": "", "definition": "random(-30..6 except a3)", "name": "b3", "group": "Ungrouped variables"}}, "rulesets": {}, "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4", "b1", "b2", "b3", "b4", "x1", "p1", "p2", "x2", "a", "m"], "statement": "

The coefficients of the following equation involve the unknown value $k$. We can use the quadratic formula to find expressions for the values of $x$ in terms of $k$.

Factorise a quadratic expression of the form $x^2+akx+bk^2$ for $x$, in terms of $k$. $a$ and $b$ are constants.

"}, "variablesTest": {"condition": "", "maxRuns": 100}}, {"name": "Factorising Quadratic Equations with $x^2$ Coefficients of 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}], "metadata": {"description": "

Factorise three quadratic equations of the form $x^2+bx+c$.

\n

The first has two negative roots, the second has one negative and one positive, and the third is the difference of two squares.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

\n

", "variables": {"v1": {"name": "v1", "group": "Part A ", "definition": "random(1..10)", "templateType": "anything", "description": ""}, "v2": {"name": "v2", "group": "Part A ", "definition": "random(2..6 except v1)", "templateType": "anything", "description": ""}, "v4": {"name": "v4", "group": "Part A ", "definition": "random(1..10 except -v3)", "templateType": "anything", "description": ""}, "v5": {"name": "v5", "group": "Part A ", "definition": "random(2..10)", "templateType": "anything", "description": ""}, "v3": {"name": "v3", "group": "Part A ", "definition": "random(-8..-1)", "templateType": "anything", "description": ""}, "v6": {"name": "v6", "group": "Part A ", "definition": "-v5", "templateType": "anything", "description": ""}}, "tags": ["Factorisation", "factorisation", "factorising quadratic equations", "Factorising quadratic equations", "taxonomy"], "ungrouped_variables": [], "functions": {}, "preamble": {"js": "question.is_factorised = function(part,penalty) {\n penalty = penalty || 0;\n if(part.credit>0) {\n // Parse the student's answer as a syntax tree\n var studentTree = Numbas.jme.compile(part.studentAnswer,Numbas.jme.builtinScope);\n\n // Create the pattern to match against \n // we just want two sets of brackets, each containing two terms\n // or one of the brackets might not have a constant term\n // or for repeated roots, you might write (x+a)^2\n var rule = Numbas.jme.compile('m_all(m_any(x,x+m_pm(m_number),x^m_number,(x+m_pm(m_number))^m_number))*m_nothing');\n\n // Check the student's answer matches the pattern. \n var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n // If not, take away marks\n if(!m) {\n part.multCredit(penalty,'Your answer is not fully factorised.');\n }\n }\n}", "css": ""}, "advice": "

\n

\$x^2+bx+c=0\$

\n

can be factorised to create an equation of the form

\n

\$(x+m)(x+n)=0\\text{.}\$

\n

When we expand a factorised quadratic expression we obtain

\n

\$(x+m)(x+n)=x^2+(m+n)x+(m \\times n)\\text{.}\$

\n

To factorise an equation of the form $x^2+bx+c$, we need to find two numbers which add together to make $b$, and multiply together to make $c$.

\n

#### a)

\n

\$\\simplify{x^2+{v1+v2}x+{v1*v2}=0}\$

\n

We need to find two values that add together to make $\\var{v1+v2}$ and multiply together to make $\\var{v1*v2}$.

\n

\\\begin{align} \\var{v1} \\times \\var{v2}&=\\var{v1*v2}\\\\ \\var{v1}+\\var{v2}&=\\var{v1+v2}\\\\ \\end{align} \

\n

So the factorised form of the equation is

\n

\$\\simplify{(x+{v1})(x+{v2})}=0\\text{.}\$

\n

\n

#### b)

\n

We can begin factorising by finding factors of $\\var{v3*v4}$ that add together to give $\\var{v3+v4}$.

