// Numbas version: finer_feedback_settings {"navigation": {"browse": true, "allowregen": true, "onleave": {"action": "none", "message": ""}, "showfrontpage": true, "showresultspage": "oncompletion", "preventleave": true, "reverse": true}, "showQuestionGroupNames": false, "feedback": {"showtotalmark": true, "advicethreshold": 0, "allowrevealanswer": true, "showactualmark": true, "showanswerstate": true, "feedbackmessages": [], "intro": "
Please ensure you are using the correct browser to do this quiz. There is a time limit of 50 minutes to complete this quiz but you may pause the quiz and resume and a later time. The pass mark is 90%. You have unlimited attempts. The quiz is worth 2% of your continuous assessment.
\nN.B. If you pass the quiz do not enter the quiz again as it will reset your score to 0. If you want to check your grade do so through the gradebook link in moodle. Take a screenshot of your pass mark at the end to have as proof that you have passed the quiz and email to yourself just in case.
", "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "name": "Mathematics 2 Quiz 1", "metadata": {"description": "This quiz will assess your ability to differentiate trigonometric & logarithmic functions together with implicit differentiation.
", "licence": "None specified"}, "duration": 3000, "percentPass": "90", "timing": {"timeout": {"action": "warn", "message": "Times up - please repeat the exam if you haven't passed.
"}, "timedwarning": {"action": "warn", "message": "5 minutes until time is up.
"}, "allowPause": true}, "question_groups": [{"pickQuestions": 1, "pickingStrategy": "all-shuffled", "name": "Group", "questions": [{"name": "Blathnaid's copy of Implicit differentiation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b"], "tags": ["calculus", "Calculus", "checked2015", "derivative", "derivative ", "deriving an implicit relation", "differentiate", "differentiate implicitly", "differentiation", "first derivative using implicit differentiation", "implicit differentiation", "implicit relation", "mas1601", "MAS1601"], "type": "question", "advice": "On differentiating both sides of the equation implicitly we get
\\[2x + \\simplify[all,!collectNumbers]{2y*Diff(y,x,1) + {a} + {b} *Diff(y,x,1)} = 0\\]
Collecting terms in $\\displaystyle\\frac{dy}{dx}$ and rearranging the equation we get
\\[(\\var{b} + 2y) \\frac{dy}{dx} = \\simplify[all,!collectNumbers]{{ -a} -2x}\\] and hence on further rearranging:
\\[\\frac{dy}{dx} = \\simplify[all,!collectNumbers]{({ - a} - 2 * x) / ({b} + (2 * y))}\\]
Using implicit differentiation find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.
\nInput your answer here:
\n$\\displaystyle \\frac{dy}{dx}= $ [[0]]
\n ", "marks": 0, "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "all,!collectNumbers", "scripts": {}, "answer": "(({( - a)} + ( - (2 * x))) / ({b} + (2 * y)))", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "preamble": {"css": "", "js": ""}, "statement": "Given the following relation between $x$ and $y$
\\[\\simplify[all,!collectNumbers]{x^2+y^2+{a}x+{b}y}=\\var{c}\\]
answer the following question.
20/06/2012:
\n \t\tAdded tags.
\n \t\tImproved display using \\displaystyle where appropriate.
\n \t\tChanged marks to 2.
\n \t\t\n \t\t
3/07/2012:
Added tags.
\n \t\t", "description": "\n \t\tImplicit differentiation.
\n \t\tGiven $x^2+y^2+ax+by=c$ find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.
\n \t\t\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}}, {"name": "Tangents", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "f"], "tags": ["rebelmaths"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "
Find the equation of the tangent line to the curve $f(x) = \\var{a}x^2 - \\var{b}x$ at the point $(\\var{c},\\simplify{{a}{c}{c}-{b}{c}})$.
\n$y = $[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "(2{a}{c}-{b})x-{a}{c}{c}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Find an equation of the tangent line to the curve $f(x) = \\sqrt[4]{x}$ at the point $(1,1)$.