\n

\\\begin{align} \\var{v3} \\times \\var{v4}&=\\var{v3*v4}\\\\ \\var{v3}+\\var{v4}&=\\var{v3+v4}\\\\ \\end{align} \

\n

So the factorised form of the equation is

\n

\$\\simplify{(x+{v3})(x+{v4})}=0\\text{.}\$

\n

#### c)

\n

\n

\$\\simplify{x^2+{v5*v6}=0}\$

\n

we need to find two values that add together to make $0$ and multiply together to make $\\var{v5*v6}$.

\n

\\begin{align}
\\var{v5} \\times \\var{v6}& = \\var{v5*v6}\\\\
\\simplify[]{ {v5} + {v6}} &= 0 \\\\
\\end{align}

\n

So the factorised form of the equation is

\n

\$\\simplify{(x+{v5})(x+{v6})}=0\\text{.}\$

", "type": "question", "variable_groups": [{"variables": ["v1", "v2", "v3", "v4", "v5", "v6"], "name": "Part A "}], "parts": [{"scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "gaps": [{"mustmatchpattern": {"pattern": "(+-x^$n? + +-$n)* * $z", "message": "Your answer is not fully factorised.", "partialCredit": 0, "nameToCompare": ""}, "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkingAccuracy": 0.001, "scripts": {}, "failureRate": 1, "checkVariableNames": false, "marks": 1, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "useCustomName": false, "showPreview": true, "customName": "", "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "(x+{v1})(x+{v2})", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "vsetRangePoints": 5}], "type": "gapfill", "marks": 0, "customMarkingAlgorithm": "", "prompt": "$\\simplify{x^2+{v1+v2}x+{v1*v2}=0}$\n [[0]]$=0$\n ", "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "gaps": [{"mustmatchpattern": {"pattern": "(+-x^$n? + +- $n)* *$z", "message": "Your answer is not fully factorised.", "partialCredit": 0, "nameToCompare": ""}, "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkingAccuracy": 0.001, "scripts": {}, "failureRate": 1, "checkVariableNames": false, "marks": 1, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "useCustomName": false, "showPreview": true, "customName": "", "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "(x+{v3})(x+{v4})", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "vsetRangePoints": 5}], "type": "gapfill", "marks": 0, "customMarkingAlgorithm": "", "prompt": "

$\\simplify{x^2+{v3+v4}x+{v3*v4}}=0$

\n

[[0]] $=0$

\n

", "variableReplacementStrategy": "originalfirst"}, {"scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "sortAnswers": false, "showCorrectAnswer": true, "gaps": [{"mustmatchpattern": {"pattern": "(+-x^$n? + +-$n)* * $z", "message": " Your answer is not fully factorised. ", "partialCredit": 0, "nameToCompare": ""}, "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkingAccuracy": 0.001, "scripts": {}, "failureRate": 1, "checkVariableNames": false, "marks": 1, "valuegenerators": [{"name": "x", "value": ""}], "variableReplacements": [], "useCustomName": false, "showPreview": true, "customName": "", "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "(x+{v5})(x+{v6})", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "vsetRangePoints": 5}], "type": "gapfill", "marks": 0, "customMarkingAlgorithm": "", "prompt": "$\\simplify{x^2+{v5*v6}}=0$\n [[0]]$=0\$

", "variableReplacementStrategy": "originalfirst"}], "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}}]}], "showQuestionGroupNames": false, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Questions involving various techniques for rearranging and solving quadratic expressions and equations

"}, "feedback": {"intro": "", "showtotalmark": true, "advicethreshold": 0, "allowrevealanswer": true, "showactualmark": true, "showanswerstate": true, "feedbackmessages": []}, "duration": 0, "name": "Nick's copy of Quadratic expressions and equations", "navigation": {"onleave": {"message": "", "action": "none"}, "browse": true, "reverse": true, "preventleave": true, "showresultspage": "oncompletion", "allowregen": true, "showfrontpage": true}, "type": "exam", "contributors": [{"name": "Nick Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2416/"}], "extensions": [], "custom_part_types": [], "resources": []}