\n$y = $ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "x/4 + 3/4", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Find an equation of the tangent line to $y = x^4 + \\var{d}x^2-\\var{f}x$ at the point $(1,\\simplify{1+{d}-{f}})$.
\n$y = $ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "(4+2{d}-{f})x-3-{d}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..6 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "f": {"definition": "random(2..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "f", "description": ""}}, "metadata": {"description": "rebelmaths
", "licence": "None specified"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Differentitating Trigonometric Functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "tags": [], "type": "question", "advice": "", "rulesets": {}, "parts": [{"vsetrangepoints": 5, "prompt": "Differentiate $\\var{a}x^2-\\var{b}\\cos(x)$.
\nWhen writing your answer be sure to include the brackets in any trigonometric expressions, i.e. write sin(x) rather than sinx.
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "2*{a}*x + {b}sin(x)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}, {"vsetrangepoints": 5, "prompt": "Differentiate $\\frac{\\cos(x)}{1-\\sin{x}}$.
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "1/(1-sin(x))", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}, {"prompt": "Find an equation of the tangent line to the curve $y = e^x\\cos(x)$ at the point $(0,1)$.
\n$y = $ [[0]]
", "marks": 0, "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "x+1", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "", "variable_groups": [], "progress": "in-progress", "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(2..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "b": {"definition": "random(2..8 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}}, "metadata": {"notes": "", "description": ""}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Implicit Differentiation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "tags": [], "type": "question", "advice": "", "rulesets": {}, "parts": [{"prompt": "$xy+\\var{a}x+\\var{b}x^2=\\var{c}$.
\n$\\frac{dy}{dx} = $ [[0]]
", "marks": 0, "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "(-y-{a}-2{b}x)/x", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "$x^\\var{d}+y^\\var{d}=1$
\n$\\frac{dy}{dx} = $[[0]]
", "marks": 0, "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "-x^({d}-1)/y^({d}-1)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "$xe^y=x-y$
\n$\\frac{dy}{dx} = $[[0]].
\nWhen writing $xe^y$ in your answer be sure to include a * symbol for multiplication i.e. x*e^y.
", "marks": 0, "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "(1-e^y)/(x*e^y+1)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "$x\\sin(y) + y\\sin(x) = 1$
\n$\\frac{dy}{dx} = $ [[0]].
\nWhen writing $x\\cos(y)$ in your answer be sure to include a * symbol for multiplication i.e. x*cos(y).
", "marks": 0, "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "(-y*cos(x)-sin(y))/(x*cos(y)-sin(x))", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "Find $\\frac{dy}{dx}$ using implicit differentiation in the following:
", "variable_groups": [], "progress": "in-progress", "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(1..20)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..8 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(3..8)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"notes": "", "description": ""}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Log Derivatives", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "TEAME UCC", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/351/"}], "functions": {}, "tags": [], "type": "question", "advice": "", "rulesets": {}, "parts": [{"vsetrangepoints": 5, "prompt": "Differentiate $x\\ln(x)-x$
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "ln(x)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}, {"vsetrangepoints": 5, "prompt": "Differentiate $ln(x^\\var{a}+1)$
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "({a}x^({a}-1))/(x^{a}+1)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}, {"vsetrangepoints": 5, "prompt": "Differentiate $\\ln(\\ln(x))$
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "1/(ln(x)*x)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}, {"prompt": "$y = x^2\\ln(2x)$
\n$y'(x) = $ [[0]].
\n$y''(x) = $ [[1]].
", "marks": 0, "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "x+ 2x*ln(2x)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "marks": 1, "showCorrectAnswer": true, "scripts": {}, "answer": "3+2ln(2x)", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "", "variable_groups": [], "progress": "in-progress", "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(3..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}}, "metadata": {"notes": "", "description": ""}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "showstudentname": true, "type": "exam", "contributors": [{"name": "Aoife O'Brien", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1693/"}], "extensions": [], "custom_part_types": [], "resources": []}